Chapel:

Productive Parallel Programming at Scale

Elliot Ronaghan, Chapel Team, Cray Inc.
EAGE 2017
June 16th, 2017

S — PO
CHAaARPEL

=/ PARIS 2017

COMPUTE STORE | ANALYZE



Safe Harbor Statement .

@

N

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
\_ 0 Y,




Motivation for Chapel . o

Q: Why doesn’t HPC programming have an equivalent to \

Python | Matlab / Scala / Swift /| _yourfavorite programming language here) ?

e one that makes it easy to get programs up and running quickly

e one that is portable across system architectures and scales

e one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical

challenge, but rather a lack of sufficient...
...long-term efforts

...resources

...community will

...patience

Chapel is our attempt to reverse this trend!

COMPUTE | STORE | ANALYZE

Copyright 2017 Cray Inc. @



What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming far more productive

/C“\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.



What does “Productivity” mean to you?

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Swift, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’t need because | was-berna-to-suffer-
want full control

to ensure performance’

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.



The Chapel Team at Cray (May 2017)
KKK XKLL
GE e
= BRI
it I _%:@""0’0‘0‘0’0 ’0:0:0:0:0:0 NPRRAX KL

TEEEER mnnmn

¥

-

*:
T

>



Chapel Community R&D Efforts St

HERIOT » “’1‘ THE GEORGE ‘/!/\'\ |
st LY 3 BER mn

UNIVERSITY WASHINGTON UNIVERSITY
NN
N . \)
% k f? [ giB
(’ UR T RICE UNIVERSI/TY OF
THE UNIVERSITY OF 10KYO
= Co&gdo MARYLAND

University

-

A
(Creeeer '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB Q
Lawrence Berkeley Sandia National Laboratories

National Laboratory

http://chapel.cray.com/collaborations.html

C @




High Performance Computing (HPC)
Programming Models by Example



STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C

Compute: Vi € 1..m, A; =B, + o-C,

In pictures:
[ A A
BITTTTITTTTTTTTTITTTTTITTTT]
.|.
COITTTTITITTTITTITTITITTITTITTITI ]
o [l



STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi € 1..m, A; =B, + o-C,

In pictures, in parallel:




STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi € 1..m, A; =B, + o-C,

In pictures, in parallel (distributed memory):

| | |
| | |
| | |
« @ ¢ B 7 B ! H



STREAM Triad: a trivial parallel computation = KSR

Given: m-element vectors A, B, C
Compute: Vi € 1..m, A; =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |
| . | |
| | |
« @ ¢ B 7 B ! H

(@ ®



STREAM Triad: Python

m = 1000
alpha = 3.0

A=[0.0] *m
B = [2.0] *m
C=[1.0] *m

for j in range (m) :
A[j] = B[]j] + alpha * C[]];



STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_ COMM WORLD;

MPI Comm size( comm, &commSize );
MPI Comm rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);
MPI Reduce( &rv, &errCount, 1, MPI INT, MPI_SUM,

0, comm ) ;

return errCount;

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

if

for (j=0

scalar

for (3=0;

(ta |l 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf( outFile, "Failed to allocate memory

(3d) .\n", VectorSize );
fclose( outFile );

}

return 1;

b[j] = 2.0;
c[j] = 0.0;

3.0;

HPCC_free(c);
HPCC_ free(b) ;
HPCC_ free(a);

; j<VectorSize; j++) {

j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]];



STREAM Triad: MPI+OpenMP

#include <hpcc.h>
if ('a || 'b ||

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_ COMM WORLD;

MPI Comm size( comm, &commSize );
MPI Comm rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);
MPI Reduce( &rv, &errCount, 1, MPI INT, MPI_SUM,

0, comm ) ;

return errCount;

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf( outFile, "Failed to allocate memory
(3d) .\n", VectorSize );
fclose( outFile );
}

return 1;

}

#ifdef _OPENMP
#fpragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
al[j] = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_ free(b) ;
HPCC_ free(a);



STREAM Triad: MPI+OpenMP vs. CUDA

MPI + OpenMP %
o m i m e e m e m o m

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c; .

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI_Comm_size( comm, &commSize );

MPI_Comm_rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);

MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm );

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );
if (ta |l 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free (b);

if (a) HPCC_free(a);

if (doIO) {
fprintf ( outFile, "Failed to allocate memory (%d).\n", VectorSize );
fclose( outFile );

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[]j];

HPCC_free(c) ;
HPCC_free(b);
HPCC_free(a);

return 0;

#define N 2000000

e )
o m i m e e m e m o m

int main() { v v v
float *d_a, *d b, *d _c;
float scalar;

cudaMalloc((void**) &d a, sizeof (float) *N);
cudaMalloc((void**)&d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

dim3 dimBlock (128) ;
dim3 dimGrid (N/dimBlock.x ) ;
if( N % dimBlock.x !'= 0 ) dimGrid

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d_c,

.5f, N);
.5f, N);

scalar=3.0f;

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,

cudaThreadSynchronize () ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);

__global _ void set_array(float *a,

if (idx < len) a[idx] = value;

float value,
int idx = threadIdx.x + blockIdx.x * blockDim.x;

int len) {

__global  void STREAM Triad( float *a, float *b, float *c,

float scalar,

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

N) ;



STREAM Triad: MPI+OpenMP vs. CUDA St

MPI + OpenMP : : CUDA g :
pen # o=l = el m y
PP— CONEE e | #define N 2000000 e e e e e m i
#include <omp.h>
#endif A ) () {
s : v v v ! int main ! ! ! !

static int VectorSize;

tatic double *a, *b, *c; 1 | | . | | |
static double *a c . . . . . . . float *d_a, *d_b, *d_C, . . . . . . .
int HPCC StarStream(HPCC Params *params) { .

int myRank, commSize; float scalar’

int rv, errCount;

MPI Comm comm = MPI COMM WORLD; . .

- - - cudaMalloc ((void**)&d a, sizeof(float) *N) ;

MPI_Comm_size( comm, &commSize ); . - .

MPI_Comm rank( comm, &myRank ); cudaMalloc((void**) &d b, sizeof (float) *N);

rv = HPCC_Stream( params, 0 == myRank); cudaMalloc ((void**)&d c, sizeof(float) *N) ;

MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); b

return errCount; . .
) dim3 dimBlock (128) ;
int HPCC Stream(HPCC_Params *params, int doIO) { d1m3 dlmGrld (N/dlIIIBlOCk X )

reglster int j; 1= 0 .

HPC suffers from too many distinct notat/ons for expressmg parallelism and locality.

This tends to be a result of bottom-up language design.

ii 2:; Igfc?Zfree(an STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar, N);
fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); cudaThreadSynchronize (O
fclose( outFile );
}
, et b cudaFree(d_a) ;
#ifdef _OPENMP cudaFree (d_b) ;
#pragma omp parallel for .
e cudaFree (d_c) ;
for (j=0; j<VectorSize; j++) {
b[3] = 2.0;
c[jl = 0.0;
! global void set array(float *a, float value, int len) {
scalar = 3.0; - . .- . - .
. int idx = threadIdx.x + blockIdx.x * blockDim.x;
#ifdef _OPENMP i i .
ﬁpragma omp parallel for if (idx < len) a[idx] = wvalue;
endif
for (j=0; j<VectorSize; j++) }
a[j] = b[jl+scalar*c[]j];
Hpoc—trea iy global  void STREAM Triad( float *a, float *b, float *c,
HECC_free(a); float scalar, int len) {
0; . . .
, e int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];



STREAM Triad: Chapel

config const m = 1000, How should this index
alpha = 3.0; set—and any arrays

and computations over
const ProblemSpace = {1l..m}( dmapped ..; it—be mapped to the
system?

The special sauce:

var A, B, C: [ProblemSpace] real;

B = 2.
C 1

A

I
vy
_|_
©
}_J

O
-y
Q

*

@)

Philosophy: Good, fop-down language design can tease system-specific

implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

@ ®




Outline

v Chapel Motivation and Background
» Chapel in a Nutshell
e Chapel Project: Status

e Chapel Resources

/E\ COMPUTE | STORE |
—

=/ Copyright 2017 Cray Inc.

ANALYZE



Chapel’s Multiresolution Philosophy .o

Multiresolution Design: Support multiple tiers of features \
e higher levels for programmability, productivity
e lower levels for greater degrees of control
Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily



Lower-Level Features

Chapel language concepts

( Domain Maps )

Data Parallelism
Task Parallelism
Base Language

Locality Control

Target Machine

Lower-level Chapel



Base Language Features: Fibonacci Example SR

\
\

iter fib(n) { for (i,f) in zip(0..#n, fib(n)) do
var current = 0, writeln ( ; 1y - )
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

(?\.



\
. . =AY
Base Language Features: Fibonacci Example o

\

\

iter fib(n) { for (i,f) in zip(0..#n, fib(n)) do
var current = 0, writeln ( ; 1y - )
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

(



i
CcC=RANY

Base Language Features: Fibonacci Example o
g \
built-in range types
and operators
iter fib(n) { for (i,f) in zip(0..#n, fib(n)) do
var current = writeln ( r 1y , £)s

next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

(



\
. . =AY
Base Language Features: Fibonacci Example o

iter fib(n) { for (i,f) in
var current = 0, writeln (
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

C\\
\



Base Language Features: Fibonacci Example SR

\
\

iter fib(n) { for (i,f) in zip(0..#n, fib(n)) do
var current = 0, writeln ( ; 1y - )
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

{



\
. . =AY
Base Language Features: Fibonacci Example o

\
\

Static Type Inference for:
e arguments
* return types
« variables

iter fj_b(n)\ }\ \ for (i,f)’in zip(0..#n, fib(n)) do
var current = O, Writeln("fib #", j_, " is ", f),'
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;




Base Language Features: Fibonacci Example SR

\
\

iter fib(n) { for (i,f) in zip(0..#n, fib(n)) do
var current = 0, writeln ( ; 1y - )
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

(?\.



Lower-Level Features

Chapel language concepts

( Domain Maps )

Data Parallelism
Task Parallelism
Base Language

Locality Control

Target Machine

Lower-level Chapel



Task Parallelism

beginTask.chpl

begin writeln( ) ;

writeln ( I

chpl beginTask.chpl -o beginTask
./beginTask

./beginTask

\
N—



Task Parallelism

Creates a new task

beginTask.chpl

begin writeln( ) ;

writeln ( I

chpl beginTask.chpl -o beginTask
./beginTask

./beginTask




Lower-Level Features

Chapel language concepts

( Domain Maps )

Data Parallelism
Task Parallelism
Base Language

Locality Control

Target Machine

Lower-level Chapel



Task Parallelism & Locality Control .

N

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef (

4

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032




Task Parallelism & Locality Control o

High-Level

taskParallel.chpl
Task Parallelism P

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef (

’

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(



Task Parallelism & Locality Control o

taskParallel.chpl

coforall loc in Locales do
on loc
const numTasks = here.maxTaskPar;

Abstraction of o
coforall tid in 1. .numTasks do

System Resources

writef (

’

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

C ®

running on nl032




Task Parallelism & Locality Control o

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef (

’

Control of Locality/Affinity tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(



Task Parallelism & Locality Control o

taskParallel.chpl

coforall loc in Locales do
on loc {

: const numTasks = here.maxTaskPar;
Abstraction of

coforall tid in 1. .numTasks do
itef (

System Resources

’

tid, numTasks, here.name) ;

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

C ®)

running on nl032




Task Parallelism & Locality Control o

High-Level

taskParallel.chpl
Task Parallelism P

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef (

’

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

(



Parallelism and Locality: Orthogonal in Chapel SR

e This is a parallel, but local program: \

coforall i in 1..msgs do
writeln (“Hello from task ”, 1i);

e This is a distributed, but serial program:

writeln (“Hello from locale 0!”);
on Locales[l] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!7);

e This is a distributed parallel program:

coforall i in 1..msgs do
on Locales|[i%numLocales] do
writeln (“Hello from task ”, 1,

\\ 144

running on locale ”, here.id);

(@ ®



Higher-Level Features

Chapel language concepts

¢

Domain Maps

Base Language
Locality Control

Target Machine

) Higher-level Chapel




Data Parallelism .

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,]) in D do

Ali,j] =1 + (3 - 0.5)/n;
writeln (A) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

1
.1
1
1




Data Parallelism .

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,]) in D do

Ali,j] =1 + (3 - 0.5)/n;
writeln (A) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

1
.1
1
1

7
7
.7
7

{



Data Parallelism .

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,]) in D do

Afi,j] =1 + (3 - 0.5)/n;
writeln (A) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

1
.1
1
1




Data Parallelism .

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,]) in D do

Afi,j] =1 + (3 - 0.5)/n;
writeln (A) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

1
.1
1
1

7
7
.7
7

\
\:// Q



Distributed Data Parallelism . o
\\
dataParallel.chpl
use CyclicDist;
config const n = 1000;
var D = {1l..n, 1..n}
dmapped Cyclic (startIdx = (1,1));

real;

Domain Maps all (i,J) in D do
(Map Data Parallelism to the System) Ali,j] =1 + (3 - 0.5)/n;
writeln (A);

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

1 7
.1 7
.1 .7
1 7

2
3.
4
5

C @




Distributed Data Parallelism XS

Distributions

dataParallel.chpl

B|OCkCyCDist use CyclicDist;
BlockDist config const n = 1000;

CyclicDist var D = {l..n, 1l..n}

DimensionalDist2D dmapped Cyclic (startIdx = (1,1));
PrivateDist var A: [D] real;

ReplicatedDist forall (i,j) in D do

SparseBlockDist Afi,j] =i+ (J - 0.5)/n;

StencilDist writeln (3) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

1 2
.1 3.

1 4

1 5

7
7
.7
7




Intel Xeon Phi (“KNL”) locale model .o

e Chapel can target KNL's MCDRAM via on-clauses

on here.highBandwidthMemory () {

x = new myClass () ; // placed in MCDRAM
on here.defaultMemory () {
y = new myClass () ; // placed in DDR

on y.locale.highBandwidthMemory () {
z = new myClass () ; // same locale as y, but using MCDRAM



Intel Xeon Phi (“KNL”) locale model

e Working towards distributions that can target MCDRAM \

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m}
dmapped KNLDist (..);

var A, B, C: [ProblemSpace] real;
B = 2.0;
C =1.0;

A =B + alpha * C;




Outline

v Chapel Motivation and Background
v’ Chapel in a Nutshell
» Chapel Project: Status

e Chapel Resources

COMPUTE | STORE |

©)

Copyright 2017 Cray Inc.

ANALYZE



Chapel is a Work-in-Progress

e Currently being picked up by early adopters

e Users who try it like what they see

e Most features are functional and working well

e some areas are under active development, particularly:
e |nitializers
e Error handling

e Performance is improving
e shared memory performance is competitive with C+OpenMP

e some distributed memory applications now competitive with C+MPI
e Many cases continue to need more work

/C':R COMPUTE | STORE | ANALYZE
—

=~/ Copyright 2017 Cray Inc.



Single-Locale Performance



Single-Locale Performance: the past year

e Overall, single-locale performance improved dramatically

Serial 1D Array Performance Array Vector Operations Meteor Shootout Benchmark (n=2098) Ch: Redux Bench k (n=6,000,000)
05 6|
200 4  —
04 5 &
150/ » » »
P i P ————
g g 03 g
8 8 8
3 8 8 3
100 z 5 z S z
g FRX = !
E E F 2
50, 1
e b 4
0 0 0 0
Apr 2016 Jul 2016 Oct 2016 Jan2017 Apr 2016 Jul 2016 Oct 2016 Jan2017 Apr 2016 Jul 2016 Oct 2016 Jan2017 Apr 2016 Jul 2016 Oct 2016 Jan2017
Reductions Time (sec) Empty Task Spawn Timings (500,000 x maxTaskPar) N-body variations Fasta
25 70, .
08 60 L
20 —
g g - g ® I
2 06 2 2 — 2 —
8 — — — 8 15 g8 w — 8 4 —
8 8 8 8
z z z z
04 30,
g g 0 g g
E E E 2 E B
02 I e
5 10, 1
0 0 0 0
Apr 2016 Jul 2016 0ct 2016 Jan2017 Aor 201 Jul 201 Oct 201 Jan 201 Apr 2016 Jul 2016 0ct 2016 Jan2017 Apr 2016 Jul 2016 0ct 2016 Jan2017
HPCC PTRANS Time (numrows=5733) HPCC FFT Time miniMD LJ (-size=10) Time LCALS (raw_omp, short)
20 14
! __’_—’—-’_"'Il 12 800
o 15 —_— o o o
k-t k-t 08 k-l 10, k-t 600
§ § § §
8 8 8 8 8
o o 06 o o
z 10 z z z
° ° @ 6 o 400
E E 04 E o —— E
E E E Y — E
5] 200,
02 21
0 0 0 0
Apr 2016 Jul 2016 Oct 2016 Jan2017 Apr 2016 Jul 2016 0Oct 2016 Jan2017 Apr 2016 Jul 2016 Oct 2016 Jan2017 Apr 2016 Jul 2016 Oct 2016 Jan2017
HPCC RA Time HPCC HPL Time SSCA#2 (SCALE=8) LULESH (release)
0.05 14
/’f\ 2 12
— 004 — — 015 —
0 0 0 0 1
2 2 15 H K
g 0o 8 8 8 08
8 8 8 8
z z z o1 z
005 04
0.01 05
02
0 0 0 o
Apr 2016 Jul 2016 0Oct 2016 Jan2017 Apr 2016 Jul 2016 0Oct 2016 Jan2017 Apr2016 Jul 2016 Oct 2016 Jan 2017 Apr 2016 Jul 2016 Oct 2016 Jan2017

\



LCALS: Serial Timings, Chapel 1.13.0 et

Long problem size
(Similar results for medium Normalized time —

el shor proplem sizes) Serial Chapel vs g++  gerial reference is 1.0

N

Normalized Time
.C) N
O O =~ O D O W

COUPLE

oooaQauUuroAFQAV0AQACSNAHFESLANDQAXraoEZAOZ
J4JJdN [tD<Z*OOM§O%QQ%&N*NDK<£N§
L ZO3TIJox_mW T an®n0yy'o00 =% =
OOOLIJ _QOD-O_D.Z | ol ©O 0O lQOI—
LIJ|>-ID|> Q<X 13O D:ml—l—g_g_mccoxztrm
o’ a7 <L pyO X I oo Pa a |CD}_|<DQ:
ox a5 =) T z=zQ9 T e e
AU A = zZ<x Zzw | a'o
|_|JZ I o 0 Z Z
M w =<
o = O -
)
W g++ serial ®Chapel serial chp ) as
--no-ieee-float

g++ -Ofast -fopenmp




LCALS: Serial Timings, Chapel 1.14.0 SN

Long problem size _ _
(Similar results for medium Normalized time —

el shor proplem sizes) Serial Chapel vs g++  gerial reference is 1.0

N

Normalized Time
.C) N
O O =~ O D O W

LreomakEaoa WEkEESLO0QXxQOEZQZ
099R-EESSZC3008282003 LR85 <SR E
<< B ZnS3T 0 im0 <88 mD ., 00T A3
OCO0O00D =£QgaC=gzt oo, 1120w TITIS0 -

PRI Ne) A <X 133 ¢ n:ml—l—o_ﬂ_mccoxzmm

£330 3SwES poi EfRRTTolo %op

x5 5 Tz 220 Eu'T T r30e<gTe

@ L] = Z<x Z =R P

nz=>0 i =0 z ag

w g _|| w SZ

o m O b

coe hpl --fast
: : C --1asS

B g++ serial ®Chapel serial P .
--no-ieee-float

g++ -Ofast -fopenmp




LCALS: Parallel Timings, Chapel 1.14.0 o

e Parallel variants still lagged behind the reference in 1.14
e between 1.5X and 8X slower for long problem size

Normalized time —
Parallel Chapel vs OMP  parallel reference is 1.0

9
CD8
E 7
F 6
8 5
%4
E 3
* il FFEF
0|||I|||| ol ol ol e
O Q
o‘?’o o‘?'((/o oQ \é\o@o&vq/\o
“ A oos P O & & ¢
Q-O“b&/ \/?\\,\Q"
O QT QY O
%@éQ,AOO \
& e e

mg++ OMP ®Chapel parallel



LCALS: Parallel Timings, Chapel 1.15.0 .o

e Chapel 1.15 closed the gap significantly \

e ~3-4x speedup: on par or very close to reference for most kernels

Normalized time —
Parallel Chapel vs g++/OMP parallel reference is 1.0

9
o 8
£ 7
= 6
8 5
2 4
£ 3
|
1
B AN R EEEEE NN
O O YW O ¢ KL Q& v & P
& & & L€ & 0%0 N Q>$ \oq'
Q,/A/Q/QQ’Q QQ/QS“Q
NN N v X7 KL
N & oY O
& & ¥ 9 N
Y
& Q("

mg++ OMP ®Chapel parallel

(@ ®



Multi-Locale Performance



\
. CRAY |
Multi-locale Performance

e Significant multi-locale performance improvements

ISx (weakISO) --n=5592400

miniMD --size 20 (sec)

o) o)
c c
o o
o [v]
a a
[} [}
£ £
= =
Release Release
reference —o— ugni-muxed —&— gn-mpi —&— reference —o— ugni-muxed —&—
ugni-qthreads —&— gn-aries —&— ugni-qthreads —&—
SSCA2 Size 22, 2* Vertices, Time DOE: Lulesh Dense Time (sec) sedovl5oct
160
140 .
é 120 é
s 100 3
3 w0 3
g 60 - g
U =
20 [
0 [] [] 0 [ —3
.13 I.14 [.15 1.13 .14 [.15
Release Release
ugni-qthreads —e— ugni-qthreads —&— gn-aries —&—
ugni-muxed —e— ugni-muxed —e—
’C\ COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.



Multi-locale Performance oo

e Significant multi-locale performance improvements \

HPCC FFT Perf (Gflop/s) n=220 HPCC HPL Release Perf (Gflop/s) n=255, nb=32
0.003 [~ ===
0.0025 - === m oo T
© © 0002 -------""""mmm e e m o
o o
S S 00015
© O o000l
0.0005
0
I.13 I.14 [.15
Release Release
ugni-qthreads —o— gn-aries —&— ugni-qthreads —&— gn-aries —&—
ugni-muxed —e— gn-mpi —e— ugni-muxed —e— gn-mpi —e—
HPCC: PTRANS Perf (GB/sec) n=2,000, nb=100 HPCC: RA-atomics Perf (GUPS) n=233, N_U=10M
003 - - e
0.025
.o "
D 005 5
(©) ’ o
0.0l
0.005
0 - ]
1.13 .14 [.15 I.13 .14 [.15
Release Release
ugni-qthreads —&— gn-aries —&— ugni-qthreads —e— gn-aries —&—
ugni-muxed —e— gn-mpi —e— ugni-muxed —e— gn-mpi —e—

(@ ®



®
!
cRAY |

ISx Execution Time: MPI, SHMEM, Chapel 1.15 RO

e 64 nodes on Cray XC |
ISx weakISO Total Time

14
12
10
»
©
S 8
D
&3 == SHMEM
o 6 —MPI
£
= —Chapel 1.15
4
2
0
1 2 4 8 16 32 64
Nodes (x 36 cores per node)
/C‘\ COMPUTE | STORE | ANALYZE
= Copyright 2017 Cray Inc.



RA Performance: Chapel vs. MPI SO0N

Performance of RA (atomics)

GUP/s

16 32 64 128 256
Locales (x 36 cores per locale)
ref MPI no-bucketing —— [.15u+tq ——
ref MPI bucketing —=— [.15 u+q oversubscribed -------



Performance: Summary

Summary:
e performance has been dramatically improving
e shared memory performance is competitive with C+OpenMP

e some distributed memory applications now competitive with C+MPI
e many applications need more work

Next steps:
e Multi-locale:
e benchmark-driven performance and scalability improvements
e particularly for DOE proxy apps, stencils codes, PRK benchmarks, and others
e Single-locale:
e vectorization

/é\ COMPUTE | STORE | ANALYZE
—

J Copyright 2017 Cray Inc.



Our #1 Challenge SN

e How to grow the user and developer communities? \

e How to encourage people to look at Chapel again?
e Overcome impressions made in our young, awkward years...

‘Scientific computing communities are very wary of new technologies (it took
10+ years for Python to start getting any traction), with the usual, self-fulfilling,
fear being “what if it goes away?”

- Jonathan Dursi, from Should | Use Chapel or Julia for my next project?

(@ ©®



This Talk’s Takeaways

e Chapel is a modern and productive parallel language

e Well suited for current and emerging HPC and commodity systems
e Ready for early adopters now
e Performance and stability are increasing with each release

'There are other research projects in this area - productive, performant, parallel
computing languages for distributed-memory scientific computing.

But Chapel, especially now with 1.15, is a mature product.

It is crossing the barrier of Fast Enough’

- Jonathan Dursi, from Chapel’s Home in the New Landscape of Scientific Frameworks

COMPUTE | STORE | ANALYZE

Copyright 2017 Cray Inc.



Outline

v Chapel Motivation and Background
v’ Chapel in a Nutshell
v’ Chapel Project: Status

» Chapel Resources

/C‘\ COMPUTE | STORE |
—

=/ Copyright 2017 Cray Inc.

ANALYZE



Chapel Websites .

Project page: http://chapel.cray.com
e oOverview, papers, presentations, language spec, ...

GitHub: https://github.com/chapel-lang
e download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

facebook

(__ Chapel highlights
taskParallel.chpl Chapel Programming Language

Ncoforall 1o in zees IS ON Facebook.
1
>:u rrasks « 10 connect with Chapel Programming Language, sign up for Facebook today.
cof

Tweets  Tweets &replies  Photos & videos

allel

R et | | programming language designedfor " Performance wins ensu:

Yer A J hapel. ge.net/perf/chapcs/?s...
=Ghapel-Programming SRS
Compdters/Technology i
t
Timeline About Photos Likes Videos T \




Suggested Reading . o

Chapel chapter from Programming Models for Parallel Computing \

e a detailed overview of Chapel’s history, motivating themes, features
e edited by Pavan Balaji, published by MIT Press, November 2015
e chapter is now also available online

PROGRANMMING
MODELS
FOR PARALLEI

COMPUTING

epiTep Y PAVAN BALAJ

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

® ®




Chapel Blog Articles .

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel

Chapel Springs into a Summer of Code, Cray Blog, April 2016.
e a run-down of some current events

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.

e a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
e a series of articles answering common questions about why we are pursuing
Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.
e a series of technical opinion pieces designed to arque against standard
reasons given for not developing high-level parallel languages

N COMPUTE | STORE | ANALYZE

@

= Copyright 2017 Cray Inc.



Mailing Lists :

low-traffic (read-only):
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions

(subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/)

To contact the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel _bugs@cray.com: for reporting non-public bugs

N COMPUTE | STORE | ANALYZE

=~/ Copyright 2017 Cray Inc.



Other Community Resources

IRC channels (freenode.net):
#chapel: user-oriented discussions
#chapel-developers: developer discussions

Stack Overflow

stackoverflow.com: [chapel] tag monitored by core team

GitHub Issues:
github.com/chapel-lang/chapel/issues: bug reports & feature requests

/C‘\ COMPUTE | STORE | ANALYZE
—

=~/ Copyright 2017 Cray Inc.



!
cRAY |

Q \

Chapel:

Productive Parallel Programming at Scale

Questions?

=

—

= PARIS 2017

COMPUTE STORE | ANALYZE



\
. . (el — PL_N
Legal Disclaimer o
S \
y
Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE?2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

(@ ®



__"
2 .
(7

“PARIS 2017




