
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel:
Productive Parallel Programming at Scale

(a whirlwind introduction)

Brad Chamberlain, Chapel Team, Cray Inc.

HPDC 2016 TPC workshop
March 10th, 2016

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Motivation for Chapel

3

Q: Why doesn’t HPC programming have an equivalent to
Python / Matlab / Java / (your favorite programming language here) ?

A: We believe this is due less to technical challenges, and
more because of insufficient…
…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to change this

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What is Chapel?

4

Chapel: An emerging parallel programming language
●  extensible
●  portable
●  open-source
●  a collaborative effort
●  a work-in-progress

Goals:
●  Support general parallel programming

●  “any parallel algorithm on any parallel hardware”
●  Make parallel programming far more productive

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2016 Cray Inc.
5

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
 without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
 without taking away the control that HPC programmers want,
 implemented in a language as attractive as recent graduates want.”

want full control
 to ensure performance”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Chapel Team at Cray (spring 2015)

Copyright 2016 Cray Inc.
6

Note: We currently have full-time, intern, and Google SoC opportunities available

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Broader Chapel Community

Copyright 2016 Cray Inc.
7

(and many others as well…)

http://chapel.cray.com/collaborations.html

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Introduction to Chapel by Example

8
Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
9

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

10

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

11

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

CLU-style iterators CLU-style iterators

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

12

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

range types and
operators

built-in range types
and operators

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

13

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

zippered iteration

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

14

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

tuples

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

15

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Base Language Features, by example

16

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
17

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
18

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level	
Task	Parallelism	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
19

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstrac9on	of	
System	Resources	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
20

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

Control	of	Locality/Affinity	

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
21

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstrac9on	of	
System	Resources	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
22

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level	
Task	Parallelism	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
23

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
24

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Data-centric	task	coordina9on	
via	atomic	and	F/E	variables	

	

(not	seen	here)	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2016 Cray Inc.
25

●  This is a parallel, but local program:

●  This is a distributed, but serial program:

●  This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
 writeln(“Hello from task ”, i);

coforall i in 1..msgs do
 on Locales[i%numLocales] do
 writeln(“Hello from task ”, i,
 “ running on locale ”, here.id);

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
26

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Higher-Level Features

Higher-level Chapel

Domain Maps
Data Parallelism

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
27

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
28

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	Domains	(Index	Sets)	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
29

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Arrays	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
30

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Data-Parallel	Forall	Loops	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
31

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Domain	Maps		
(Map	Data	Parallelism	to	the	System)	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel by Example: Data Parallelism

Copyright 2016 Cray Inc.
32

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH: a DOE Proxy Application

Copyright 2016 Cray Inc.
33

Goal: Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
34

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
35

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in the Chapel release in examples/benchmarks/lulesh/

1288 lines of source code
plus 266 lines of comments

487 blank lines

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
36

This is the only representation-dependent code.
It specifies:

•  data structure choices:
•  structured vs. unstructured mesh
•  local vs. distributed data
•  sparse vs. dense materials arrays

•  a few supporting iterators
Domain maps insulate the rest of the application
from these choices

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Characterizations

37
Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel is Extensible

Copyright 2016 Cray Inc.
38

Advanced users can create their own…
…array layouts and distributions (domain maps)…
…scheduling policies for forall loops…
…architectural models and mappings…

…as Chapel code, without modifying the compiler.

Why? To make the language future-proof.

This is our main research challenge: How to create a
language that does not lock these policies into its definition
while obtaining competitive performance?

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2016 Cray Inc.
39

● Currently being picked up by early adopters
●  Users who try it typically like what they see
●  Last release got 1400+ downloads over six months

● Most features are functional and working well
●  some areas need further attention: object-oriented features, strings

● Performance is improving, but not yet optimal
●  shared memory performance is typically competitive with C+OpenMP
●  distributed memory performance can be hit-or-miss

● We are actively working to address these lacks

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel is Portable

Copyright 2016 Cray Inc.
40

● Chapel’s design is hardware-independent

●  The current release requires:
●  a C/C++ compiler
●  a *NIX environment (Linux, OS X, BSD, Cygwin, …)
●  POSIX threads
●  (for distributed execution): support for RDMA, MPI, or UDP

● Chapel can run on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.
 * = academic work only; not yet supported in the official release

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel is Open-Source

Copyright 2016 Cray Inc.
41

● Chapel’s development is hosted at GitHub
●  https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

●  Instructions for download + install are online
●  see http://chapel.cray.com/download.html

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel: For More Information

42
Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Websites

43

Project page: http://chapel.cray.com
●  overview, papers, presentations, language spec, …

GitHub: https://github.com/chapel-lang
●  download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Suggested Reading

44

Chapel chapter from Programming Models for Parallel Computing
●  a detailed overview of Chapel’s history, motivating themes, features
●  edited by Pavan Balaji, published by MIT Press
●  an early draft is available online,
 entitled A Brief Overview of Chapel

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Blog Articles

45

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
●  a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
●  a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
●  a series of articles answering common questions about why we are pursuing

Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

●  a series of technical opinion pieces designed to argue against standard
reasons given for not developing high-level parallel languages

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Mailing Aliases

46

low-traffic (read-only):
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions
chapel-bugs@lists.sourceforge.net: public bug forum

contact the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel_bugs@cray.com: for reporting non-public bugs

Subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/
●  (also serves as an alternate release download site to GitHub)

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Get Involved!

Copyright 2016 Cray Inc.
47

Attend CHIUW 2016 at IPDPS (Chicago, May 27-28)
●  3rd annual Chapel Implementers and Users Workshop
●  May 27th: mini-conference day

●  keynote: Nikhil Padmanabhan, Professor of Astrophysics, Yale Univ.
●  4 research paper talks, 10 short talks, community discussion

●  May 28th: code camp day

Send us your students!
●  as Google Summer of Coders, interns, full-time employees

Propose a research collaboration
●  join the growing Chapel community!

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Questions?

Copyright 2016 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.
49

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2016 Cray Inc.

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

