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 A new parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress
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 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids)
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General Parallel Programming

 “any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming

 high-level features for convenience/simplicity

 low-level features for greater control

Control over Locality/Affinity of Data and Tasks

 for scalability
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config const n = computeProblemSize();

const D = [1..n, 1..n];

5

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D
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config const n = computeProblemSize();

const D = [1..n, 1..n] dmapped …;
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config const n = computeProblemSize();

const D = [1..n, 1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

How is this global-view computation implemented in practice?
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ZPL: Block-distributed arrays, serial on-node computation  (inflexible)

HPF: Not particularly well-defined (“trust the compiler”)

Chapel: Very flexible and well-defined via domain maps (stay tuned)



Background and Motivation

 Chapel Background:

 Locales

 Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Wrap-up
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 Definition

 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node
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Chapel supports several types of domains and arrays:

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative



 Whole-Array Operations; Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 And several other operations:  indexing, reallocation, 
domain set operations, scalar function promotion, …
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4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD.translate(0,1)];

=



Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order?  Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

13

dynamically

…?

…?



Q3: How are arrays distributed between locales?
 Completely local to one locale?  Or distributed?

 If distributed… In a blocked manner?  cyclically?  block-cyclically?  
recursively bisected?  dynamically rebalanced?  …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs?  GPUs?  both?

 What memory type(s) is the array stored in?  CPU?  GPU?  texture?  …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the 
user full control over such decisions
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Domain maps are “recipes” that instruct the compiler 
how to map the global view of a computation…
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A = B + alpha * C;

…to the target locales’ memory and processors:



Domain Maps: “recipes for implementing parallel/

distributed arrays and domains” 

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to 
implement the user’s array operations
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Domain Maps fall into two major categories:

layouts: target a single locale
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings, 
compressed sparse row

distributions: target distinct locales
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …
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18

var Dom = [1..4, 1..8] dmapped Block( [1..4, 1..8] );

1 8

4

distributed to

var Dom = [1..4, 1..8] dmapped Cyclic( startIdx=(1,1) );

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1



config const n = computeProblemSize();

const D = [1..n, 1..n];
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**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local resources only



config const n = computeProblemSize();

const D = [1..n, 1..n] dmapped Block([1..n, 1..n]);
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**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

The dmapped keyword specifies a domain map
• “Block” specifies a multidimensional locale blocking
• Each locale stores its local block using the default layout
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proc Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = …)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1



All Chapel domain types support domain maps

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative



Background and Motivation

Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Philosophy

 Implementing Layouts

 Implementing Distributions

 Wrap-up
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1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written 
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined 

domain maps

4. Domain maps should only affect implementation and 
performance, not semantics
 to support switching between domain maps effortlessly
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Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 separate concerns appropriately for clean design
 yet permit the user to intermix the layers arbitrarily
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Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts



Represents: a domain 
map value

Generic w.r.t.: index type

State: the domain map’s 
representation

Typical Size: Θ(1)

Domain Map

Represents: a domain  

Generic w.r.t.: index type

State: representation of 
index set

Typical Size: Θ(1) → 
Θ(numIndices)

Domain

Represents: an array

Generic w.r.t.: index type,  
element type 

State: array elements

Typical Size:
Θ(numIndices)

Array



myDomMap

D1

B1

const myDomMap = new dmap(DomMapName(args));

const D1 = [1..10] dmapped MyDomMap,

D2 = [1..20] dmapped MyDomMap;

var A1, B1: [D1] real,

A2, B2: [D2] string,

C2: [D2] complex;   

A1

D2 B2

A2

C2



Sample Layout Descriptors

Domain Map Domain Array

numTasks = 4

par = parStrategy.rows

lo = (1,1)

hi = (m,n)

const MyRMO = new dmap(new RMO(here.numCores, parStrategy.rows));

const D = [1..m, 1..n] dmapped MyRMO,

Inner = D[2..m-1, 2..n-1];

var A: [D] real,

AInner: [Inner] real;

MyRMO D A

AInner

lo = (2,2)

hi=(m-1,n-1)
Inner



Domain Map Domain Array

dsiNew*Domain(…) dsiNewArray(real)

const myDomMap = new dmap(DomMapName(args));

const D1 = [1..10] dmapped MyDomMap;

var A1: [D1] real;

=> myDomMap = new DomMapName(args);

=> D1 = myDomMap.dsiNewDomain(rank=1, idxType=int);

=> A1 = D1.dsiNewArray(real);



Domain Map Domain Array

dsiIndexToLocale(index): locale

…myDomMap.indexToLocale((i,j))…

=> myDomMap.indexToLocale((i,j))



Domain Map Domain Array

dsiNumIndices(): integer

dsiMember(index): boolean

…parallel and serial iterators…

regular domains only

dsiGetIndices(): domain dimensions

dsiSetIndices(domain dimensions)

irregular domains only

dsiAdd(index)

dsiRemove(index)

dsiClear()

D1 = D2;

=> D1.setIndices(

D2.getIndices());



Domain Map

Domain Array

dsiAccess(index): array element

dsiSlice(domain): array descriptor

dsiReindex(domain): array descriptor

dsiRankChange(domain, rank): array

descriptor

…parallel and serial iterators…

…

…A1[i,j]…

=> …A1.dsiAccess((i,j))…



Role: Similar to 
layout’s domain 
map descriptor

Size: Θ(1) → 
Θ(#locales) 

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per locale

per object

(typically)

Role: Similar to 
layout’s domain 
descriptor, but no 
Θ(#indices) storage

Size: Θ(1) → 
Θ(#locales) 

Role: Similar to 
layout’s array 
descriptor, but 
data is moved to 
local descriptors

Size: Θ(1) → 

Θ(#locales) 

Role: Stores locale-
specific domain 
map parameters

Size: Θ(???)

Role: Stores locale’s 
subset  of domain’s 
index set

Size: Θ(1) → 
Θ(#indices / 
#locales)

Role: Stores locale’s
subset of array’s 
elements

Size:

Θ(#indices / 
#locales)

Compiler only knows about global descriptors

so local are just a specific type of state;  interface is identical to layouts



Sample Distribution Descriptors

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

var Dom= [1..4, 1..8] dmapped Block(boundingBox=[1..4, 1..8]);

1

indexSet = [1..4, 1..8]

myIndexSpace =       

[3..max, min..2]

myIndices = [3..4, 1..2] myElems = 

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

boundingBox =        

[1..4, 1..8]

targetLocales = 



Sample Distribution Descriptors

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

indexSet = [2..3, 2..7]

myIndexSpace =       

[3..max, min..2]

myIndices = [3..3, 2..2] myElems = 

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

boundingBox =        

[1..4, 1..8]

targetLocales = 

var Dom= [1..4, 1..8] dmapped Block(boundingBox=[1..4, 1..8]);

var Inner = Dom[2..3, 2..7];

1



Optional Interfaces
 Do not need to be supplied for correctness

 But supplying them may permit optimizations

 Examples:
 privatization of global descriptors

 communication optimizations: stencils, reductions/broadcasts, 
remaps

User Interfaces
 Add new user methods to domains, arrays

 Not known to the compiler

 Break plug-and-play nature of distributions
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Background and Motivation

Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Wrap-up
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 All Chapel domains and arrays implemented using 
this framework
 Full-featured Block, Cyclic, and Replicated distributions

 COO and CSR Sparse layouts

 Open addressing quadratic probing Associative layout

 Block-Cyclic, Dimensional, and Distributed Associative 
distributions underway

 Initial performance/scaling results promising, but 
more work remains

 Adding documentation for authoring domain maps
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 More advanced uses of domain maps:
 CPU+GPU cluster programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations
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 Chapel’s domain maps are a promising language 
concept
 permit better control over -- and ability to reason about --

parallel array semantics than in previous languages

 separate specification of an algorithm from its 
implementation details

 support a separation of roles:
 parallel expert writes domain maps

 parallel-aware computational scientist uses them
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 HotPAR’10 paper: User-Defined Distributions and 
Layouts in Chapel: Philosophy and Framework

 This CUG’11 paper

 In the Chapel release…
 Technical notes detailing the domain map interface for programmers: 

$CHPL_HOME/doc/technotes/README.dsi

 Browse current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl
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 Chapel Home Page (papers, presentations, tutorials):

http://chapel.cray.com

 Chapel Project Page (releases, source, mailing lists):

http://sourceforge.net/projects/chapel/

 General Questions/Info:

chapel_info@cray.com (or chapel-users mailing list)
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 Cray:

 External

Collaborators:

 Interns:
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Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You?  Your Student?

Tom Hildebrandt
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