Chapel:

Productive, Multiresolution Parallel Programming

Brad Chamberlain, Chapel Team, Cray Inc.
ATPESC: Argonne Training Program for Exascale Computing
August 6%, 2015

Chapel:

HPC Programmers Deserve Nice Things Too

Brad Chamberlain, Chapel Team, Cray Inc.
ATPESC: Argonne Training Program for Exascale Computing
August 6%, 2015

=

CRANY
CHHAaARPEL
=

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%J B Copyright 2015 Cray Inc.

Chapel Motivation o

Q: Why doesn’t parallel programming have an equivalentto .

Python I Matlab l Java l C++ / __(your favorite programming language here) ?

e one that makes it easy to quickly get codes up and running
e one that is portable across system architectures and scales
e one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical

challenge, but rather a lack of sufficient...
...long-term efforts

...resources

...community will

...Co-design between developers and users
...patience

Chapel is our attempt to change this

PEL

COMPUTE | STORE | ANALYZE

Copyright 2015 Cray Inc. @

What is Chapel? . o

e An emerging parallel programming language \
e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry; domestically & internationally

e A work-in-progress

e Goal: Improve productivity of parallel programming

(‘_{\\ COMPUTE | STORE | ANALYZE

CHAaPEL

=/ Copyright 2015 Cray Inc. @

What does “Productivity” mean to you? o

Recent Graduates: \
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’'t need because | wasbornto-suffer-
want full control

to ensure performance’

J

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

COMPUTE | STORE | ANALYZE

=
B ®
=/ Copyright 2015 Cray Inc.

Chapel's Implementation o

Being developed as open source at GitHub \
e Licensed as Apache v2.0 software

Portable design and implementation, targeting:

e multicore desktops and laptops

e commodity clusters and the cloud

e HPC systems from Cray and other vendors

e in-progress: manycore processors, CPU+accelerator hybrids, ...

COMPUTE | STORE | ANALYZE

= ©
Copyright 2015 Cray Inc.

Sustained Performance Milestones SN

(]
- =

1 GF - 1988: Cray Y-MP; 8 Processors

« Static finite element analysis
* Fortran77 + Cray autotasking + vectorization

1 TF — 1998: Cray T3E; 1,024 Processors

* Modeling of metallic magnet atoms
* Fortran + MPI (Message Passing Interface)

1 PF — 2008: Cray XT5; 150,000 Processors

» Superconductive materials T _____ % iy
« C++/Fortran + MPI + vectorization ﬁ“

1 EF —~20__: Cray ; ~10,000,000 Processors Or perhaps

« TBD something

- TBD: C/C++/Fortran + MPI + OpenMP/OpenACC/CUDA/OpenCL? ~ Completely
different?

N cmaer
EHAl:s -
=

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:

D A A S B
BLITTTTTTTTTTTTTTIITTTI]T]
4
CCITTTTT T T T T TTTTTT[TTT]
o H

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation =R

e \
\

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):

| | |

i i i

| | |
« @ P B ! B | m

Z_...
G= ®

®
!
CRAaY |

STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |

i - i

| | |
« B P B ! & | m

Z_...
G= ®

STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

/7\ cRese
| CHaPEL
\—J

if ('a || 'b || 'e) {

if (c) HPCC_free(c);
if (b) HPCC free(b):;
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);

}

return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP et N

#include <hpcc.h>

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

7N cman
| CHaPEL

BB @@ g
MPI + OpenMP . . .

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b); \
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP vs. CUDA S

MPI1 + OpenMP m

#ifdef _OPENMP

#include <omp.h>
#endif
static int VectorSize; - - - -
static double *a, *b, *c; . I . I . I .
]]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm,
MPI_Comm_rank (comm,

&commSize) ;
&myRank) ;

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

#define N 2000000
int main() {
float *d_a, *d b, *d_c;

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**)&d c,

A A ar__w _ _1_s11AnN

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile,
fclose(outFile);

"Failed to allocate memory (%d).\n", VectorSize);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\v==Aw
CHAaPEL
kﬁ?

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

.5£, N);
.5£, N);

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar, N);
cudaThreadSynchronize () ;
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);
__global void set_array(float *a, float value, int len) ({
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;
}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

Why so many programming models? . o

HPC has traditionally given users... \
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator Open[MP|CL|ACC] / CUDA SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

N mar
cHaPEL

Rewinding a few slides...

MPI1 + OpenMP %

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c; . I . I . I .
]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

T ITITIEIrITTrao

#define N

int main() {

2000000

float *d a, *d b, *d_c; s!'s ! 8! S
float scalar;

cudaMalloc((void**) &d a, sizeof (float) *N);
cudaMalloc((void**) &d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

A A ar__w _ _1_s11AnN

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\ e
CHAPEL
N

}

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

.5£, N);
.5£, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronize () ;

N) ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);

global void set_array(float *a, float value,
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;

int len) {

global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

STREAM Triad: Chapel

config const m = 1000,
alpha = 3.0;

var A, B, C: [ProblemSpace]
B =2.0;
C = 3.0;

A =B + alpha * C;

const ProblemSpace = {1l..m}(dmapped ..;

real;

. the special
sauce

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

Outline

v Motivation

» Chapel Background and Themes
e Survey of Chapel Concepts

e Project Status and Next Steps

e This evening: Chapel hands-on session

Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC — Mainstream Language Gap

~__

Motivating Chapel Themes

1) General Parallel Programming

2)

3) Multiresolution Design

4)

5) Reduce HPC — Mainstream Language Gap

Z,
@H::::
-2

1) General Parallel Programming N

With a unified set of concepts... \

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
e Types: machines, nodes, cores, instruction

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel task (or executable)
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads Chapel iteration
GPU/accelerator Chapel SIMD function/task

N cmaer
GHAl:E -
=

3) Multiresolution Design: Motivation A

EEA™ High-Level
(ZPL | Abstractions

Low-Level

__MPI_
Implementation
Pthreads

Concepts Pthreads
Target Machine Target Machine

“Why is everything so tedious/difficult?”
“Why don’t my programs port trivially?”

“Why don’t | have more control?”

3) Multiresolution Design A

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

(Domain Maps)
Data Parallelism

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

7\' cRese
CHAPEL
=

5) Reduce HPC — Mainstream Language Gap =|=A:Yf ~

e \
\

Consider: \
e Students graduate with training in Java, Matlab, Python, etc.
e Yet HPC programming is dominated by Fortran, C/C++, MPI

We'd like to narrow this gulf with Chapel:
e to leverage advances in modern language design
e to better utilize the skills of the entry-level workforce...

e ...while not alienating the traditional HPC programmer
e e.g., support object-oriented programming, but make it optional

COMPUTE | STORE | ANALYZE

B ®
=% Copyright 2015 Cray Inc.

Outline

v

v
» Survey of Chapel Concepts

(Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

Lower-level Chapel

Outline .

v
v

» Survey of Chapel Concepts

(Domain Maps
Data Parallelism
Task Parallelism

) 1 Base Language
Locality Control

Lower-level Chapel

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

Static Type Inference .
const pi = 3.14, // pil is a real
coord = 1.2 + 3.4i, // coord is a complex..
coord2 = pi*coord, // ..as 1s coordZ2
name = “brad”, // name 1s a string
verbose = false; // verbose 1s boolean
proc addem (x, y) { // addem () has generic arguments
return x + y; // and an inferred return type
}
var sum = addem(l, pi), // sum 1s a real
fullname = addem(name, “ford”); // fullname is a string
writeln ((sum, fullname)):;

(4.14, bradford)

Range Types and Algebra

const r = 1..10;

printVals

proc printVals (r)
for 1 in r do
write(r, “ 7)
writeln () ;

(r);
printVals(r # 3);
printVals (r by 2);
printVals (r by -2);
printVals(r by 2 # 3);
printVals(r # 3 by 2);
printvVals (0.. #n);

{

4 567 8 9 10

3
3
5

7 9
8 6 4 2

Ilterators

C)

iter fibonacci (n)
var current = 0,
next = 1;
for 1..n {
yield current;
current += next;

current <=> next;

~

iter tiledRMO (D, tilesize) {
const tile = {0..#tilesize,
0..#tilesize};
for base in D by tilesize do
for ijJ in D[tile + base] do
yield ij;

for £ in fibonacci (7)

writeln (£f) ;

for ij in tiledRMO({1..m,
write(ij);

1..n}, 2) dé]

CcHAaPEL

(1,1)(1,2) (2,1) (2,2)
(1,3)(1,4) (2,3) (2,4)
(1,3) (1,6) (2,3) (2,6)

"(.3,1) (3,2) (4,1) (4,2)

Zippered Iteration

for (i,f) in zip(0..#n,
writeln (“fib #”, i, ™

fibonacci (n))

144

1s Y, L):

do1

Other Base Language Features

e tuple types and values
¢ rank-independent programming features
e interoperability features

e compile-time features for meta-programming
e €.g., compile-time functions to compute types, parameters

e OOP (value- and reference-based)
e argument intents, default values, match-by-name
e overloading, where clauses

e modules (for namespace management)

Outline

v
v

» Survey of Chapel Concepts

¢

 md Task Parallelism

Domain Maps

Data Parallelism

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

Defining our Terms

Task: a unit of computation that can/should execute in
parallel with other tasks

Task Parallelism: a style of parallel programming in which
parallelism is driven by programmer-specified tasks

(in contrast with):

Data Parallelism: a style of parallel programming in which
parallelism is driven by computations over collections of
data elements or their indices

g COMPUTE | STORE | ANALYZE

@..z‘.t
= Copyright 2015 Cray Inc.

Task Parallelism: Begin Statements

// create a fire-and-forget task for a statement
begin writeln (“hello world”);
writeln (“goodbye”) ;

Possible outputs:

hello world goodbye
goodbye hello world

Task Parallelism: Coforall Loops

// create a task per iteration
coforall t in O..#numTasks {

writeln (“Hello from task ”, t, ™ of ”, numTasks);
Y // implicit join of the numTasks tasks here

writeln (“All tasks done”);

Sample output:

Hello from task 2
Hello from task O

Hello from task 3
Hello from task 1
All tasks done

Other Task Parallel Concepts . o

cobegins: create tasks using compound statements \

atomic variables: support atomics ops, similar to modern C++

sync/single variables: support producer/consumer patterns

sync statements: join unstructured tasks

serial statements: conditionally squash parallelism

Outline

v
v

» Survey of Chapel Concepts

C Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Theme 4: Control over
Locality/Affinity

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

The Locale Type

Definition:
e Abstract unit of target architecture

e Supports reasoning about locality
e defines “here vs. there” / “local vs. remote”

e Capable of running tasks and storing variables
e i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

@M COMPUTE | STORE | ANALYZE

=% Copyright 2015 Cray Inc.

Getting started with locales

e Specify # of locales when running Chapel programs

$ a.out —-—-numLocales=8 $ a.out —nl 8

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const Locales: [O..#numLocales] locale = ..;
Locales LO L1 L2 L3 L4 L5 L6 L7

e User'smain () begins executing on locale #0

Locale Operations .

e Locale methods support queries about the target system:

proc locale.physicalMemory(..) { .. }\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln (Y“on locale 07); \\ on A[i,j] do A

bigComputation (A) ;
on Locales[1l] do

writeln (“now on locale 17); on node.left do

search (node.left) ;

writeln (Yon locale 0 again”);

Parallelism and Locality: Orthogonal in Chapel R

e This is a parallel, but local program: \

begin writeln (“Hello world!”);
writeln (“"Goodbye!”) ;

e This Is a distributed, but serial program:

writeln (“Hello from locale 0!”);
on lLocales[l] do writeln(“Hello from locale 1!”);
writeln (“"Goodbye from locale 0!”);

e This is a distributed and parallel program:

~
begin on Locales[l] do writeln(“Hello from locale 1!”);

on Locales[2] do begin writeln(“Hello from locale 2!”);
writeln (“Goodbye from locale 0!”);

s
||‘ EHA:EI_

Partitioned Global Address Space (PGAS) =|=A:v®‘ |

Languages .

(Or perhaps: partitioned global namespace languages)

e abstract concept:

e support a shared namespace on distributed memory
e permit parallel tasks to access remote variables by nhaming them

e establish a strong sense of ownership
e every variable has a well-defined location
e local variables are cheaper to access than remote ones

e traditional PGAS languages have been SPMD in nature
e best-known examples: Co-Array Fortran, UPC

partitioned shared name-/address space

private private private private
space 0 space 1 space 2 space 3 space 4

= COMPUTE | STORE | ANALYZE

@::.I
=/ Copyright 2015 Cray Inc.

\

\
\

\

Chapel and PGAS .

e Chapel is PGAS, but unlike most, it’s not inherently SPMD
= never think about “the other copies of the program”

= “global name/address space” comes from lexical scoping
e as in traditional languages, each declaration yields one variable
e variables are stored on the locale where the task declaring it is executing

Locales (think: “compute nodes”)

(‘_{\\ COMPUTE | STORE | ANALYZE

CHAaPEL

=/ Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1i: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var j: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

= COMPUTE | STORE | ANALYZE
@“u Copyright 2015 Cray Inc.

Chapel: Scoping and Locality o

var 1: int; |
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

// within this scope, i, j, and k can be referenced,
// the implementation manages the communication for i and j

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
=/ Copyright 2015 Cray Inc.

Outline

v Motivation

v’ Chapel Background and Themes

» Survey of Chapel Concepts

¢

Domain Maps

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

) Higher-level Chapel

Outline O\

v Motivation |
v’ Chapel Background and Themes

» Survey of Chapel Concepts Theme 2: Global-view

Abstractions

—(/ Domain Maps)
g Higher-level Chapel

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

\
. . . =AY |
Data Parallelism by Example: Jacobi Iteration N
S \
A: | - ‘
repeat until max
n change < ¢
(3

/:\v cmas
CHAPEL
N

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const Bigh = {0..n+1, O0..n+1},
D BigD[l..n, 1..n],
LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
forall (i,J) in D do
Temp([i,J] = (A[i-1,3] + A[i+1,3] + A[i,3-1] + A[i,j+1])
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (2) ;

~__

/ 4;

Jacobi Iteration in Chapel

config const n = o,
epsilon = 1.0e-5;

Declare program parameters

const = can’t change values after initialization

config = can be set on executable command-line
prompt> jacobi --n=10000 --epsilon=0.0001

note that no types are given; they’re inferred from initializers
n = default integer (64 bits)
epsilon = default real floating-point (64 bits)

Jacobi Iteration in Chapel

const Bigh = {0..n+1, O0..n+1},
D = BigDh[l..n, 1..n], =

LastRow = D.exterior(1,0);

Declare domains (first class index sets)

{lo..hi, l02..hi2} = 2D rectangular domain, with 2-tuple indices

Dom1[Dom2] = computes the intersection of two domains

0 n+l

n+1 HEEEEE
BigD D LastRow

.exterior() = one of several built-in domain generators

Jacobi Iteration in Chapel

var A, Temp : [BigD] real;

Declare arrays

var = can be modified throughout its lifetime
: [Dom] T = array of size Dom with elements of type T
(no initializer) = values initialized to default value (0.0 for reals)

BigD A Temp

OPEL

Jacobi Iteration in Chapel

A[LastRow] = 1.0;

A PEL

Set Explicit Boundary Condition

Arr[Dom] = refer to array slice (“forall i in Dom do ...Arr[i]...")

}
(el — PPN
u]]) \
Jacobi lteration in Chapel SONCH
\
Compute 5-point stencil N
forall ind in Dom = parallel forall expression over Dom’s indices,
binding them to ind
(here, since Dom is 2D, we can de-tuple the indices)
Z[+ 4 nmmp [
forall (i,j) in D do
Temp[i,J] = (A[i-1,3J] + A[i+1,3] + A[i,3-1] + A[i,3+1]) / 4;

A PEL

Jacobi Iteration in Chapel

Compute maximum change

op reduce = collapse aggregate expression to scalar using op

Promotion: abs() and — are scalar operators; providing array operands
results in parallel evaluation equivalent to:
forall (a,t) in zip(A,Temp) do abs(a - t)

const delta = max reduce abs (A[D] - Temp[D]);

Jacobi Iteration in Chapel

Copy data back & Repeat until done

uses slicing and whole array assignment
standard do...while loop construct

do {

A[D] = Temp[D];
} while (delta > epsilon);

Jacobi Iteration in Chapel

Write array to console

writeln (2) ;

Jacobi Iteration in Chapel SOSTH

const Bigh = {0..n+1, O0..n+1},
D = BigDh[l..n, 1..n],
LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

By default, domains and their arrays are mapped to a single locale.
Any data parallelism over such domains/ arrays will be executed by the cores on that locale.
Thus, this is a shared-memory parallel program.

/“\v s
cHaPEL

Jacobi Iteration in Chapel SOSTH

const Bigh = {0..n+1, 0..n+l} dmapped Block ({l..n, 1..n}),
DZBigD[l..D, 1..n], \
LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

With this simple change, we specify a mapping from the domains and arrays to locales
Domain maps describe the mapping of domain indices and array elements to locales
specifies how array data is distributed across locales
specifies how iterations over domains/arrays are mapped to locales

BigD D LastRow A Temp

Jacobi Iteration in Chapel

config const n = ¢,
epsilon = 1.0e-5;

const Bigh = {0..n+1l, 0..n+l} dmapped Block ({l..n, 1..n}),
D BigD[l..n, 1..n],
LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
forall (i,J) in D do
Temp[i,j] = (A[i-1,J] + A[i+1,3J] + A[i,J-1] + A[i,j+1]) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);
writeln () ;

use BlockDist;

~__

STREAM Triad: Chapel . o

config const m = 1000, \
alpha = 3.0;

const ProblemSpace = {1..m}(dmapped ..; | the special

sauce
var A, B, C: [ProblemSpace] real;
B = 2.0;
C = 3.0;

A =B + alpha * C;

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

LULESH: a DOE Proxy Application . o

Goal: Solve one octant of the spherical Sedov problem (blast \
wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

N cmaer
EHAl:s -
=

LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

It spemfles
(= data structure ch0|ces

¢ local vs. distrlbuted data
- * sparse vs. dense materlals arrays

LULESH in Chapel S

fffff Here Is some sample representatlen mdependent code
IntegrateStressForElems ()
LULESH spec section 1. 5 1 1 (2.)

Representation-Independent Physics

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) {
forall k in Elems { <€
varb x, b y, b _z: 8*real;
var x_local, y_local, z_local: 8*real;
localizeNeighborNodes(k, x, x_local, y, y_local, z, z_local);

var fx_local, fy_local, fz_local: 8*real;

local {
/* Volume calculation involves extra work for numerical consistency. */
CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,
b_x, b_y, b_z, determ[k]);

CalcElemNodeNormals(b_x, b_y, b_z, x_local, y_local, z_local);

SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[k], sigyy[k], sigzz[K],
t fx_local, fy_local, fz_local);

}

for (noi, t) in elemToNodesTuple(k) {
fx[noi].add(fx_locall[t]); P
fy[noi].add(fy_local[t]);
fz[noi].add(fz_locallt]);

2 COMPUT

= Copyright 2015 Cray Inc.

Domain Maps . o

Domain maps are “recipes” that instruct the compiler how \
to map the global view of a computation...

...to the target locales’ memory and processors:

| |
! !
| |
! !
+ | + |
| |
! !
| |
[[

Locale 1

(&= @

Chapel’s Domain Map Philosophy o
1. Chapel provides a library of standard domain maps \
e to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
e to cope with any shortcomings in our standard library

Domain Maps

Task Parallelism

Base Language
Locality Control

3. Chapel’s standard domain maps are written using the

same end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases

Chapel Domain Types

H| L L L L L IIIIII IIIIIII
] O O O O O 1] 1]
] O O O O O l
] O O O O O
] O O O O O
dense strided sparse
“steve”
“lee” O— _____ Q- ~~~Q__Q\D
“Sung” Q:\ \\\ /, \‘ //, | ///’ ;
“daVid” Q/’ \\\ \\Q_——“:q__%,d
“‘jacob” Ol N S {}J@
“albert” T
“brad”
associative unstructured

Chapel Array Types
H L L L L L IIIIII IIIIIII
] O O O O O [
] O O O O O — —
] O O O O O
] O O O O O
dense strided sparse

“steve”

“lee”

“Sung”

“david”

“jacob”

“albert”

“brad”

associative unstructured

All Domain Types Support Domain Maps

—
b o
I R w R 1~
E O
O

__I_l__l_l____.

: : T | |
dense strided -sparse

associative unstructured

For More Information on Domain Maps . o

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Current domain maps:
$CHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

e Technical notes detailing the domain map interface for implementers:
$CHPL_HOME/doc/technotes/README.dsi

=\ COMPUTE | STORE | ANALYZE

B @
= Copyright 2015 Cray Inc.

Two Other Thematically Similar Features .

1) parallel iterators: Permit users to specify the parallelism and

work decomposition used by forall loops
e including zippered forall loops

2) locale models: Permit users to model the target architecture

and how Chapel should be implemented on it
e e.g., how to manage memory, create tasks, communicate, ...

Like domain maps, these are...
...written in Chapel by expert users using lower-level features
e e.g., task parallelism, on-clauses, base language features, ...
...available to the end-user via higher-level abstractions
e e.9., forall loops, on-clauses, lexically scoped PGAS memory, ...

= COMPUTE | STORE | ANALYZE
@\-.h Copyright 2015 Cray Inc.

Summary .

HPC programmers deserve better programming models

Higher-level programming models can help insulate
algorithms from parallel implementation details
e yet, without necessarily abdicating control
e Chapel does this via its multiresolution design

e domain maps, parallel iterators, and locale models are all examples
e avoids locking crucial policy decisions into the language definition

We believe Chapel can greatly improve productivity
...for current and emerging HPC architectures
...for HPC users and mainstream uses of parallelism at scale

COMPUTE | STORE | ANALYZE

=
@::.t
=/ Copyright 2015 Cray Inc.

Outline

v Motivation

v Chapel Background and Themes
v Survey of Chapel Concepts

» Project Status and Next Steps

= COMPUTE | STORE | ANALYZE
@--h Copyright 2015 Cray Inc.

Chapel’s 5-year push .

e Based on positive user response to Chapel under HPCS,

Cray undertook a five-year effort to improve it
e we've just started our third year

e Focus Areas:

1.
2.

Improving performance and scaling

Fixing immature aspects of the language and implementation
e e.g., strings, memory management, error handling, ...

. Porting to emerging architectures

¢ Intel Xeon Phi, accelerators, heterogeneous processors and memories, ...
Improving interoperability

Growing the Chapel user and developer community
e including non-scientific computing communities

Exploring transition of Chapel governance to a neutral, external body

COMPUTE | STORE | ANALYZE

Copyright 2015 Cray Inc.

i
CcC=RANY

The Chapel Team at Cray (Spring 2015) .o

\
; B, S 7 !
' - . » 7 e
— . /#”
1 o . v s
g7 BE 2 '
,’~ : '
LA -“ !
~d Etad
. "3
- " p— - \
o’ a E
o
% L

/%

Chapel is a Collaborative, Community Effort

[N *{ICE 4 LT LABORATORY FOR
TELECOMMUNICATIONS
:‘\ - \ SCIENCES

B Lawrence Livermore

University

BERKELEY LAB

i OAK
i Argonne‘) %RIDGE

NATIONAL LABORATORY National Laboratory

Lawrence Berkeley
National Laboratory

o
HETKY Dk

C ’ THE UNIVERSITY OF TOKYO BE CHLA0E

(and many others as well...)

m Ziirich

National Laboratory Sandia National Laboratories

7

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

gE\
UNIVERSITY OF

MARYLAND

http://chapel.cray.com/collaborations.html

)

A Year in the Life of Chapel .

e Two major releases per year (April / October)
e ~a month later: detailed release notes

e SC (Nov)
e annual Lightning Talks BoF featuring talks from the community
e annual CHUG (Chapel Users Group) happy hour
e plus tutorials, panels, BoFs, posters, educator sessions, exhibits, ...

e CHIUW: Chapel Implementers and Users Workshop (May/June)

e CHIUW 2014 held at IPDPS (Phoenix, AZ)
e CHIUW 2015 held at PLDI/FCRC (Portland, OR)

e Talks, tutorials, research visits, blog posts, ... (year-round)

= COMPUTE | STORE | ANALYZE
@\-.h Copyright 2015 Cray Inc.

Implementation Status -- Version 1.11.0 (apr 2015) R

Overall Status: \
o User-facing Features: generally in good shape
e some receiving additional attention (e.g., strings, OOP, errors)
o Multiresolution Features: in use today
e their interfaces are likely to continue evolving over time
e Error Messages: not always as helpful as one would like
e correct code tends to work well, incorrect code can be puzzling

e Performance: hit-or-miss depending on the idioms used
e ultimately, Chapel will support competitive performance
e effort to-date has focused primarily on correctness

This is a great time to:
e Try out the language and compiler
e Use Chapel for non-performance-critical projects
e Give us feedback to improve Chapel
e Use Chapel for parallel programming education

(é\m COMPUTE | STORE | ANALYZE

= Copyright 2015 Cray Inc.

Chapel and Education

e When teaching parallel programming, | like to cover:
e data parallelism

task parallelism

concurrency

synchronization

locality/affinity

deadlock, livelock, and other pitfalls

performance tuning

e | don’t think there’s been a good language out there...
e for teaching all of these things
e for teaching some of these things well at all
e until now: We believe Chapel can play a crucial role here

(see http://chapel.cray.com/education.html for more information and
http://cs.washington.edu/education/courses/csep524/13wi/ for my use of Chapel in class)

@M COMPUTE | STORE | ANALYZE

=% Copyright 2015 Cray Inc.

Suggested Reading .

Overview Papers:
o A Brief Overview of Chapel, Chamberlain (early draft of a chapter for

A Brief Overview of Parallel Programming Models, edited by Pavan

Balaji, to be published by MIT Press in 2015).
e a detailed overview of Chapel’s history, motivating themes, features

e The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
e a higher-level overview of the project, summarizing the HPCS period

= COMPUTE | STORE | ANALYZE

@::.I
=/ Copyright 2015 Cray Inc.

Lighter Reading .

Blog Articles:

e Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel

e Why Chapel? (part 1, part 2, part 3), Cray Blog, June-October 2014.
e a recent series of articles answering common questions about why we are
pursuing Chapel in spite of the inherent challenges

e [Ten] Myths About Scalable Programming Languages,
IEEE TCSC Blog (index available on chapel.cray.com “blog articles” page),
April-November 2012.
e a series of technical opinion pieces designed to combat standard
arguments against the development of high-level parallel languages

(i\\ COMPUTE | STORE | ANALYZE

CHAaPEL

=% Copyright 2015 Cray Inc.

Online Resources Q008

Project page: http://chapel.cray.com
e overview, papers, presentations, language spec, ...

GitHub page: https://github.com/chapel-lang
e download Chapel; browse source repository; contribute code

Facebook page: https://www.facebook.com/ChapelLanguage

(__ Chapel highlights
_ taskParallel.chpl Chapel Programming Language

Neoforall 1oc in 1ocs IS ON Facebook.
on loc {

- const numrtasks « 10 connect with Chapel Programming Language, sign up for Facebook today.
coforall tid in
writef (“Hell Sign Up
)
dataParallel.chpl
icDist;

Parallel

Timeline About Photos Likes Videos

b cmece
A PEL

Community Resources .

SourceForge page: https://sourceforge.net/projects/chapel/
e hosts community mailing lists
(also serves as an alternate release download site to GitHub)

Mailing Aliases:

write-only:
e chapel_info@cray.com: contact the team at Cray

read-only:
e chapel-announce@lists.sourceforge.net: read-only announcement list

read/write:

e chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussion
chapel-education@lists.sourceforge.net: educator discussion
chapel-bugs@lists.sourceforge.net: public bug forum

C\\\ COMPUTE | STORE | ANALYZE

=/ Copyright 2015 Cray Inc.

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without noftice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2015 Cray Inc.

(&= ®

CRANY

THE SUPERCOMPUTER COMPANY

"'_rav.com chapel info

