Hewlett Packard
Enterprise

Arkouda and Chapel:
Highlights Since CLSAC 2022

Brad Chamberlain
November 6, 2024

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
(written in Pytho’nq)w (written in Chapel)

=" JUpYRer big_a0d_sum s Cwcort 16 mnse s s

201100030080 adins1 shaper (100000000) itemsizess

™

O User writes Python code

(i)

What is Chapel?

Chapel: A modern parallel programming language
« Pythonic readability, writability, maintainability
o Performs/scales like Fortran, C/C++, MPI, SHMEM, OpenMP, CUDA, ...
o Safety features w.r.t. types, parallelism, memory

Bale IndexGather in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version) Bale Indexgather Performance
forall (d, i) in zip(Dst, Inds) do HPE Cray EX (Slingshot-11)

d = Srcli]; 2000 e

. SHMEM Exstack —— _ _ _ _ _ _ _ _ _ _______ _—7"__ _____
20000 SHMEM Convey - - -

15000 |- === -m s st oo
10000 |- === - e
Ul R LR LR LR EPEEPEEEEE

Chapel (Explicitly Aggregated version)

forall (d, 1) in zip(Dst, Inds) with
(var agg = new SrcAggregator (int)) do
agg.copy(d, Srcl[i]):;

SHMEM (Exstack version) SHMEM (Conveyors version)

GB/s

i=0; i=20;
while (exstack proceed(ex, (i==1 num req))) { while (more = convey advance (requests, (i == 1 num req)), 51 2 1024 2048 4096

i0 = i; more | convey advance (replies, !more)) {
while (i < 1_num_req) (Number of Compute Nodes

1 _indx = pckindx[i] >> 16; for (; 1 < 1 _num req; i++) {

pe = pckindx[i] & Oxffff; pkg.idx = i;

if (!exstack push(ex, &l_indx, pe)) pkg.val = pckindx[i] >> 16;

break; pe = pckindx[i] & Oxffff;

i++; if (! convey push(requests, &pkg, pe))

} break; I
} 0 1 2 3 4 5 6 7 8 9
exstack exchange (ex) ;
h while (convey pull (requests, ptr, &from) == convey OK) { Src: 0 11§22 88 | 99

while (exstack pop(ex, &idx , &fromth)) { pkg.idx = ptr->idx;

idx = ltable[idx]; pkg.val = ltable[ptr->vall];

exstack push(ex, &idx, fromth); if (! convey push(replies, &pkg, from)) {
} convey unpull (requests);
lgp_barrier(); break;
exstack_exchange (ex) ; }

} Inds:

for (j=i0; j<i; j++) {

fromth = pckindx[j] & Oxffff; while (convey pull (replies, ptr, NULL) == convey OK)

exstack pop_ thread(ex, &idx, (uint64_t)fromth); tgt[ptr—>id;] = ptr->val;

tgt[j] = idx;
) gtlj] } Dst:
lgp_barrier();

} I

— |

Applications of Chapel

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Python3 Client SZMQ Chapel Server

ocket
Dispatcher

t Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

0 . : L =y
2010 2011 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?LORATIONuPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

ChOp: Chapel-based Optimization

T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
PR D) d R L4

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

. \,,_‘ |

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

Chapel’s users reap its benefits at varying scales of systems and code sizes

Computation: aircraft simulation Computation: coral reef image analysis Computation: ATTO data analysis

Code size: 100,000+ lines Code size: ~300 lines Code size: 5000+ lines
Systems: desktops, HPC systems Systems: desktops, HPC systems w/ GPUs Systems: desktops w/ CPUs & GPUs (only)

Chapel Blog Series: 7 Questions for Chapel Users

(. Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel

available at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

(. Chapel Language Blog

\ 2 Poste:
Tags:
By: Eng

This is the first in a new sel
series of questions about {
shine a light on ways in wH
you are using Chapel and
someone who is and ough

For our inaugural edition o
one of Chapel's most amb
Eric and CHAMPS, but he

1. Who are you?

My name is Eric Laurende:
my Bachelor's in Canada (

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted
Tags:
User {

By: Brag

In this second installment of our Sey
recent success story in which Scott
analysis in coral reefs to study oceal
Scott started as a visiting scholar wi§
projects he took on during his time
continued to apply Chapel in his wo

One noteworthy thing about the co
lines of Chapel code, yet can be usq
supercomputers. This serves as a sH
framework covered in our previous

code sizes that researchers are pro

This interview was conducted live (d
assistance.

(C, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel

Posted on October 15, 2024.
Tags: User Experiences | Interviews | Data Analysis

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

In this edition of our Seven Questions for Chapel Users series, we turn to Dr. Nelson Luis Dias from
Brazil who is using Chapel to analyze data generated by the Amazon Tall Tower Observatory
(ATTO), a project dedicated to long-term, 24/7 monitoring of greenhouse gas fluctuations. Read
on to learn more about his work and use of Chapel!

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

PYter big_a0d_sum st Cracapore 16 s a0 csem)

O User writes Python code

(i)

A1l: “A scalable version of NumPy / Pandas for data scientists”
A2: “An extensible framework for arbitrary HPC computations”
A3: “A way to drive HPC systems interactively from Python on a laptop”

—

In Memoriam

e Mike Merrill passed away two years ago this Friday

e Mike was the chief architect and developer of Arkouda,
as well as a friend fo many on the Chapel project

massive scale
data science

Arkouda: NumPy-like arrays at massive scale
backed by Chapel

Michael Merrill*, William Reus', and Timothy Neumann?
U.S. Department of Defense Washington DC, USA
Email: *mhmerrill@mac.com, Treus@post.harvard.edu, itimothyneumannl@ gmail.com

— | 5

Hewlett Packard
Enterprise

Arkouda and Chapel:
Updates I’d want Mike to know

Brad Chamberlain
November 6, 2024

Arkouda Argsort Scalability

HPE Cray EX (May 2023) &g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values 9000

e ~8500 GiB/s (~31 seconds) 2888

HPE Cray EX (April 2023) &——8 o gggg
e Slingshot-11 network (200 Gb/s) % 4000
o 896 compute nodes 3000
« 28 TiB of 8-byte values 2000
« ~1200 GiB/s (~24 seconds) 1000

HPE Apollo (May 2021) p. Y ¢
e HDR-100 Infiniband network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - — _ _
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Achieved using ~100 lines of Chapel

—

Arkouda’s Modularity Is Being Leveraged

e Arkouda servers can be built by mixing and matching various modules
e Initial modules supported NumPy and Pandas

e Key examples include:

» Graph Processing

Multidi : A fing the Pvthon A AP| Jeremiah Corrado will demo this for
o Multi |mens.|ona rrays.suppor ing the Python Array the Pangeo community, Nov 20th
e Sparse Matrix Computations

12

New Tooling that Simplifies Adding New Arkouda Operations

Was: Now:

/* intIndex "a[int]" response to _ getitem__ (int) */
@Garkouda.registerND(cmd_prefix="[int]")
proc intIndexMsg (cmd: ;tring, MSgArgs: borrowed MessageArgs, st: borrowed SymTab, param nd: int): MsgTuple throws { @arkouda . reglstercommand (" [lnt] ")
param pn = Reflection.getRoutineName () ;
var repMsg: string; // response message . . o) o) . . * = .
var in o meghrge uet(Midum eetTuple (nd) ; proc intIndex(const ref array: [?d] ?t, idx: d.rank*int): t ({
const name = msgArgs.getValueOf ("array"); ' .
imLogger.debug (getModuleName () , getRoutineName () , getLineNumber (), re turn array [ldx] ’
"$s %s %?".format (cmd, name, idx));
var gEnt: borrowed GenSymEntry = getGenericTypedArrayEntry(name, st); }
select (gEnt.dtype) {
when (DType.Int64) {
var e = toSymEntry(gkEnt, int, nd);
repMsg = "item %s %?".format (dtype2str(e.dtype),e.al(...1idx)]);

imLogger.debug (getModuleName () , getRoutineName () , getLineNumber () , repMsg) ;
return new MsgTuple (repMsg, MsgType.NORMAL) ;
}
when (DType.UInt64) ({
var e = toSymEntry(gEnt, uint, nd);
repMsg = "item %s $%?".format (dtype2str(e.dtype),e.al(...1idx)]);

imLogger.debug (getModuleName () , getRoutineName () , getLineNumber () , repMsg) ;
return new MsgTuple (repMsg, MsgType.NORMAL) ;

}

when (DType.Float64) ({
var e = toSymEntry(gEnt,real, nd);
repMsg = "item %s %.17r".format (dtype2str(e.dtype),e.al(...1idx)]);
imLogger.debug (getModuleName () , getRoutineName () , getLineNumber () , repMsg) ;
return new MsgTuple (repMsg, MsgType.NORMAL) ;

}

when (DType.Bool) {
var e = toSymEntry(gEnt,bool, nd);

repMsg = "item %s $%?".format (dtype2str(e.dtype),e.al(...1idx)]);
repMsg = repMsg.replace ("true","True"); // chapel to python bool
repMsg = repMsg.replace ("false","False"); // chapel to python bool

imLogger.debug (getModuleName () , getRoutineName () , getLineNumber () , repMsg) ;
return new MsgTuple (repMsg, MsgType.NORMAL) ;

}

when (DType.BigInt) {
var e = toSymEntry(gEnt,bigint, nd);
repMsg = "item %s $%?".format (dtype2str(e.dtype),e.al(...1idx)]);
imLogger.debug (getModuleName () , getRoutineName () ,getLineNumber () , repMsg) ;
return new MsgTuple (repMsg, MsgType.NORMAL) ;

}

otherwise {
var errorMsg = notImplementedError (pn,dtype2str (gEnt.dtype));
imLogger.error (getModuleName () ,getRoutineName () ,getLineNumber () ,errorMsg) ;
return new MsgTuple (errorMsg, MsgType.ERROR) ;

Chapel and GPUs

e Chapel now supports vendor-neutral GPU programming (NVIDIA and AMD)
« Uses the identical features as for programming multi-core CPUs and HPCs

var A: [l..n, 1..n] real;
I cPucore (] GPUCore [TiMemory coforall 1 in Locales do on 1 {

parallel statements cobegin {
with cobegin Locale 0 Locale 1 coforall g in here.gpus do on g {

var B: [l..n, 1..n] real;

oo o3k {} B = 2;
o Bl e ok A = B;

GPUO GPUO {
aloloo (| [e|o|a|o
, aaaa. oqoa. var B: [l..n, 1..n] real;
nner
coforall elole e olofole a B = 2;
across | 7 A = B;
P | |GPU1 GPU 1 }
LA AR -2 AR AR 2R
a«aoo‘ll Ll | [e|e el }
o000 oAbk AR }

writeln (A);

outer coforall across Locales

GPU Highlights: Paul Sathre’s ChapelCon 2024 Keynote

A case for parallel-first languages in

a post-serial, accelerated world
Paul Sathre
Research Software Engineer

Synergy Lab & NSF Center for Space, High-Performance and Resilient Computing
Virginia Tech

SyNeRG?

synergy.cs.vt.edu

Intro

What | really care about:

Closing the gaps between the
parallel hardware we already have,
and the people who could benefit from it

So how do we enable them?
(Conversely, what are the barriers to use?)

4

Sathre, P. "A case for parallel-first languages in a post-serial, accelerated world"
ChapelCon'24 -- June 7, 2024

\//al

SyNeRG?

synergy.cs.vt.edu

Act I: Parallelism is everywhere ...

Post-serial or “serial with sprinkles”

* Dominant programming models are still post-serial
— “Sprinkles”: optional libraries, pragmas, language extensions

» Chapel presents a different option: parallel-first

N ,
6._') A non-separ_able part of the keyv_vords, data abstractions,
— and semantics of the language (i.e. promotion)

ChAl: Chapel Al

e A native PyTorch-esque Chapel module
« Supports tensors, training, and inference
e Runs locally, distributed, and/or on GPUs

e Can be integrated into other HPC codes
-e.g., Arkouda

e Implemented by lain Moncrief
e junior at Oregon State University
« notably, written in one summer internship

Search or jump to... Sign in ‘ Sign up

O Product v Solutions ¥ Resources ¥ Open Source v Enterprise ¥ Pricing
& lainmon / ChAl Ppublic
<> Code (©) Issues 7 i Pullrequests 2 (® Actions [Projects (@ Security [~ Insights
¥ main ~ ¥ 5Branches © 1Tag Q Go tofile
@ 1ainmon Merge pull request #12 from chapel-lang/main @ da80575 - last month {X) 329 Commits
docs Rebuild docs. 3 months ago
examples Update MultiLocalelnference.chpl to have better comments 2 months ago
learning Add example file. 3 months ago
lib minor updates for compatability with chapel 2.2 2 months ago
presentation Add data for presentation 3 months ago
scripts Added pretrained model 3 months ago
src Add tests and fix some functions. 3 months ago
test make model directory configurable in loadFromSpec test, ... 2 months ago
[.gitignore Add tensors for examples. 3 months ago
[Mason.toml Changed name to ChAI. 4 months ago
[README.md Add an initial README file last month
[J README =
ChAlI: Chapel Artificial Intelligence
ChAl is a library for Al/ML in Chapel. Due to Chapel's highly parallel nature, it is well-suited for Al/ML tasks; the goal
of the library is to provide a foundation for such tasks, enabling local, distributed, and GPU-enabled computations.

L\ Notifications % Fork 4 ¢ Star 3

<> Code ~ About

A Chapel library for Machine Learning
that supports distributed inference,
automatic differentiation, and CUDA/HIP
utilization.

¢ iainmon.github.io/ChAI

[Readme
AN Activity

Y% 3stars

® 3 watching
% 4 forks

Report repository

Releases 1

© Intern Presentation Snapshot (Latest)
on Aug 31

Packages

No packages published

Contributors 3

Q lainmon lain Moncrief

jeremiah-corrado

2% DanilaFe Daniel

But wait, there’s more!

e AWS/EFA: Now supported by Chapel and Arkouda
Spack/E4S: Now support Chapel (Arkouda in-progress)
Chapel 2.0: released this year, providing forward-compatibility
Parquet: improved and optimized support

New websites: Arkouda’s is online, Chapel’s will launch soon

N
cccccc
=

Arkouda github documentation gitter

Massive-scale data science, =
from the comfort of your laptop O Distted el Wor

Q Parallel File 10
QO 1D Heat Diffusion

Arkouda _ NumPy QO GPU Kernel
Ready for supercomputers Industry standard

TRY CHAPEL

import arkouda as ak

ak.connect (*localhost', 5555)

a = ak.random. randint (0, 2432, 24%38)
b = ak.random.randint(0,2+32,2%*38)

c=a+bh

PRODUCTIVE

c = ak.sort(c)

print(c[0:10]) Concise and readable without
compromising speed or expressive

power. Consistent concepts for parallel

computing make it easier to learn.

Try it Out Tutorial Video [Chat on Gitter

DOWNLOAD DOCS - LEARN RESOURCES -~ COMMUNITY BLOG

writeln("Hello, world!");

// create a parallel task per processor core
coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task *, tid);

// print these 1,000 messages in parallel using
forall i in 1..1000 do
writeln("Hello from iteration ", i);

GET CHAPEL

PARALLEL

Built from the ground up to implement
parallel algorithms at your desired level of
abstraction. No need to trade low-level
control for convenience.

The Chapel Programming Language

Productive parallel computing at every scale.

all cores

LEARN CHAPEL

FAST

Chapel is a compiled language,
generating efficient machine code that
meets or beats the performance of other
languages.

17

