
WHAT’S NEW WITH CHAPEL:
APPLICATIONS, AGGREGATORS, AND ACCELERATORS

Brad Chamberlain
Charm++ 2021 workshop
October 18, 2021

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

2

WHAT IS CHAPEL?

Chapel strives to be as…
…programmable as Python
…fast as Fortran
…scalable as MPI, SHMEM, or UPC
…portable as C
…flexible as C++
…fun as [your favorite programming language]

3

CHAPEL, RELATIVE TO OTHER LANGUAGES

4

CHAPEL BENCHMARKS TEND TO BE CONCISE, CLEAR, AND COMPETITIVE

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP use BlockDist;

config const m = 1000,
alpha = 3.0;

const Dom = {1..m} dmapped …;
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

…
forall (_, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r);

…

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD
~16k lines of Chapel

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal
~48k lines of Chapel

CrayAI: Distributed Machine Learning
Hewlett Packard Enterprise

NOTABLE CURRENT APPLICATIONS OF CHAPEL

ChplUltra: Simulating Ultralight
Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac,
Richard Easther, et al.

Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

5

?
Your Project Here?

OUTLINE

I. Context for Chapel

II. Chapel Applications

III. Basic Chapel Features

IV. Aggregation in Chapel

V. Chapel and Accelerators

VI. Wrap-up

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD
~16k lines of Chapel

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal
~48k lines of Chapel

CrayAI: Distributed Machine Learning
Hewlett Packard Enterprise

NOTABLE CURRENT APPLICATIONS OF CHAPEL

ChplUltra: Simulating Ultralight
Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac,
Richard Easther, et al.

Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

7

?
Your Project Here?

What is it?
• A Python library supporting a key subset of NumPy and Pandas for Data Science

– Computes massive-scale results within the human thought loop (seconds to minutes on multi-TB-scale arrays)
– Uses a Python-client/Chapel-server model to get scalability and performance

• ~16k lines of Chapel, largely written in 2019, continually improved since then

Who wrote it?
• Mike Merrill, Bill Reus, et al., US DoD
• Open-source: https://github.com/Bears-R-Us/arkouda

Why Chapel?
• high-level language with performance and scalability

– close to Pythonic—doesn’t repel Python users who look under the hood

• great distributed array support
• ports from laptop to supercomputer

8

ARKOUDA IN ONE SLIDE

https://github.com/Bears-R-Us/arkouda

• Recent run performed on a large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

Close to world-record performance—Quite likely a record for performance::lines of code

9

ARKOUDA ARGSORT: HERO RUN

be
tt

er

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD
~16k lines of Chapel

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal
~48k lines of Chapel

CrayAI: Distributed Machine Learning
Hewlett Packard Enterprise

NOTABLE CURRENT APPLICATIONS OF CHAPEL

ChplUltra: Simulating Ultralight
Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac,
Richard Easther, et al.

Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

10

?
Your Project Here?

What is it?
• 3D unstructured CFD framework for airplane simulation
• ~48k lines of Chapel written from scratch in ~2 years

Who wrote it?
• Professor Éric Laurendeau’s team at Polytechnique Montreal

Why Chapel?
• performance and scalability competitive with MPI + C++
• students found it far more productive to use

11

CHAMPS SUMMARY

• Presented at CASI/IASC Aero 21 Conference
• Participated in 1st AIAA Ice Prediction Workshop
• Participating in 4th AIAA CFD High-lift Prediction Workshop
• Student presentation to CFD Society of Canada (CFDSC)

• Achieving large-scale, high-quality results comparable to other
major players in industry, government, academia:
• e.g., Boeing, Lockheed Martin, NASA, JAXA, Georgia Tech, …

12

CHAMPS 2021 HIGHLIGHTS

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis

“To show you what Chapel did in our lab... [NSCODE, our previous framework] ended up
120k lines. And my students said, ‘We can't handle it anymore. It’s too complex, we lost
track of everything.’ And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics: aeroelastic, aero-icing. So, I’ve got industrial-type
code in 48k lines.

So, for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my
students everyday in the lab because they love Chapel as well. So that’s the key,
that’s the takeaway.

[Chapel] promotes the programming efficiency … We ask students at the master's degree to do stuff that would
take 2 years and they do it in 3 months. So, if you want to take a summer internship and you say, ‘program a new
turbulence model,’ well they manage. And before, it was impossible to do.”

• Talk available online: https://youtu.be/wD-a_KyB8aI?t=1904 (hyperlink jumps to the section quoted here)

13

CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE

https://youtu.be/wD-a_KyB8aI?t=1904

BASIC CHAPEL FEATURES

CHAPEL’S “LOWER-LEVEL” FEATURES

Domain Maps
Data Parallelism

Task Parallelism
Base Language

Target System

Locality Control

15

Chapel language concepts

“Lower-level” Chapel

16

CHAPEL TERMINOLOGY: LOCALES

• Locales: a unit of the target architecture that can run tasks and store variables
• Think “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

TASK-PARALLEL “HELLO WORLD”

17

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

TASK-PARALLEL “HELLO WORLD”

18

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl
‘here’ refers to the locale on

which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

TASK-PARALLEL “HELLO WORLD”

19

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

a 'coforall’ loop executes each
iteration as an independent task

TASK-PARALLEL “HELLO WORLD”

20

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD”

21

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

22

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

23

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar –numLocales=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035

…

CHAPEL AGGREGATORS

25

BALE INDEX GATHER KERNEL IN CHAPEL: NAÏVE VERSION

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

‘Dst’ and ‘Inds’ are distributed arrays with
numUpdates elements

‘Src’ is a distributed array with
numEntries elements

26

BALE INDEX GATHER KERNEL IN CHAPEL: NAÏVE VERSION

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

coforall loc in Dst.targetLocales do
on loc do
coforall tid in 0..<here.numPUs() do
for idx in myInds(loc, tid, …) do
D[idx] = Src[Inds[idx]];

Gets lowered roughly to…

A concurrent loop over the compute nodes

A nested concurrent loop over each node’s cores

A serial loop to compute each task’s chunk of gathers

27

BALE INDEX GATHER KERNEL IN CHAPEL: NAÏVE VERSION

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

coforall loc in Dst.targetLocales do
on loc do
coforall tid in 0..<here.numPUs() do
for idx in myInds(loc, tid, …) do
D[idx] = Src[Inds[idx]];

Gets lowered roughly to…

But, for a parallel loop with no data dependencies,
why perform these high-latency operations serially?

for idx in myInds(loc, tid, …) do
unorderedCopy(D[idx], Src[Inds[idx]]);

unorderedCopyTaskFence();

So, our compiler rewrites the inner loop
to perform the ops asynchronously

• Implemented by Michael Ferguson and
Elliot Ronaghan, 2019

28

BALE INDEX GATHER KERNEL IN CHAPEL: NAÏVE VERSION

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

use CopyAggregation;

// Aggregated index gather
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

29

BALE INDEX GATHER KERNEL IN CHAPEL: AGGREGATOR VERSION

‘with (var …)’ creates a variable per task
that’s executing the ‘forall’ loop

Here, we’re giving each task a “source aggregator”, agg,
which aggregates remote ‘gets’ locally, then performs them

To use it, we simply replace
the assignment with ‘agg.copy’

As the aggregator’s buffers fill up, it communicates the operations
to the remote locale, automatically and asynchronously

‘use’ the module providing the aggregators

use CopyAggregation;

// Aggregated index gather
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

30

BALE INDEX GATHER KERNEL IN CHAPEL: AGGREGATOR VERSION

• Chapel’s aggregators are implemented as Chapel source code
• no language or compiler changes were required
• ~100 lines of reasonably straightforward code to implement ‘SrcAggregator’ used here

– (~420 lines for the entire ‘CopyAggregation’ module)

• Developed by Elliot Ronaghan, 2020–present

31

IMPLEMENTING CHAPEL’S AGGREGATORS

• Recent hero run performed on a large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

Aggregators have been key to getting results like these

32

ARKOUDA ARGSORT: HERO RUN

be
tt

er

Q: Is there an opportunity for the compiler to introduce aggregators automatically?

A: In many cases, yes
• developed by Engin Kayraklioglu, 2021
• combines previous ‘unordered’ analysis with a new locality analysis of RHS/LHS expressions
• for details, see Engin’s LCPC 2021 paper: https://lcpc2021.github.io/

33

CAN WE AUTOMATE AGGREGATION?

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

use CopyAggregation;

// Aggregated index gather
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

user writes straightforward code
compiler optimizes as:

https://lcpc2021.github.io/

• As a result, the naïve version can now compete with the user-written aggregators

34

AUTO-AGGREGATION: IMPACT

// Naive index gather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

CHAPEL ON GPUS

• “any parallel algorithm on any parallel architecture”
• yet, Chapel has not supported compilation to GPUs—an obvious important case for many HPC systems

• Related efforts:
• Albert Sidelnik et al. (UIUC), Performance portability with the Chapel language, IPDPS 2012
• Brad Chamberlain, Chapel Support for Heterogeneous Architectures via Hierarchical Locales, PGAS-X 2012
• Mike Chu et al. (AMD), various works, CHIUW 2015–2018
• Akihiro Hayasi et al. (Georgia Tech), various works, CHIUW 2019–present

• Users have used Chapel with GPUs through interoperating with kernels written in CUDA, OpenCL, …
• e.g., the CHAMPS and ChOp applications do this

• Yet, Chapel’s features for parallelism and locality are a good match for GPUs
• code generation has been the major sticking point
• we’re currently leveraging our LLVM-based back-end to address this

36

THE CASE FOR CHAPEL ON GPUS

• A simple ‘gpu’ locale model might have a
sub-locale for the GPU

var a: [1..n] real;

on here.GPU {
var b: [1..n] real;
...

}

37

HIERARCHICAL LOCALES: A NOTIONAL CPU+GPU LOCALE MODEL

Locale

CPU GPU

a: [1..n] real b: [1..n] real

A Sample GPU Computation, notionally:

38

GPUS: NOTIONAL GOAL

on here.GPU {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}

A Sample GPU Computation, as of Chapel 1.24:

39

GPUS: SIX MONTHS AGO

extern {
#define FATBIN_FILE "chpl__gpu.fatbin"
double createFunction(){
fatbinBuffer = <read FATBIN_FILE into buffer>
cuModuleLoadData(&cudaModule, fatbinBuffer);
cuModuleGetFunction(&function, cudaModule,

"add_nums");}

}

pragma "codegen for GPU"
export proc add_nums(A: c_ptr(real(64))){
A[0] = A[0]+5;

}

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5];
__primitive("gpu kernel launch", funcPtr,

<grid and block size>,…,
c_ptrTo(A), …);

writeln(A);

Read
fat binary
and create a
CUDA
function

A Sample GPU Computation, in Chapel 1.25:

• developed by Engin Kayraklioglu, Andy Stone, and David Iten

40

GPUS: TODAY

on here.getChild(1) {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}

Locale

Child 0
(CPU)

Child 1
(GPU)

One child per device

...a: [1..n] real b: [1..n] real

41

ALTERNATIVE GPU LOCALE MODELS

Locale for CPU; sub-locales for GPUs

NUMA-aware (flat) NUMA-aware (hierarchical)

What we have now (sub-locale 0 = CPU)

Locale
Child 0
(CPU)

Child 1
(GPU)

Child 2
(GPU) …

Locale (CPU)

Child 0
(GPU)

Child 1
(GPU)

…

Locale
Child 0 (CPU)

Child 0
(GPU)

Child 1 (CPU)

Child 0
(GPU)… … …

Locale
Child 0
(CPU)

Child n
(GPU)

Child 1
(CPU)

Child n+1
(GPU)

… …

on here.getChild(1) {
var A, B, C: [1..n] real;
const alpha = 2.0;

forall b in B do b = 1.0;
forall c in C do c = 2.0;

forall a, b, c in zip(A, B, C) do
a = b + alpha * c;

}

HPCC Stream: very few changes needed to our typical Stream code to target GPUs

42

GPUS: INITIAL PERFORMANCE STUDY

• Plenty of housecleaning, refactoring, streamlining, etc.
• Language design issues
• Further performance analysis and optimization
• Support richer and more flexible styles of programming
• Support a richer model of memory and inter-device data transfers (today: unified memory only)
• Support a wider variety of vendors (today: Nvidia only)

43

GPUS: NEXT STEPS

WRAP-UP

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

45

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

Chapel Overviews / History (in chronological order):
• Chapel chapter from Programming Models for Parallel Computing, MIT Press, edited by Pavan Balaji, November 2015
• Chapel Comes of Age: Making Scalable Programming Productive, Chamberlain et al., CUG 2018, May 2018
• Proceedings of the 8th Annual Chapel Implementers and Users Workshop (CHIUW 2021), June 2021
• Chapel Release Notes — current version 1.25, October 2021

Arkouda:
• Bill Reus’s CHIUW 2020 keynote talk: https://chapel-lang.org/CHIUW2020.html#keynote
• Arkouda GitHub repo and pointers to other resources: https://github.com/Bears-R-Us/arkouda

CHAMPS:
• Eric Laurendeau’s CHIUW 2021 keynote talk: https://chapel-lang.org/CHIUW2021.html#keynote

– two of his students also gave presentations at CHIUW 2021, also available from the URL above
• Another paper/presentation by his students at https://chapel-lang.org/papers.html (search “Laurendeau”)

46

SUGGESTED READING / VIEWING

https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/releaseNotes.html
https://chapel-lang.org/CHIUW2020.html
https://github.com/Bears-R-Us/arkouda
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/papers.html

• Chapel team at HPE is currently 18.5 full-time
employees
• planning to add 1–2 more during 2021–2022
• see: https://chapel-lang.org/jobs.html

• During summers, we also host interns and mentor
Google Summer of Code students

47

CHAPEL IS HIRING

https://chapel-lang.org/jobs.html

Chapel is being used for productive parallel programming at scale
• recent users have reaped its benefits in 16k–48k-line applications

For gather/scatter/sort patterns, copy aggregation is key
• particularly important for key operations in Arkouda

Though Chapel support for GPUs is still in its early days,
it’s improving by leaps and bounds
• should enable users like the CHAMPS team to leverage GPUs more productively

48

SUMMARY

THANK YOU
https://chapel-lang.org
@ChapelLanguage

