CRANY

THE SUPERCOMPUTER COMPANY

Chapel at the Petascale and on the Desktop
Challenges and Potential

Brad Chamberlain, Cray Inc.

Barcelona Multicore Workshop 2010
October 22, 2010

b

CRANY

THE SUPERCOMPUTER COMPANY

Five Key Parallel Language Design Decisions
For Multicore, Petascale, and Beyond

Brad Chamberlain, Cray Inc.

Barcelona Multicore Workshop 2010
October 22, 2010

CRANY
What is Cha pe |? e ST TR

e A new parallel language being developed by Cray Inc.
e Part of Cray’s entry in the DARPA HPCS program

e Main Goal: Improve programmer productivity
* Improve the programmability of parallel computers
e Match or beat the performance of current programming models
* Provide better portability than current programming models
e Improve robustness of parallel codes

e Target architectures:
* multicore desktop machines
» clusters of commodity processors
e Cray architectures
e systems from other vendors

e A work in progress, developed as open-source (BSD license)

Chapel's Origins

e HPCS: High Productivity Computing Systems Q& pes
e Overall goal: Raise high-end user productivity by 10x

Productivity = Performance + Programmability + Portability + Robustness

e Phase II: Cray, IBM, Sun (July 2003 — June 2006)

e Goal: Propose new productive system architectures

e Each vendor created a new programming language
e Cray: Chapel
e IBM: X10
e Sun: Fortress

e Phase lll: Cray, IBM (July 2006 —)

* Goal: Develop the systems proposed in phase |l

» Each vendor implemented a compiler for their language
e Sun also continued their Fortress effort without HPCS funding

Outline

e Five Parallel Language Design Decisions
1. Data- vs. Task Parallelism
2. Global- vs. Local-view Data and Control
3. High- vs. Low-level Abstractions
4. Shared- vs. Distributed Memory Model
5. Locality/Affinity Model

* Next-Generation Nodes: Manycore, GPUs
e Summary
* Possible Bonus: User-defined domain maps

Design Decision 1:
Should a parallel language support data parallelism
or task parallelism?

=AY

THE SUPERCO

Q1: Data vs. Task Parallelism

Data Parallel: driven by collections of data/indices
e e.g., “for every element in array A do the following...”
e notable examples: HPF, ZPL, ...

Task Parallel: driven by specifying individual tasks
e e.g., “task 1 should do this while task 2 does that”
e notable examples: Cilk, pthreads, MPI, ...

Sub-questions:
What kinds of data parallel structures should be supported?
Can tasks have dependences between one another or not?
Can the parallel concepts be nested?

CRANY

THE SUPERCOMPUTER COMPANY

Al: Data vs. Task Parallelism

Chapel supports a unified set of concepts in order to...

...express any parallelism desired in a user’s program
o Styles: data-parallel, task-parallel, concurrency, nested, ...
» Levels: module, function, loop, statement, expression

...target all parallelism available in the hardware
e Systems: multicore desktops, clusters, HPC systems, ...
e Levels: machines, nodes, cores, instructions

Status quo: most current parallel programming models support
only a limited number of styles and system levels, leading to
hybrid programming models (e.g., MPl + OpenMP)

Design Decision 2:
Should a parallel language support a global view of
data structures and control flow or a local view?

C=RANY

THE SUPERCOMPUTER

EEEEEEEEEEEEEEEEEEEEEEE

Q2: Global- vs. Local-View Data/Control

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View Local-View
I I
I I -
(T 9 [0 ST - S
I I
+ N)/2 l l
I I
=T] ' '

EEEEEEEEEEEEEEEEEEEEEEE

Q2: Global- vs. Local-View Data/Control

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View Local-View

(
+ T)/ 2
=TT |

+CT/2 1+)2+ T2

Q2: Global- vs. Local-View Data/Control

C=RA0Y

THE SUPERCOMPUTER COMPANY

In code: “Apply a 3-Point Stencil to a vector”

\ Global-View §“

def main () {
var n = 1000;
var A, B: [l..n] real;

forall i in 2..n-1 do
B[i] (A[1i-1] + A[i+1])/2;

}

}

v }

if

if

Local-View (SPMD)

def main () {
var n = 1000;
var p = numProcs (),

me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

(me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]):;

(me > 0) {
send (me-1, A[1l]);
recv (me-1, A[0]);

forall i in 1..myN do

B[i] = (A[i-1] + A[i+1])/2;

Bug: Refers to uninitialized values at ends of A

e

Q2: Global- vs. Local-View Data/Control

C=RA0Y

THE SUPERCOMPUTER COMPANY

In code: “Apply a 3-Point Stencil to a vector”

Global-View

N\\\\’def main () {

var n = 1000;
var A, B: [1l..n] real;

forall i in 2..n-1 do
B[i] = (A[i-1] + A[i+1])/2;

Communication becomes

for higher-dimensional arrays

§ Local-View (SPMD)
def main () {

Assumes p divides n

var n~ 1000;
var = numProcs (),
me = myProc(),

myN = n/p,
ilo = 1,
iHi = myN;

var A, B: [0..myN+1] real;

i~ myHi
geometrically more complex |——]

if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);
} else

if (me > O

myLo = 2;
forall i in ilo..iHi do
B[i] = (A[i-1] + A[i+1])/2;

rprj3 Stencil from NAS MG

I

C=RA0Y

THE SUPERCOMPUTER COMPANY

Local-view rprj3 Stencil (Fortran + MPI)

subroutine rpri3(r,mik,m2k,m3k,s mlj,m23,m3j K)
implicit none

include 'mpinpb.h'
include 'globals.h’

7
integer mik, m2k, m3k, mlj, m23, m3j,k
double precision z (nik m2k/n3k)| s (ni)m23ns)
integer 33, 32, 31, 13, 12, i1, a1, A2, &3, 3
double precision x1(m), yl(m), x2,y2
if (mlk.eq.3) then
a1 =2
slse
a1
endif
if (n2k.eq.3) then
a2=2
slse
az
endif
if (m3k.eq.3) then
a3 =2
olse
a3 =1
endif
o 33-1
132 pe33as
m23-1
2+32-a2
do 312,m13
= 2431-a1
AT SFa 21,3) sz)
> + £(il-1,32, i3-1) + £(il-1,32, i3+1)
YLAI-1) = £(1-1/42°1,43-1) + r(11-1,42°1,13+41)
> + £(i1-1,1241,33-1) + £(il-1,1241,i341)
enddo
1
1
12-1,43-1) + £(i1, 12-1,i3+1)
> i241)33-1) + £(i1, 12+1,i34+1)
2-1)33) + z(i1, 241,13)
(1, 12, i3-1) + z(il, iz, i3+1)
5(31,32,33) =
> 0500 * z(il,i2,i3)
> +0125D0 * (£(i171,12,43) + r(i141,42,13) + x2)
> +0.12500 * (x1(i1°1) + x1(i1#1) + y2)
> +0.062500 * (y1(i1-1) + y1(i1+1))
enddo
enddo
enddo
3 =K1
all comn3 (s m13 m23,m33,3)
4£(debug_vec(0) .ge. 1)then
call rep_nem(s,m1j,m2j,m3j," rpri3’ k-1)
enaif
1£(debug_vec(4) .ge. k) then
call showall(s,m1j,m23,n33)
enaif
return
end
subroutine norn2u3 (x,nl,n2,n3, znn2, rnmu, nx, oy, nz)
implicit none
include 'mpinpb.h'
integer nl, n2, n3, nx, ny, nz
double precision zan2, ‘znmi, (1 02,n3)
double precision s, a, ss
Srteser 13T B Tt
double precision dn
an = 1.0d0%nxrny*nz
2=0.000
>
>
>
call mpi_allreduce (xnmu,ss,1,dp_type.
= e mpi._comm_world, dezs)
e aumdum. ss, 1, dp_type,
> mpi comn_world, ierE)
>
>
subroutine rep_nrm(u,nl,n2,n3, title kk) >
implicit none

'mpinpb.h'
inctnialicioetatil

integer nl, n2, n3,
et e T e
character*8 title

>
return
end

double precision ram2, ramu

call nom2u3 (u,ni, n2 n3, ron2, nmmx (KK) (k) e (K))
(me ‘then

-eq. root)
write (¥, 7)kk, title, rnn2, romu
format(' Level',i2," in ',a8,': norms =',D21.14,021.14)
endif
return
end

subroutine comm3 (u,n1,n2,n3,kk)
implicit none

include ‘mpinpb.h’

include ‘globals.h'

integer nl, n2, n3,

double pm:wm...(..; n2,03)
integer axi.

if(.not. dead(kk)) then

i£(nprocs .ne. 1) then
call ready(axis, -1, kk)
call ready(axis, +1, kk)
call gived(axis, +1, u, nl, n2, n3, kk)
call give3(axis, -1, u, nl, n2, n3, kk)
call take3(axis, -1, u, nl, n2, n3)
call take3(axis, +1, u, nl, n2, n3)

else
call commlp(axis, u, nl, n2, n3, kk)
endif
enddo
else
call zero3(u,nl,n2,n3)

endi
return
end

subroutine ready(axis, dir, k)
implicit none

include 'mpinpb.h’
include ‘globals.h'
integer axis, dir, k
integer buff id,buff_len,i,ierr

buff_id= 3 + dir
butf len = nm2

do i=1,nm2
buff (i buff_id) = 0.0D0
ddo

msg_id(axis,diz,1) = mag_type (axis,diz) +1000me

call mp drecy(bute (1 bute_id), buce Lo
> Eype

T abe (axis, -dLr;)) meq type (axis dir),
T Yo worid, mag 4a (axiardiE Ay tere]

subroutine give3(axis, dir, u, nl, n2, n3, k)
implicit none

include 'mpinpb.h!

include 'globals.h'

integer axis, dir, nl, n2, n3, k, ierr
double precision u(ni, n2, n3)

integer 3, i2, i1, buff_len,buff_id
buff_id = 2 + dir
butf len= 0
if(axis .eq. 1)then
1€ dir .eq. -1)then
do 13=2,n3-1
do i2=2,n2-1

; buff_len + 1
buff{buff len,buff id) = u(2, i2,i3)
nddo

enddo
call mpi_send(
buff(1, buff id), buff_len,dp_type,
e dfx, k'), meg_type (axis,dir),
mpi_comm_world, ierr)
else if(dir .eq. +1) the
do i3=2,n3-1
i2=2,n2-1
 Jen = buff len + 1
buff (buff_len, buff_id) = u(ni-1, i2,i3)
nddo
enddo
call mpi_send(
BufQ, puct id), bues lencp_type,
T, . &Ik et dix)
_comm_world, ier:
enaif
endif

if(axis g 2)uimn
£(dir .eq. -1)then
do 13=2,n3-1
do il=1,n1
buff_len = buff len + 1

buff (buff_len, buff_id) = u(il, 2,i3)
enddo
enddo

call mpi_send(
bus

> €80, buee id), muee den do type
> nbr (axis, dir _type (axis, dir) ,
> R e, o
else if(dir .eq. +1) then
& e
do i
bute. ton = bure
DutEToere Lo, bare 46)= u(i1,m2-1,43)
enddo
call mpi_send(
> busfid, buse dd), bute_lan,dp_type
> nbr (axis, dir, _type (axis, dir) ,
> SRS el
endif
if(axis 3)then
0 ais g, -1 then
do 2=t n2
;nt
® buee.
buEf{bufE fraid 1d7 = u(i1,i2,2)
enddo
call mpi_send(
> bufE(l, buet sd), buse Jen.dp_type
> nbr(axis, dir, k), msg_type(axis,dir),
> mpi_comm_world, ierr)
else if(dir .eq. +1) then
,n1
buff len = buff len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-1)
enddo
call mpi_send(
> BufE(l, buet d), buse Jen.dp_type
> nbr(axis, dir, k), msg_type (axis,dir)
> mpi_comm_world, ierr)
endif
endif
return
end

subroutine take3(axis, dir, u, nl, n2, 3)
implicit none

include 'mpinpb.h'
include 'globals.h'

integer dir, n1, n2, n3
double pracision u(ni, n3, 3)

integer buff_id, indx

integer status (mpi_status_size

integer 13, i2, i1
GALL mpi_vait(msg_id(axis, dix, 1) status,sern)

bute

if(axis .eq. 1)then
i€(dir .eq. -1)then

do

13=2,n3-1
do i2=2,n2-1
indx = indx + 1
u(nl,12,13) = buff (indx, buff_id)
enddo
else if(dir .eq. +1) then

do

do u_z s L
indx + 1

\:(l 12,350 = bue (indx, bute i)
endao

enai
endif
£ axis then

£(dir .eq. -1)then

do

1
@ ii=1,m1
ndx = indx + 1
u(i1,n2,13) = buff (indx, buff_id)
enddo
enddo

else if(dir .eq. +1) then

o i -
do ii=1,n1
indx = indx
Lo = pute (indx, buee_id)
s
endi
endif

if(axis .eq. 3)then

if(dir .eq. -1)then

do i2=1,n2

do 41=1,n1
i dx + 1
u(i1,12,n3) = buff (indx, buff_id)
enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do il=1,n1
indx +
u(il,i2,1)
enddo

1
uef (indx, buff_id)

endif
endif

return
ond

subroutine commlp(axis, u, nl, n2, n3, kk)
implicit none

include 'mpinpb.h'
include 'globals.h’

integer axis, dir, nl
e ToTeres taor (e e

integer 13, 42, 43, bute_lenbues 14
integer i, Kk, inc

dir = -1
buff_id

- id= 3+ dir
buf len = nm2

Jom2
buf (i,buff_id) = 0.0D0
enddo

buff_id =3 + dir
buf len = nm2

Jom2
buf (i,buff_id) = 0.0D0
enddo

£e
buff (buff_len, buf() umn, 12,03
enddo
endif
if(axis .eq. 2)then
do 13=2,n3-1
do ii=1,n1

buff_len = buff_len + 1

butf(buts_len, buff id)= u(il,n2-1,i3)

buf (buts_) P huf(i) = uCanaznsn
ddo.

butt_len + 1
) =ul2, 12,i3)

DutETourt lon, Buft id) = u(il, 2,i3)
endif

if(axis .eq. 3)the
do i2=1,n2
do il=1,n1
buff_len = buff_len +
buff(buff_len, butf, m) u(11,i2,2)
ddo.

bute (1,3)
buff (i,2) = buff(i,1)
nddo

C=RA0Y

THE SUPERCOMPUTER COMPANY

buff id =3 + dir
indx= 0

i axis eq. 1)then
1

z.z ..z 1

dx + 1
wint 12,19) = buee (indx, butf_id)

if(axis eq. 2)then
1372 ns-1

dx + 1
u(i1,n2,13) = buff (indx, buff_id)
ddo

if(axis .eq. 3)then
do 1251,n2

indx < indx + 1
u(il,i2,n3) = buff (indx, buff_id)

buff_id
indx

34 air

1f(axis .eq. 1)then
do i3=2,n3-1

2-1

1 ax + 1
6(1,42,13) = buff (indx, buff_id)
ddo

2)then
-1

indx + 1
u(i1,1,13) = buff (indx, buff_id)

1f(axis .eq. 3)then
do i2=1,n2

1
e ax + 1

9(31,12,1) = buff (indx, buff_id)
enddo

enddo

enaif

return
end

subroutine showall (z,nl,n2,n3)
implicit none

include ‘mpinpb.h’

integer nl,n2,n3,i1,i2,13,1, derr

double precision z(nl,n2,n3)
integer ml, m2

format (15£6.3)

endif

call mpi_barrier (mpi_comm world,ierr)
ddo.

return
end

subroutine

ro3 (z,n1,02,n3)
implicit none

include 'mpinpb.h’

integer n1, n2,

geuble precision x(nl n2,n3)
integer i1, i2,

return

ond
brade-lnxt

C=RA0Y

THE SUPERCOMPUTER COMPANY

Global-view rpr;j3 Stencil (in Chapel)

def rprj3(S: [?SD], R: [?RD]) {

const Stencil = [-1..1, -1..1, -1..17,
W: [0..3] real = (0.5, 0.25, 0.125, 0.0625),
W3D = [(i,7,k) in Stencil] W[(i'!'=0) + (3!=0) + (k!=

forall ijk in SD do

S[ijk] = + reduce [offset in Stencil]

(W3D[offset] * R[i1ijJk + RD.stride*offset]);

Our previous work in ZPL demonstrated that such compact
codes can result in better performance than Fortran + MPI
while also supporting more flexibility at runtime.*

*specifically, the Fortran + MPI rprj3 code shown previously assumes that p and n
are both specified at compile-time and powers of two.

CRANY

THE SUPERCOMPUTER COMPANY

A2: Global- and Local-View Programming

e This choice is not exclusive: A language can support
both global and local views, and we believe it should

e |n particular, Chapel does:

def main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.1d, Locales.numElements);

def MySPMDProgram (me, p) {

Design Decision 3:
What level of abstraction should a parallel language support?

=

THE SUPER

CRRANY

THE SUPERCOMPUTER COMPANY

Q3: High- vs. Low-level Abstractions

Kl — High-Level
I/ Abstractions

Implementation OpenMP
CIEMEERIE

Target Machine Target Machine

“‘Why is everything so difficult?”

Low-Level

o “‘Why don’t | have more control?”
“‘Why don’t my programs port trivially?”

EEEEEEEEEEEEEEEEEEEEEEE

Q3: High- vs. Low-level Abstractions

Low-level / Control-oriented: closer to the machine
e.qg., C, MPI, OpenMP, CUDA, ...
+ general; good performance control
+ easier to implement
- tend to require more user effort to program

- more brittle w.r.t. architectural changes
- e.g., MPIl works for clusters, but is inadequate for GPUs

High-level / Programmability-oriented: more abstract,
hides details

e.g., ZPL, HPF, NESL, ...
reverse benefits/liabilities from above

EEEEEEEEEEEEEEEEEEEEEEE

A3: Multiresolution Language Design

Multiresolution Languages: Layered, multi-tiered design
nigher levels for programmability, productivity

ower levels for performance, control

nigher-level concepts built in terms of the lower

Chapel language concepts

C Y

Domain Maps

Locality Control
Base Language

Target Machine
typically a bigger language, though with good design,
not necessarily a kitchen sink

Design Decision 4:
Should a parallel language support a shared-memory
or distributed-memory view of data”?

=AY

THE SUPERCOMPU

Q4: Shared- vs. Distributed Memory Model

Shared Memory

+ considered simpler, more like traditional programming
e “if you want to access something, simply name it”

- no support for expressing locality/affinity; limits scalability
- bugs can be subtle, difficult to track down (race conditions)
- tend to require complex memory consistency models

X

2]

MEM

CRANY

Q4: Shared- vs. Distributed Memory Model

Distributed Memory
+ a more constrained model; you can only access local data

communication must be used to get copies of remote data
only supports coarse-grain task parallelism
intermixes semantics of data transfer with synchronization

has frustrating classes of bugs of its own
- e.g., recvs without matching sends, buffer overflows, etc.

I = ___"m P
____.4-' -\-.-\"'\-\.__ -_/_-"--
. - - e - -
X o h H

=

MEM MEM MEM MEM

A4d: PGAS Memory Model

PGAS: Partitioned Global Address Space
e supports a shared namespace, like shared-memory

e supports a strong sense of ownership and locality
e each variable is stored in a particular memory segment
e tasks can access any visible variable, local or remote
e |ocal variables are cheaper to access than remote ones

e retains many of the downsides of shared-memory

Design Decision 5:
How should a parallel programming language support
the user’s ability to reason about locality/affinity?

C=RANY

THE SUPERCOMPUTER COMPANY

-

CRANY

THE SUPERCOMPUTER COMPANY

Q5: Locality/Affinity Model (w.r.t. Parallelism)

locality-oblivious: model has no real notion of locality
* (see shared-memory bullet from previous question)

locality-constrained: locality and parallelism are expressed
using the same concept

e e.g., MPI ranks serve as both the unit of locality and parallelism

e implications for utilizing multicore processors:
e programmer has to use a hybrid model
e or has to ignore locality within a node
e or work outside of the abstract programming model

CRANY

THE SUPERCOMPUTER COMPANY

A5: Distinct Concepts for Parallelism vs. Locality

Characteristics:

e Chapel has distinct concepts for parallelism vs. locality
e task: unit of parallel work that supports concurrent execution
e Jocale: region of target architecture with processors and memory

e resulting programming/execution model richer than SPMD
e each locale can execute multiple tasks
e tasks can create work for any locale
® a more appropriate model for multicore

task pools: [T

1T
threads:
::-_-'_i
processors.

memory.

- o
.-"-F'-F--

A 1
"
~ e
’ L
- By
-'.--- gt
-

ANy
Summary: Design Decisions and Chapel’s Answers ="

1. Data- vs. Task Parallelism?
e support both (and composition) for the sake of generality

2. Global- vs. Local-view Data and Control?
e support both: global- for productivity, local- for control

3. High- vs. Low-level Abstractions?
e use a multiresolution design to get the best of both worlds

4. Shared- vs. Distributed Memory Model?
e PGAS supports shared memory advantages with scalability

5. Locality/Affinity Model?

» use distinct concepts for parallelism vs. locality

Where do your current parallel programming models fall?

Outline | ——

e Chapel Background
e Five Parallel Language Design Decisions
e Next-Generation Nodes: Manycore, GPUs

e Summary

CRANY

THE SUPERCOMPUTER COMPANY

Processor Architecture Trends

Expected Processor Trends:
e multicore -> manycore
* increasing use of accelerators (e.g., GPGPUs)

Impacts on Programming Model:

e growing need to pay attention to locality within a node
e desktop parallel programming will increasingly resemble cluster
e HPC parallel programming will only become more complex

e growing need to deal with heterogeneity
e different processor types/capabilities/limitations
e different memory types/properties

We believe that Chapel is well-positioned for these challenges
given the choices described earlier

CRANY

THE SUPERCOMPUTER COMPANY

Next-Generation Nodes and Design Decisions

1. Data- vs. Task Parallelism?
e task- to launch asynchronous computations
e data- to leverage SIMD computation units

2. Global- vs. Local-view Data and Control?

3. High- vs. Low-level Abstractions?

e HW will be complex enough that the value of high-level
global-view abstractions will only grow

e vyet desire for lower-level control will always remain

4. Shared- vs. Distributed Memory Model?

e shared memory doesn’t match hierarchy/heterogeneity

» vyet distributed memory feels like overkill for an accelerator
5. Locality/Affinity Model?

* will only become more important given trends

Summary

Through Chapel’s design choices...

e general forms of composable parallelism

» global- and local-view programming

* multiresolution design

e PGAS memory model

e distinct concepts for locality and parallelism

...we believe it is well-positioned for productive
desktop/petascale parallel programming today

...and for the desktop/exascale machines of tomorrow
where these decisions become more important

C=RA0Y

THE SUPERCOMPUTER COMPANY

Current/Future Work

» Generalize Locale Concept to Support Hierarchies
single level of locality was sufficient for petascale
next-generation nodes will require more

* Domain Maps for Next-generation Nodes
to support global-view arrays on accelerators, e.g.

* Performance Improvements
communication optimizations
loop nest idioms

For More Information

e http://chapel.cray.com: papers, presentations,
language specification, and other general information

o https://sourceforge.net/projects/chapel: download
Chapel and view/contribute to its development

e chapel info@cray.com: for general questions to the
team (SourceForge-based mailing lists also exist)

e Attend our SC10 Tutorial, Monday November 15t

http://chapel.cray.com
http://www.sourceforge.net/projects/chapel
mailto:chapel_info@cray.com

.

Questions?

