
Brad Chamberlain, Sung-Eun Choi, Steve Deitz,

David Iten, Vassily Litvinov

Cray Inc.

CUG 2011: May 24th, 2011

 A new parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

2

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids)

3

General Parallel Programming

 “any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming

 high-level features for convenience/simplicity

 low-level features for greater control

Control over Locality/Affinity of Data and Tasks

 for scalability

4

config const n = computeProblemSize();

const D = [1..n, 1..n];

5

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

config const n = computeProblemSize();

const D = [1..n, 1..n];

6

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

config const n = computeProblemSize();

const D = [1..n, 1..n] dmapped …;

7

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

config const n = computeProblemSize();

const D = [1..n, 1..n];

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

How is this global-view computation implemented in practice?

8

ZPL: Block-distributed arrays, serial on-node computation (inflexible)

HPF: Not particularly well-defined (“trust the compiler”)

Chapel: Very flexible and well-defined via domain maps (stay tuned)

Background and Motivation

 Chapel Background:

 Locales

 Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Wrap-up

9

 Definition

 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

10

Chapel supports several types of domains and arrays:

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

 Whole-Array Operations; Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 And several other operations: indexing, reallocation,
domain set operations, scalar function promotion, …

12

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD.translate(0,1)];

=

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

13

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

14

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

15

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

A = B + alpha * C;

…to the target locales’ memory and processors:

Domain Maps: “recipes for implementing parallel/

distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

16

Domain Maps fall into two major categories:

layouts: target a single locale
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct locales
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

17

1

18

var Dom = [1..4, 1..8] dmapped Block([1..4, 1..8]);

1 8

4

distributed to

var Dom = [1..4, 1..8] dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

config const n = computeProblemSize();

const D = [1..n, 1..n];

19

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local resources only

config const n = computeProblemSize();

const D = [1..n, 1..n] dmapped Block([1..n, 1..n]);

20

**2 **2

+

A B

+

var A, B: [D] real;

const sumOfSquares = + reduce (A**2 + B**2);

sumOfSquares

D

The dmapped keyword specifies a domain map
• “Block” specifies a multidimensional locale blocking
• Each locale stores its local block using the default layout

21

proc Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = …)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

All Chapel domain types support domain maps

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

Background and Motivation

Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Philosophy

 Implementing Layouts

 Implementing Distributions

 Wrap-up

24

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

25

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 separate concerns appropriately for clean design
 yet permit the user to intermix the layers arbitrarily

26

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

Represents: a domain
map value

Generic w.r.t.: index type

State: the domain map’s
representation

Typical Size: Θ(1)

Domain Map

Represents: a domain

Generic w.r.t.: index type

State: representation of
index set

Typical Size: Θ(1) →
Θ(numIndices)

Domain

Represents: an array

Generic w.r.t.: index type,
element type

State: array elements

Typical Size:
Θ(numIndices)

Array

myDomMap

D1

B1

const myDomMap = new dmap(DomMapName(args));

const D1 = [1..10] dmapped MyDomMap,

D2 = [1..20] dmapped MyDomMap;

var A1, B1: [D1] real,

A2, B2: [D2] string,

C2: [D2] complex;

A1

D2 B2

A2

C2

Sample Layout Descriptors

Domain Map Domain Array

numTasks = 4

par = parStrategy.rows

lo = (1,1)

hi = (m,n)

const MyRMO = new dmap(new RMO(here.numCores, parStrategy.rows));

const D = [1..m, 1..n] dmapped MyRMO,

Inner = D[2..m-1, 2..n-1];

var A: [D] real,

AInner: [Inner] real;

MyRMO D A

AInner

lo = (2,2)

hi=(m-1,n-1)
Inner

Domain Map Domain Array

dsiNew*Domain(…) dsiNewArray(real)

const myDomMap = new dmap(DomMapName(args));

const D1 = [1..10] dmapped MyDomMap;

var A1: [D1] real;

=> myDomMap = new DomMapName(args);

=> D1 = myDomMap.dsiNewDomain(rank=1, idxType=int);

=> A1 = D1.dsiNewArray(real);

Domain Map Domain Array

dsiIndexToLocale(index): locale

…myDomMap.indexToLocale((i,j))…

=> myDomMap.indexToLocale((i,j))

Domain Map Domain Array

dsiNumIndices(): integer

dsiMember(index): boolean

…parallel and serial iterators…

regular domains only

dsiGetIndices(): domain dimensions

dsiSetIndices(domain dimensions)

irregular domains only

dsiAdd(index)

dsiRemove(index)

dsiClear()

D1 = D2;

=> D1.setIndices(

D2.getIndices());

Domain Map

Domain Array

dsiAccess(index): array element

dsiSlice(domain): array descriptor

dsiReindex(domain): array descriptor

dsiRankChange(domain, rank): array

descriptor

…parallel and serial iterators…

…

…A1[i,j]…

=> …A1.dsiAccess((i,j))…

Role: Similar to
layout’s domain
map descriptor

Size: Θ(1) →
Θ(#locales)

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per locale

per object

(typically)

Role: Similar to
layout’s domain
descriptor, but no
Θ(#indices) storage

Size: Θ(1) →
Θ(#locales)

Role: Similar to
layout’s array
descriptor, but
data is moved to
local descriptors

Size: Θ(1) →

Θ(#locales)

Role: Stores locale-
specific domain
map parameters

Size: Θ(???)

Role: Stores locale’s
subset of domain’s
index set

Size: Θ(1) →
Θ(#indices /
#locales)

Role: Stores locale’s
subset of array’s
elements

Size:

Θ(#indices /
#locales)

Compiler only knows about global descriptors

so local are just a specific type of state; interface is identical to layouts

Sample Distribution Descriptors

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

var Dom= [1..4, 1..8] dmapped Block(boundingBox=[1..4, 1..8]);

1

indexSet = [1..4, 1..8]

myIndexSpace =

[3..max, min..2]

myIndices = [3..4, 1..2] myElems =

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

boundingBox =

[1..4, 1..8]

targetLocales =

Sample Distribution Descriptors

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

indexSet = [2..3, 2..7]

myIndexSpace =

[3..max, min..2]

myIndices = [3..3, 2..2] myElems =

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

boundingBox =

[1..4, 1..8]

targetLocales =

var Dom= [1..4, 1..8] dmapped Block(boundingBox=[1..4, 1..8]);

var Inner = Dom[2..3, 2..7];

1

Optional Interfaces
 Do not need to be supplied for correctness

 But supplying them may permit optimizations

 Examples:
 privatization of global descriptors

 communication optimizations: stencils, reductions/broadcasts,
remaps

User Interfaces
 Add new user methods to domains, arrays

 Not known to the compiler

 Break plug-and-play nature of distributions

38

Background and Motivation

Domains, Arrays, and Domain Maps

 Implementing Domain Maps

 Wrap-up

39

 All Chapel domains and arrays implemented using
this framework
 Full-featured Block, Cyclic, and Replicated distributions

 COO and CSR Sparse layouts

 Open addressing quadratic probing Associative layout

 Block-Cyclic, Dimensional, and Distributed Associative
distributions underway

 Initial performance/scaling results promising, but
more work remains

 Adding documentation for authoring domain maps

40

 More advanced uses of domain maps:
 CPU+GPU cluster programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

41

 Chapel’s domain maps are a promising language
concept
 permit better control over -- and ability to reason about --

parallel array semantics than in previous languages

 separate specification of an algorithm from its
implementation details

 support a separation of roles:
 parallel expert writes domain maps

 parallel-aware computational scientist uses them

42

 HotPAR’10 paper: User-Defined Distributions and
Layouts in Chapel: Philosophy and Framework

 This CUG’11 paper

 In the Chapel release…
 Technical notes detailing the domain map interface for programmers:

$CHPL_HOME/doc/technotes/README.dsi

 Browse current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

43

 Chapel Home Page (papers, presentations, tutorials):

http://chapel.cray.com

 Chapel Project Page (releases, source, mailing lists):

http://sourceforge.net/projects/chapel/

 General Questions/Info:

chapel_info@cray.com (or chapel-users mailing list)

44

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com

 Cray:

 External

Collaborators:

 Interns:

4545

Brad Chamberlain Sung-Eun Choi Greg Titus Lee Prokowich Vass Litvinov

Albert Sidelnik Jonathan Turner Srinivas Sridharan

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your Student?

Tom Hildebrandt

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

