
October 26, 2022
Brad Chamberlain

CHAPEL:
FIVE HIGHLIGHTS SINCE CLSAC 2019

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

WHAT IS CHAPEL?

2

forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

Manually Tuned Chapel version (using explicit aggregator type)

3

CHAPEL TENDS TO BE COMPACT, CLEAN, AND FAST (BALE INDEX-GATHER)

i=0;
while(exstack_proceed(ex, (i==l_num_req))) {

i0 = i;
while(i < l_num_req) {

l_indx = pckindx[i] >> 16;
pe = pckindx[i] & 0xffff;
if(!exstack_push(ex, &l_indx, pe))

break;
i++;

}

exstack_exchange(ex);

while(exstack_pop(ex, &idx , &fromth)) {
idx = ltable[idx];
exstack_push(ex, &idx, fromth);

}
lgp_barrier();
exstack_exchange(ex);

for(j=i0; j<i; j++) {
fromth = pckindx[j] & 0xffff;
exstack_pop_thread(ex, &idx, (uint64_t)fromth);
tgt[j] = idx;

}
lgp_barrier();

}

i = 0;
while (more = convey_advance(requests, (i == l_num_req)),

more | convey_advance(replies, !more)) {

for (; i < l_num_req; i++) {
pkg.idx = i;
pkg.val = pckindx[i] >> 16;
pe = pckindx[i] & 0xffff;
if (! convey_push(requests, &pkg, pe))

break;
}

while (convey_pull(requests, ptr, &from) == convey_OK) {
pkg.idx = ptr->idx;
pkg.val = ltable[ptr->val];
if (! convey_push(replies, &pkg, from)) {

convey_unpull(requests);
break;

}
}

while (convey_pull(replies, ptr, NULL) == convey_OK)
tgt[ptr->idx] = ptr->val;

}

forall (d, i) in zip(Dst, Inds) do
d = Src[i];

Conveyors versionExstack version

Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation’)

Cray XC (Aries)

Highlight 1: Aggregators (explicit and compiler-added)

Typical 2019-era Chapel Talk:
• Me: “Chapel’s goal is to support any parallel algorithm on any parallel architecture.”
• Audience Q: “So… does Chapel support GPUs?”
• Me (with head bowed in shame): “Only through interoperability with CUDA/OpenCL/OpenACC/OpenMP/…”

4

CHAPEL SUPPORT FOR GPUS

STREAM TRIAD EP: SHARED MEMORY

config var n = 1_000_000,
alpha = 0.01;

var A, B, C: [1..n] real;
A = B + alpha * C;

stream-ep.chpl

Declare three arrays of size ‘n’

5

So far, this is simply a multi-core program

Nothing refers to remote locales (nodes),
explicitly or implicitly

Whole-array operations compute
Stream Triad in parallel

STREAM TRIAD EP: DISTRIBUTED MEMORY

config var n = 1_000_000,
alpha = 0.01;

coforall loc in Locales {
on loc {
var A, B, C: [1..n] real;
A = B + alpha * C;

}
}

stream-ep.chpl

have each task run ‘on’ its locale

then run multi-core Stream, as before

6

the array of locales (nodes)
on which this program is running

‘coforall’ loops execute each
iteration as an independent task

This is a CPU-only program

Nothing refers to GPUs,
explicitly or implicitly

STREAM TRIAD EP: DISTRIBUTED MEMORY, GPUS ONLY

config var n = 1_000_000,
alpha = 0.01;

coforall loc in Locales {
on loc {

coforall gpu in here.gpus do on gpu {
var A, B, C: [1..n] real;
A = B + alpha * C;

}
}

}

stream-ep.chpl

7

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently

on each of this locale’s GPUs

STREAM TRIAD EP: DISTRIBUTED MEMORY, GPUS AND CPUS

config var n = 1_000_000,
alpha = 0.01;

coforall loc in Locales {
on loc {
cobegin {
coforall gpu in here.gpus do on gpu {
var A, B, C: [1..n] real;
A = B + alpha * C;

}
{
var A, B, C: [1..n] real;
A = B + alpha * C;

}
}

}
}

stream-ep.chpl

8

This program uses all CPUs and GPUs
across all of your compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our GPU triad

the other runs the CPU triad

Highlight 2: Chapel now supports GPUs!
(via a work-in-progress prototype)

Arkouda
What? Interactive Data Analytics at Supercomputing Scale
Who? Mike Merrill, Bill Reus, et al., U.S. DoD
How Much? ~25k lines of Chapel written since January 2019
Why Chapel? Scalability, supported rapid development, supports Pythonic code

CHAMPS
What? 3D Unstructured CFD (Computational Fluid Dynamics)
Who? Éric Laurendeau, et al., Polytechnique Montreal
How Much? ~100k lines of Chapel written since Spring 2019
Why Chapel? Reduces time-to-science for junior and senior students while scalably generating

world-class results

FLAGSHIP CHAPEL APPLICATIONS

9

Arkouda Highlights Since CLSAC 2019
• Extensible, Modular Architecture
• Many, many New Features
• Performance and Scalability Improvements…

Highlight 3: Both apps went into production & matured significantly

• Ran on a large HPE Apollo system, summer 2021
• 73,728 cores of AMD Rome
• 72 TiB of 8-byte values
• 2.5 minutes elapsed time ⇒ 480 GiB/s
• ~100 lines of Chapel code

Close to world-record performance—and very likely a record for performance/SLOC

ARKOUDA ARGSORT AT MASSIVE SCALE

be
tt

er

10

Highlight 4: Major performance and scalability improvements

Our team now consists of:
• 19 full-time employees
• 1 visiting scholar (NCAR)
• our director

We also have:
• a new hire starting early 2023
• an open summer internship

THE CHAPEL TEAM AT HPE

see: https://chapel-lang.org/contributors.html
and https://chapel-lang.org/jobs.html

11

Highlight 5: Team has grown
from ~12 in 2019 to ~21 today

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

• We have admittedly focused almost exclusively on “indoor” systems, from laptops to supercomputers
• Though at times, this has included things like Raspberry Pi or AWS

• Potential future directions (up for grabs):
• More diverse accelerators than typical GPUs (several talks)
• Coordinating loosely-coupled Chapel programs from edge to cloud (Pete’s talk)

– using ZeroMQ, Sockets, or something higher-level / more abstract?
• Jupyter notebook support via interactive evaluation of Chapel (Sudip’s talk)
• Your idea here…

12

FUTURE WORK: CHAPEL AT THE EDGE?

Chapel is unique among programming languages
• built-in features for scalable parallel computing
• supports clean, concise code relative to conventional approaches
• ports and scales from laptops to supercomputers

Chapel is being used in production and at scale
• users are reaping its benefits in applied, cutting-edge applications
• applicable to domains as diverse as data science and physical simulations

Progress over the past three years has been significant
• adding GPU support
• improving performance and scalability
• growing the team

SUMMARY

13

forall (d, i) in zip(Dst, Inds) do
d = Src[i];

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

CHAPEL RESOURCES

14

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

Chapel is unique among programming languages
• built-in features for scalable parallel computing
• supports clean, concise code relative to conventional approaches
• ports and scales from laptops to supercomputers

Chapel is being used in production and at scale
• users are reaping its benefits in applied, cutting-edge applications
• applicable to domains as diverse as data science and physical simulations

Progress over the past three years has been significant
• adding GPU support
• improving performance and scalability
• growing the team

SUMMARY

15

forall (d, i) in zip(Dst, Inds) do
d = Src[i];

THANK YOU
https://chapel-lang.org
@ChapelLanguage

