Hewlett Packard
Enterprise

RAPID PROTOTYPING BY EXAMPLE:
ARKOUDA ARGSORT IN CHAPEL

Brad Chamberlain

Rapid Prototyping for Exascale, ECP BoF Days
May 12, 2022

WHAT IS CHAPEL?

Chapel: A modern parallel programming language N
e portable & scalable
e open-source & collaborative _,
Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive
—-Python-like support for rapid prototyping
—-yet with the performance, scaling, GPU support of Fortran/C/C++, MPI, OpenMP, CUDA, ...

2

WHAT DO CHAPEL PROGRAMS LOOK LIKE?

helloTaskPar.chpl: print a message from each core in the system

fillArray.chpl: declare and initialize a distributed array

coforall loc in {
on loc {
const numTasks = .maxTaskPar;
coforall tid in 1. .numTasks do

(

tid, numTasks, .name) ;

> chpl helloTaskPar.chpl

> ./helloTaskPar --numLocales=4
Hello from task of 4 on nl1032
Hello from task of 4 on nl1032
Hello from task of 4 on nl1034

Hello from task of on nl1032
Hello from task of on nl1033
Hello from task of on nl1034

use ;
config const n = 1000;
const D= {1l..n, 1..n}
dmapped (startIdx = (1,1));

var A: [D] real;

forall (i,7) in D do
Ali,j] = 1i*10 + jJ + (here.id+1)/10.0;

(A) ;

> chpl fillArray.chpl

> ./£fillArray --n=5 --numLocales=4
11.1 12.2 13.1 14.2 15.

21.3 22.4 23.3 24.4 25.

31.1 32.2 33.1 34.2 35.
41.3 42.4 43.3 44.4 45.
51.1 52.2 53.1 54.2 55.

FLAGSHIP CHAPEL APPLICATIONS

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

ChplUItra: Simulating Ultralight

Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

'II=
DT S — - “ Arkouda: NumPy at Massive Scale : il ChOp: Chapel-based Optimization
E — ~ Mike Merrill, Bill Reus, et al - '/XA)(\‘ Tiago Carneiro, Nouredine Melab, et al.
- ﬁ o] — { US DoD E #hoees %oxe INRIA Lille, France

CrayAl: Distributed Machine Learning """""""" . Your application here?

é (=) : € { e : O { O ' Hewlett Packard Enterprise : ?

: (images provided by their respective teams and used with permission) I 4

ARKOUDA ARGSORT: PROTOTYPE TO PRODUCTION

Arkouda:

« provides scalable NumPy / Pandas routines for use in data science
e supports massive data sets (multi-TB arrays)

 runs at interactive rates (seconds to a few minutes per operation)
» key, expensive operations: groupBy and argSort

Arkouda Argsort Milestones:
May 2019: first-draft counting sorts written and tuned
Sept 2019: looked at NESL LSD radix sorfs and ~4 hours later had a ~100-line scalable sort
—achieved 80 GiB/s on 512 nodes of Cray XC
Nov 2019: changed ~12 lines of sort code to aggregate small messages
- 40% improvement on Cray XC, ~1000x improvement on InfiniBand
June 2021: did the following hero run

—

5

https://www.cs.cmu.edu/~scandal/nesl/algorithms/radix-sort.nesl

ARKOUDA ARGSORT AT MASSIVE SCALE

e Ran on a large Apollo system, summer 2022

e 73,728 cores of AMD Rome
o 72 TiB of 8-byte values

« 480 GiB/s (2.5 minutes elapsed time) ggg

e ~100 lines of Chapel code 400
350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576
Locales (x 128 cores / locale)

Close to world-record performance—quite likely a record for performance/SLOC

—

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

HIGEEGCE

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU

https://chapel-lang.org
@ChapelLanguage

BACKUP SLIDES

THE CHAPEL TEAM

Chapel is a tfeam effort—currently made up of 14 full-time employees, 2 part-time, and our director
« we also have 3 more full-time engineers joining in the next few months, and 2 open positions

Chapel Development Team at HPE

see: https://chapel-lang.org/contributors.html

and https://chapel-lang.org/jobs.html

10

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

CLBG: ALL-LANGUAGE SUMMARY (MAY 10, 2022)

Execution Time
(normalized to fastest entry)

100

80 -

60 -

40 -

20 -

1.0

HO
R
g \\. \\\‘\\\
N Lua Smalltalk
\ k)
. s
Perl »._ Ruby
Racket @ . Pyihen
Dart B (@]
e Erlang
Javesertptt -
Julia B L -

Compressed Code Size (AnormaAIized to smallest entry)

chapel
csharpcore
dartexe
erlang
fpascal
fsharpcore
gcc

ghc

gnat

go

gpp

ifc

java

julia

lua

node
ocaml

perl

php
python3
racket
ruby

rust

sbcl

swift

ww
gmean-smallest
O gmean-fastest

] |

11

CLBG: ALL-LANGUAGE SUMMARY (MAY 10, 2022, ZOOMED-IN)

Execution Time
(normalized to fastest entry)

10 \ D s

Haskell

U e S (S
\ e
) =~
B3
i
oS
° s O
uilia us B,
T 2 L
5,
o
Rt

S
SS
C E ‘

1 1 1 1 1
1.0 15 2.0 2.5 3.0

Compressed Code Sizé Cnormélized to smallest entry)

O 4
- o Javeserpt

B chapel
Bl csharpcore
mam dartexe
EEm erlang
I fpascal
mmm fsharpcore
I gcc
BN ghc
EEm gnat

go
. gpp

ifc
 java
 julia
. lua Q

node LISp
B ocaml
mmm perl
B php

python3
mmm racket
BN ruby
B rust

sbcl

swift
'Y

o D gmean-smallest

O gmeafi-fastest

3.5

12

FOR HPC BENCHMARKS, CHAPEL TENDS TO BE CONCISE, CLEAR, AND COMPETITIVE

STREAM TRIAD: C + MPI + OPENMP

use BlockDist;

.| config const m = 1000,

alpha = 3.0;

const Dom = {1l..m} dmapped ..;

var A, B, C: [Dom] real;

B =2.0;
C =1.0

4

A = B + alpha * C;

HPCC RA: MPI KERNEL

GB/s

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

onNn A~ O

STREAM Performance (GB/s)

MPI+OpenMP —¢—
Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

[
16 32 64 128 256
Locales (x 36 cores / locale)

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)

BALE INDEXGATHER

|
Exstack version Conveyors version
i=0; i=0;
while(exstack proceed(ex, (i==1_ num req))) { while (more = co advance (requests, (i == 1_num req)),
i0 = i; more | co advance (replies, !more)) ({
while(i < 1 num req) {
1 indx = pckindx[i] >> 16; for (; i < 1 num reqg; i++) {
= pckindx[i] & Oxffff; kg.idx = 1i; .
E‘:(!exitackirmsh(ex, &1 indx, pe)) gkg.val = pckindx[i] >> 16; "5' bale IndeX gather
break; pe = pckindx[i] & Oxffff; a 1250 =
i++; if (! convey push(requests, &pkg, pe)) c Chapel SHMEM
} } break; (@)] 1000 . —f— Aggregation (auto) =€+ Exstack
exstack exchange (ex) ; 8 —- Aggregation (user) =& Conveyor
a while (convey pull (requests, r, &from) == convey OK) { —ore _ =@— Unordered to)
while (exstack pop(ex, &idx , &fromth)) { pkg.idx = pgl—>idx;q o o ‘ - -}E Q 750 + N(r)]c::p::?iza(:zno
idx = ltable[idx]; pkg.val = ltable[ptr->vall; m _______
exstack push(ex, &idx, fromth); if (! convey push(replies, &pkg, from)) { _.q_-z (D 500 -
} convey_ unpull (requests) ; (g) ~
lgp barrier(); break;
e exchange (ex) ; } = 9 250
} (®)]
for (j=10; j<i; Jj++) {
frimth :]pckirjldx[j] & Oxffff; while (convey pull (replies, ptr, NULL) == convey OK) g) 32 64 128 256 512
ex<—:t»ﬁﬁ:kip\';pi:hre;;,d,(ex, &idx, (uinté4_t) fromth); tgt [ptr->idx] = ptr->val;
o) Number of Locales (x 36 cores / locale)
: lgp_barrier(); Cray XC (Aries)
Manually Tuned Chapel version (using aggregator abstraction)
forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Srcli]);
Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation’)
forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

— -

PARALLEL COMPUTING IN PYTHON?

Motivation: Say you’ve got...
...HPC-scale data science problems to solve
...a bunch of Python programmers
...access to HPC systems

——— . SN

PN B, 3
2 1 i 3
i § ; ——
i
o £ — -
| :
j 2 Nummel hgaes 14 » j
3 p T — i
3 2 i) el
3 ¥ | i====1 k=2 il 1
TR w IR
’ |
)
|
| I |

]

— .

ARKOUDA'’S HIGH-LEVEL APPROACH

Arkouda Client
(written in Python)

"~ Jupyter big_add_sum Last Gheckpoin: 16 minutes ago (autosavec)

999999999999999999999999999

N

Arkouda Server
(written in Chapel)

O User writes Python code in Jupyter,
ﬂ making NumPy/Pandas calls

16

ARKOUDA SUMMARY

What is it?
« A Python library supporting a key subset of NumPy and Pandas for Data Science

—Uses a Python-client/Chapel-server model to get scalability and performance
— Computes massive-scale results (multi-TB-scale arrays) within the human thought loop (seconds to a few minutes)

o ~20k lines of Chapel, largely written in 2019, continually improved since then

Who wrote it?

Arkouda Client Arkouda Server
« Mike Merrill, Bill Reus, et al., US DoD (written in Python)
« Open-source: hitps://github.com/Bears-R-Us/arkouda = N
i —
Why Chapel? =
« high-level language with performance and scalability N
° i QO user writes Python code in Jupyter,
C|OS€ fo PYThOﬂIC ﬂ making NumPy/Pandas calls

—enabled writing Arkouda rapidly
—doesn’t repel Python users who look under the hood

« ports from laptop to supercomputer

— |

17

https://github.com/Bears-R-Us/arkouda

ARKOUDA PERFORMANCE COMPARED TO NUMPY

NumPy Arkouda (serial) Arkouda (parallel) Arkouda (distributed)

0.75 GB 0.75 GB 0.75 GB 384 GB
benchmark 1 core, 1 node 36 cores x 1 node 36 cores x 512 nodes
0.03 GiB/s 0.05 GiB/s 0.50 GiB/s 55.12 GiB/s
argsort
-- 1.66x 16.7x 1837.3x
0.03 GiB/s 0.07 GiB/s 0.50 GiB/s 29.54 GiB/s
coargsort
-- 2.3x 16.7x 984.7x
1.15 GiB/s 0.45 GiB/s 13.45 GiB/s 539.52 GiB/s
gather
-- 0.4x 11.7x 4£69.1x
reduce Q.90 GiB/s 11.66 GiB/s 118.57 GiB/s 43683.00 GiB/s
-- 1.2x 12.0x L4412 .4X
scan 2.78 GiB/s 2.12 GiB/s 8.90 GiB/s 741.14 GiB/s
-- 0.8x 3.2x 266.6x
1.17 GiB/s 1.12 GiB/s 13.77 GiB/s 914.67 GiB/s
scafter
-- 1.0x 11.8x 781.8x
3.94 GiB/s 2.92 GiB/s 24.58 GiB/s 6266.22 GiB/s
stream
-- 0.7x 6.2x 1590.4x

18

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
e ~100k lines of Chapel written from scratch in ~3 years

Who wrote it?

« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal

S /%% POLYTECHNIQUE R
5. MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use

P &
44
_.4.:[
—4

EEETTEY

: (images provided by the CHAMPS team and used with permission) I

T

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines. | w L
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track ‘

of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s R | .{f " ,\
degree to do stuff that would take 2 years and they do it in 3 months. So, if you = |

want to take a summer internship and you say, ‘program a new turbulence model,’ well f; POLYTECHNIQUE
they manage. And before, it was impossible to do.” m-i:- MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

» Talk available online: https://youtu.be/wD-a KyB8al?t=1904 Chyperlink jumps to the section quoted here)

— .

https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS HIGHLIGHTS IN 2021

Presented at CASI/IASC Aero 21 Conference
e Presented to CFD Society of Canada (CFDSC)

e Participated in 4™ AIAA High-lift Prediction Workshops, 15* AIAA Ice Prediction Workshop

e Reproduced results from 5™ AIAA Drag Prediction Workshop

Con [

Application - First AIAA Ice Prediction Workshop
® Case 1b : Grid refinement study for a constant angle of attack of 7.05°;
& Rt e i e STa o e S RANS SaNas. Case 241 (I?ft), Rime u:? predlct.lort on small NACA23012 auf"ml (2D, low temp.);
® Case 363 (right): Glaze ice prediction on NACAQ0012 swept wing (3D, warmer temp.).
003 por s
ELE. . = 0.2
0.02
o015
% 001
N -
s '\\ 005 §
N E
A g RN =
O N ik
LR ity el N\
e SSe \\ !
Nw
€ 8a0® 1x10% 1 I T[]
N IS SN B RN AR MY X (Normal to leading edge at AoA=0 deg) [m] %% X (Normal to leading edge at AoA=0 deg) [m]
Adapted from Olivier-Gooch, C., Coder, J. 4th CFD High Lift Prediction Workshop, Fixed-Grid
RANS TFG, AIAA HLPW4 Case 241 (2D rime ice) Case 363 (3D glaze ice)

T

27/29

® The pressure drag convergence of CHAMPS is similar to the workshop resultsJ

CHAMPS —e— CFL3D FUN3D —e—
NSU3D —e—FUN3D-V
0.0175 yd

0.017
0.0165
0.016 |-
0.0155
0.015 -
0.0145
0.014 |-
0.0135

0.013
0.0e+00 5.0e-05 1.0e-04 1.5e-04

h2 = (1/N)23

%3]

» Generating results comparable to high-profile sites: Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, ...

Looking ahead:

e giving 6-7 presentations at AIAA Aviation Forum and Exposition, June 2022

o participating in 7" AIAA Drag Prediction Workshop

: (slide images taken from Eric Laurendeau’s SIAM PP22 talk, A Case Study on the Impact of Chapel within an Academic Computational Aerodynamic Laboratory, with permission) I 21

https://chapel-lang.org/presentations/SIAM_2022_P22_Laurendeau.pdf

