—

Hewlett Packard
Enterprise

CHAPEL:
FIVE HIGHLIGHTS SINCE CLSAC 2019

Brad Chamberlain
October 26, 2022

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C

2

CHAPEL TENDS TO BE COMPACT, CLEAN, AND FAST (BALE INDEX-GATHER)

|
L] L]
Exstack version Conveyors version
i=0; i=0;
while(exstack proceed(ex, (i==1 num req))) { while (more = co , (1 == 1 num_req)),
i0 = i; more | co , !more)) {
while(i < 1 num req) {
1 indx = pckindx[i] >> 16; for (; i < 1 num reqg; i++) {
pe = pckindx[i] & Oxffff; pkg.idx = 1i; .
if (!exstack push(ex, &l _indx, pe)) pkg.val = pckindx[i] >> 16; "5' bale IndeX gather
break; pe = pckindx[i] & Oxffff; a 1250 p=
i++; if (! convey push(requests, &pkg, pe)) c Chapel SHMEM
} } breaky g') 1000 k== Aggregation (auto) - - Exstack
exstack exchange (ex) ; o = Aggregation (user) =& Conveyor X
- while (convey pull (requests, ptr, &from) == convey OK) ({ E ’u? 750 k —@— Unordered (auto) | el Lttt ;’ X
while (exstack pop(ex, &idx , &fromth)) { pkg.idx = ptr->idx; }_ ~ + No optimizaton g ..ottt - -
idx = ltable[idx]; pkg.val ltable[ptr->vall; m - -
exstack push(ex, &idx, fromth); if (! convey push(replies, &pkg, from)) { _.q_-z (D 500 -
} convey_unpull (requests) ; g ~
lgp barrier(); break;
exstack_exchange (ex) ; } e 250 .
}
for (j=10; j<i; Jj++) { g
fromth = pckindx[j] & Oxffff; while (convey pull (replies, ptr, NULL) == convey OK) <
exstack pop_ thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx] = ptr->val; 32 64 128 256 51 2
e) Number of Locales (x 36 cores / locale)
lgp_barrier(); 1
: Cray XC (Aries)

Manually Tuned Chapel version (using explicit aggregator type)

forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
agg.copy(d, Srcli]);

Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation’)

forall (d, 1) in zip(Dst, Inds) do -)
d = Src[il; Highlight 1: Aggregators (explicit and compiler-added)

— o

Better

CHAPEL SUPPORT FOR GPUS

Typical 2019-era Chapel Talk:
» Me: “Chapel’s goal is to support any parallel algorithm on any parallel architecture.”
o Audience Q: “So... does Chapel support GPUs?”
« Me (with head bowed in shame): “Only through interoperability with CUDA/OpenCL/OpenACC/OpenMP/...”

4

STREAM TRIAD EP: SHARED MEMORY

stream-ep.chpl

config var n = 1 000 000,
alpha = 0.01;

Declare three arrays of size ‘n’

var A, B, C: [l..n] real;
A =B + alpha * C; Whole-array operations compute
Stream Triad in parallel

So far, this is simply a multi-core program

Nothing refers to remote locales (nodes),
explicitly or implicitly

STREAM TRIAD EP: DISTRIBUTED MEMORY

stream-ep.chpl ‘coforall’ loops execute each
iteration as an independent task

config var n = 1 000 000,

alpha = 0.01; the array of locales (nodes)
coforall loc in Locales {
on loc { have each task run ‘on’ its locale

var A, B, C: [l..n] real;
A = B + alpha * C; then run multi-core Stream, as before
}

This is a CPU-only program

Nothing refers to GPUs,
explicitly or implicitly

STREAM TRIAD EP: DISTRIBUTED MEMORY, GPUS ONLY

stream-ep.chpl

config var n
a

coforall loc
on loc {

A =

= 1 000 000,
lpha = 0.01;

in Locales {

coforall gpu in here.gpus do on gpu {
var A, B, C: [1l..n] real;

B + alpha * C;

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently
on each of this locale’s GPUs

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

STREAM TRIAD EP: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config var n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {

cobegin {

var A, B, C:
A =B + alpha * C;

A =B + alpha * C;

} Highlight 2: Chapel now supports GPUs!
} (via a work-in-progress prototype)

coforall gpu in here.gpus do on gpu { one task runs our GPU triad
[1..n] real;

‘cobegin { ... } creates a task
per child statement

{
var A, B, C- [1.. n] real; — the other runs the CPU triad

This program uses all CPUs and GPUs
across all of your compute nodes

FLAGSHIP CHAPEL APPLICATIONS

= = Arkouda
MMMMMMMMM EE . What? Interactive Data Analytics at Supercomputing Scale
$ wrees [Who? Mike Merrill, Bill Reus, et al.,, U.S. DoD
g 5 s How Much? ~25k lines of Chapel written since January 2019

Why Chapel? Scalability, supported rapid development, supports Pythonic code

Arkouda Highlights Since CLSAC 2019

Highlight 3: Both apps went info production & matured significantly > Bxienslole, Meeller Anchlictiure

* Many, many New Features
* Performance and Scalability Improvements...

CHAMPS
What? 3D Unstructured CFD (Computational Fluid Dynamics)
Who? Eric Laurendeau, et al., Polytechnique Montreal

How Much? ~100k lines of Chapel written since Spring 2019
Why Chapel? Reduces fime-to-science for junior and senior students while scalably generating
world-class results

ARKOUDA ARGSORT AT MASSIVE SCALE

e Ran on a large HPE Apollo system, summer 2021

e 73,728 cores of AMD Rome
o 72 TiB of 8-byte values

e 2.5 minutes elapsed time = 480 GiB/s ggg

e ~100 lines of Chapel code 400
350
300
250
200
150
100
50
0

GiB/s

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

64 128 256 512 576

Highlight 4: Major performance and scalability improvements Locales (x 128 cores / locale)

Close to world-record performance—and very likely a record for performance/SLOC

—

IlO

THE CHAPEL TEAM AT HPE

» |
L2 i
F - B
% ‘\ " d
S—
. NS -
{ \ S
9 o
r - o
B
4 \
|
T e
4 4 -
A\ N
N
R
'

Our team now consists of:

e 19 full-fime employees
e 1 visiting scholar (NCAR)
e our director

We also have:

e a new hire starting early 2023
e an open summer internship

Highlight 5: Team has grown

from ~12 in 2019 to ~21 today

see: https://chapel-lang.org/contributors.html
and https://chapel-lang.org/jobs.html

Ill

https://chapel-lang.org/contributors.html
https://chapel-lang.org/jobs.html

FUTURE WORK: CHAPEL AT THE EDGE?

» We have admittedly focused almost exclusively on “indoor” systems, from laptops to supercomputers
« Though at times, this has included things like Raspberry Pi or AWS

e Potential future directions (up for grabs):

« More diverse accelerators than typical GPUs (several talks)

« Coordinating loosely-coupled Chapel programs from edge to cloud (Pete’s talk)
—using ZeroMQ, Sockets, or something higher-level / more abstract?

« Jupyter notebook support via interactive evaluation of Chapel (Sudip’s talk)

e Your idea here...

— .

SUMMARY

Chapel is unique among programming languages

e built-in features for scalable parallel computing
» supports clean, concise code relative to conventional approaches

Aggregate Throughput

3264 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)

» ports and scales from laptops to supercomputers forall (d, i) in zip(Dst, Inds) do
d = Srcl[i];

Chapel is being used in production and at scale

e users are reaping its benefits in applied, cutting-edge applications
» applicable to domains as diverse as data science and physical simulations

Python3 Client m™ma Chapel Server
Socket

Object Store

vvvvvvv

Progress over the past three years has been significant
» adding GPU support

« improving performance and scalability Egﬁ%‘ihg
e growing the team gﬂ@ﬁ%m
a S\

— .

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

14

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

Chapel is unique among programming languages

e built-in features for scalable parallel computing
» supports clean, concise code relative to conventional approaches

Aggregate Throughput

3264 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)

» ports and scales from laptops to supercomputers forall (d, i) in zip(Dst, Inds) do
d = Srcl[i];

Chapel is being used in production and at scale

e users are reaping its benefits in applied, cutting-edge applications
» applicable to domains as diverse as data science and physical simulations

Python3 Client m™ma Chapel Server
Socket

Object Store

vvvvvvv

Progress over the past three years has been significant
» adding GPU support

« improving performance and scalability Egﬁ%‘ihg
e growing the team gﬂ@ﬁ%m
a S\

— .

THANK YOU

https://chapel-lang.org
@ChapelLanguage

