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Sustained Performance Milestones 

• Static finite element analysis 

 

1  GF – 1988: Cray Y-MP; 8 Processors 

• Modeling of metallic magnet atoms 

 

1 TF – 1998: Cray T3E; 1,024 Processors 

• Superconductive materials 

 

1 PF – 2008: Cray XT5; 150,000  Processors 

• TBD 

 

1 EF – ~2018: Cray ____; ~10,000,000  

Processors  
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Sustained Performance Milestones 

• Static finite element analysis 

• Fortran77 + Cray autotasking + vectorization 

1  GF – 1988: Cray Y-MP; 8 Processors 

• Modeling of metallic magnet atoms 

• Fortran + MPI (Message Passing Interface) 

1 TF – 1998: Cray T3E; 1,024 Processors 

• Superconductive materials 

• C++/Fortran + MPI + vectorization 

1 PF – 2008: Cray XT5; 150,000  Processors 

• TBD 

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC?      

1 EF – ~2018: Cray ____; ~10,000,000  

Processors  
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Prototypical Next-Gen Processor Technologies 
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Intel MIC 

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/, 

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/,    http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf  

Nvidia Echelon Tilera Tile-Gx  

AMD Trinity 
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General Characteristics of These Architectures 
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● Increased hierarchy and/or sensitivity to locality 

● Potentially heterogeneous processor/memory types 

⇒ Next-gen programmers will have a lot more to 

think about at the node level than in the past 



Sustained Performance Milestones 

• Static finite element analysis 

• Fortran77 + Cray autotasking + vectorization 

1  GF – 1988: Cray Y-MP; 8 Processors 

• Modeling of metallic magnet atoms 

• Fortran + MPI (Message Passing Interface) 

1 TF – 1998: Cray T3E; 1,024 Processors 

• Superconductive materials 

• C++/Fortran + MPI + vectorization 

1 PF – 2008: Cray XT5; 150,000  Processors 

• TBD 

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC?      

1 EF – ~2018: Cray ____; ~10,000,000  

Processors  Or, perhaps  

something  

completely  

different? 
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures: 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel: 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory): 

STREAM Triad: a trivial parallel computation  
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Given: m-element vectors A, B, C 
 

Compute: i  1..m, Ai = Bi + αCi 
 

In pictures, in parallel (distributed memory multicore): 

STREAM Triad: a trivial parallel computation  
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STREAM Triad: MPI 
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#include <hpcc.h> 

 

 

 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

 

 

 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

 

 

 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 



STREAM Triad: MPI+OpenMP 
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#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

MPI + OpenMP 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

(%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 



STREAM Triad: MPI+OpenMP vs. CUDA 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 



Why so many programming models? 
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HPC has traditionally given users… 

…low-level, control-centric programming models 

…ones that are closely tied to the underlying hardware 

…ones that support only a single type of parallelism 
 

Examples: 

 

 

 

 

 
 

benefits: lots of control; decent generality; easy to implement 

downsides: lots of user-managed detail; brittle to changes 

 

Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task 



(“Glad I’m not an HPC Programmer!”) 
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A Possible Reaction: 

“This is all well and good for HPC users, but I’m a mainstream 
desktop programmer, so this is all academic for me.” 

 

The Unfortunate Reality: 

● Performance-minded mainstream programmers will 
increasingly deal with parallelism 

● And, as chips become more complex, locality too 



Rewinding a few slides… 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

HPC suffers from too many distinct notations for expressing parallelism and locality 



STREAM Triad: Chapel 
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#define N       2000000 

 

int main() { 

  float *d_a, *d_b, *d_c; 

  float scalar; 

 

  cudaMalloc((void**)&d_a, sizeof(float)*N); 

  cudaMalloc((void**)&d_b, sizeof(float)*N); 

  cudaMalloc((void**)&d_c, sizeof(float)*N); 

 

  dim3 dimBlock(128); 

  dim3 dimGrid(N/dimBlock.x ); 

  if( N % dimBlock.x != 0 ) dimGrid.x+=1; 

 

  set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N); 

  set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N); 

 

  scalar=3.0f; 

  STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N); 

  cudaThreadSynchronize(); 

 

  cudaFree(d_a); 

  cudaFree(d_b); 

  cudaFree(d_c); 

} 

 

__global__ void set_array(float *a,  float value, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) a[idx] = value; 

} 

 

__global__ void STREAM_Triad( float *a, float *b, float *c, 

                              float scalar, int len) { 

  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

  if (idx < len) c[idx] = a[idx]+scalar*b[idx]; 

} 

#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 
 

static int VectorSize; 

static double *a, *b, *c; 
 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 
 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 
 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); 
 

  return errCount; 

} 
 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double  scalar; 
 

  VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 ); 
 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 
 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 
 

  scalar = 3.0; 
 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 
 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 
 

  return 0; 

} 

CUDA MPI + OpenMP 

Philosophy:  Good language design can tease details of locality and 

parallelism away from an algorithm, permitting the compiler, runtime, 

applied scientist, and HPC expert to each focus on their strengths. 

 

 

 

config const m = 1000, 

             alpha = 3.0; 
 

const ProblemSpace = {1..m} dmapped …; 
 

var A, B, C: [ProblemSpace] real; 
 

B = 2.0;           

C = 3.0; 
 

A = B + alpha * C; 

the special 

sauce 

Chapel 



Outline 
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Motivation 

Chapel Background and Themes 

● Tour of Chapel Concepts and Implementation 

● Project Status and Next Steps 



What is Chapel? 
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● An emerging parallel programming language 
● Design and development led by Cray Inc. 

● in collaboration with academia, labs, industry 

● Initiated under the DARPA HPCS program 
 

● Overall goal: Improve programmer productivity 
● Improve the programmability of parallel computers 

● Match or beat the performance of current programming models 

● Support better portability than current programming models 

● Improve the robustness of parallel codes 
 

● A work-in-progress 
 



Chapel's Implementation 

20 

● Being developed as open source at SourceForge 
 

● Licensed as BSD software 
 

● Target Architectures: 

● Cray architectures 

● multicore desktops and laptops 

● commodity clusters 

● systems from other vendors 

● in-progress: CPU+accelerator hybrids, manycore, … 



Compiling Chapel 

21 

Chapel 

Source 

Code 

Chapel 

Executable 

Standard 

Modules 

(in Chapel) 

chpl 



Chapel Compiler Architecture 
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Motivating Chapel Themes 
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1) General Parallel Programming 

2) Global-View Abstractions 

3) Multiresolution Design 

4) Control over Locality/Affinity 

5) Reduce HPC ↔ Mainstream Language Gap 

 



Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node MPI executable 

Intra-node/multicore OpenMP/pthreads iteration/task 

Instruction-level vectors/threads pragmas iteration 

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task 

Type of HW Parallelism Programming Model Unit of Parallelism 

Inter-node Chapel executable/task 

Intra-node/multicore Chapel iteration/task 

Instruction-level vectors/threads Chapel iteration 

GPU/accelerator Chapel SIMD function/task 

1) General Parallel Programming 

24 

With a unified set of concepts... 
 

...express any parallelism desired in a user’s program 
● Styles: data-parallel, task-parallel, concurrency, nested, … 

● Levels: model, function, loop, statement, expression 

...target any parallelism available in the hardware 
● Types: machines, nodes, cores, instructions 



2) Global-View Abstractions 
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In pictures: “Apply a 3-Point Stencil to a vector” 

Global-View 

( 

+ 

= 

)/2 

Local-View 



2) Global-View Abstractions 
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In pictures: “Apply a 3-Point Stencil to a vector” 

Global-View 

( 

+ 

= 

)/2 

( 

+ 

= 

)/2 

( 

+ 

= 

)/2 

( 

+ 

= 

)/2 

Local-View 



2) Global-View Abstractions 

27 

In code: “Apply a 3-Point Stencil to a vector” 

Global-View 

proc main() { 

  var n = 1000; 

  var A, B: [1..n] real; 

 

  forall i in 2..n-1 do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

proc main() { 

  var n = 1000; 

  var p = numProcs(), 

      me = myProc(), 

      myN = n/p, 

  var A, B: [0..myN+1] real; 

 

  if (me < p-1) { 

    send(me+1, A[myN]); 

    recv(me+1, A[myN+1]); 

  } 

  if (me > 0) { 

    send(me-1, A[1]); 

    recv(me-1, A[0]); 

  } 

  forall i in 1..myN do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

Local-View (SPMD) 

Bug: Refers to uninitialized values at ends of A 



Assumes p divides n 

2) Global-View Abstractions 

28 

In code: “Apply a 3-Point Stencil to a vector” 

proc main() { 

  var n = 1000; 

  var A, B: [1..n] real; 

 

  forall i in 2..n-1 do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

proc main() { 

  var n = 1000; 

  var p = numProcs(), 

      me = myProc(), 

      myN = n/p, 

      myLo = 1, 

      myHi = myN; 

  var A, B: [0..myN+1] real; 

 

  if (me < p-1) { 

    send(me+1, A[myN]); 

    recv(me+1, A[myN+1]); 

  } else 

    myHi = myN-1; 

  if (me > 0) { 

    send(me-1, A[1]); 

    recv(me-1, A[0]); 

  } else 

    myLo = 2; 

  forall i in myLo..myHi do 

    B[i] = (A[i-1] + A[i+1])/2; 

} 

Communication becomes 

geometrically more complex 

for higher-dimensional arrays 

Global-View Local-View (SPMD) 



2) Global-View Programming: A Final Note 
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● A language may support both global- and local-view 
programming — in particular, Chapel does 

 
proc main() { 

  coforall loc in Locales do 

    on loc do 

      MySPMDProgram(loc.id, Locales.numElements); 

 

} 

 

proc MySPMDProgram(myImageID, numImages) { 

  ... 

} 



3) Multiresolution Design: Motivation 
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MPI 

OpenMP 

Pthreads 

Target Machine 

Low-Level 

Implementation 

Concepts 

“Why is everything so tedious/difficult?” 

“Why don’t my programs port trivially?” 
“Why don’t I have more control?” 

ZPL 

HPF 

Target Machine 

High-Level 

Abstractions 



3) Multiresolution Design 
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Multiresolution Design: Support multiple tiers of features 
● higher levels for programmability, productivity 

● lower levels for greater degrees of control 

 

 

 

 

 

 

 

 

 

● build the higher-level concepts in terms of the lower 

● permit the user to intermix layers arbitrarily 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 

Chapel language concepts 



4) Control over Locality/Affinity 
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Consider: 

● Scalable architectures package memory near processors 

● Remote accesses take longer than local accesses 

 

Therefore: 

● Placement of data relative to tasks affects scalability 

● Give programmers control of data and task placement 

 

Note: 

● Over time, we expect locality to matter more and more 
within the compute node as well 



Partitioned Global Address Space Languages 
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(Or perhaps: partitioned global namespace languages) 
 

abstract concept: 

● support a shared namespace on distributed memory 
● permit any parallel task to access any lexically visible variable 

● doesn’t matter if it’s local or remote 

 
 

shared name-/address space 

private 

space 0 

private 

space 1 

private 

space 2 

private 

space 3 

private 

space 4 



Partitioned Global Address Space Languages 
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(Or perhaps: partitioned global namespace languages) 
 

abstract concept: 

● support a shared namespace on distributed memory 
● permit any parallel task to access any lexically visible variable 

● doesn’t matter if it’s local or remote 

● establish a strong sense of ownership 
● every variable has a well-defined location 

● local variables are cheaper to access than remote ones 
 

private 

space 0 

private 

space 1 

private 

space 2 

private 

space 3 

private 

space 4 

partitioned shared name-/address space 



Traditional PGAS Languages 
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PGAS founding members: Co-Array Fortran, UPC, Titanium 
● extensions to Fortran, C, and Java, respectively 

● details vary, but potential for: 
● arrays that are decomposed across compute nodes 

● pointers that refer to remote objects 

● note that earlier languages could arguably also be considered PGAS, 
but the term hadn’t been coined yet 



PGAS: What’s in a Name? 
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MPI 

OpenMP 

 T
ra

d
. 
P

G
A

S
 

L
a
n
g
u
a
g
e
s
 

Chapel 

memory 

model 

CAF 

UPC 

Titanium 

PGAS 

distributed 

memory 

shared 

memory 

PGAS 

programming 

model 

execution 

model 

global-view 

parallelism 

global-view 

parallelism 

 shared memory 

multithreaded 

distributed 

memory 

multithreaded 

cooperating executables 

(often SPMD in practice) 

Single Program, Multiple Data 

(SPMD) 

co-arrays 

1D block-cyc arrays/ 

distributed pointers 

class-based arrays/ 

distributed pointers 

co-array refs 

implicit 

method-based 

N/A 

implicit 

APIs 

shared 

memory 

arrays 

manually 

fragmented 

global-view 

distributed 

arrays 

communication 

data 

structures 



Traditional PGAS Languages 
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e.g., Co-Array Fortran, UPC 
+ support a shared namespace, like shared-memory 

+ support a strong sense of ownership and locality 
• each variable is stored in a particular memory segment 

• tasks can access any visible variable, local or remote 

• local variables are cheaper to access than remote ones 

+ implicit communication eases user burden; permits 
compiler to use best mechanisms available 



Traditional PGAS Languages 

38 

e.g., Co-Array Fortran, UPC 
– restricted to SPMD programming and execution models 

– data structures not as flexible/rich as one might like 

– retain many of the downsides of shared-memory 
● error cases, memory consistency models 



5) Reduce HPC ↔ Mainstream Language Gap 
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Consider: 
● Students graduate with training in Java, Matlab, Perl, Python 
● Yet HPC programming is dominated by Fortran, C/C++, MPI 

 
We’d like to narrow this gulf with Chapel: 

● to leverage advances in modern language design 
● to better utilize the skills of the entry-level workforce... 
● ...while not alienating the traditional HPC programmer 

● e.g., support object-oriented programming, but make it optional 



Outline 
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Motivation 

Chapel Background and Themes 

Tour of Chapel Concepts and Implementation 

 

 

 

 

 

 

 

● Project Status and Next Steps 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Static Type Inference 
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const pi = 3.14,           // pi is a real 

      coord = 1.2 + 3.4i,  // coord is a complex… 

      coord2 = pi*coord,   // …as is coord2 

      name = “brad”,       // name is a string 

      verbose = false;     // verbose is boolean 

 

proc addem(x, y) {         // addem() has generic arguments 

  return x + y;            //   and an inferred return type 

} 

 

var sum = addem(1, pi),              // sum is a real 

    fullname = addem(name, “ford”);  // fullname is a string 

 

writeln((sum, fullname)); 

(4.14, bradford) 



Range Types and Algebra 
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const r = 1..10; 

 

printVals(r # 3); 

printVals(r by 2); 

printVals(r by -2); 

printVals(r by 2 # 3); 

printVals(r # 3 by 2); 

printVals(0.. #n); 

 

proc printVals(r) { 

  for i in r do 

    write(r, “ “); 

  writeln(); 

} 

1 2 3 

1 3 5 7 9 

10 8 6 4 2 

1 3 5 

1 3 

0 1 2 3 4 … n-1 



Iterators 
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iter fibonacci(n) { 

  var current = 0, 

      next = 1; 

  for 1..n { 

    yield current; 

    current += next; 

    current <=> next; 

  } 

} 

for f in fibonacci(7) do 

  writeln(f); 

0 

1 

1 

2 

3 

5 

8 

iter tiledRMO(D, tilesize) { 

  const tile = {0..#tilesize, 

                0..#tilesize}; 

  for base in D by tilesize do 

    for ij in D[tile + base] do 

      yield ij; 

} 

for ij in tiledRMO({1..m, 1..n}, 2) do 

  write(ij); 

(1,1)(1,2)(2,1)(2,2) 

(1,3)(1,4)(2,3)(2,4) 

(1,5)(1,6)(2,5)(2,6) 

… 

(3,1)(3,2)(4,1)(4,2) 



Zippered Iteration 
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for (i,f) in zip(0..#n, fibonacci(n)) do 

  writeln(“fib #”, i, “ is ”, f); 

fib #0 is 0 

fib #1 is 1 

fib #2 is 1 

fib #3 is 2 

fib #4 is 3 

fib #5 is 5 

fib #6 is 8 

… 



Other Base Language Features 
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● tuple types and values 

● rank-independent programming features 

● interoperability features 

● compile-time features for meta-programming 
● e.g., compile-time functions to compute types, parameters 

● OOP (value- and reference-based) 

● argument intents, default values, match-by-name 

● overloading, where clauses 

● modules (for namespace management) 

● … 



Outline 
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Chapel Background and Themes 
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Task Parallelism: Begin Statements 

47 

 
 

 

Possible outputs: 

// create a fire-and-forget task for a statement 

begin writeln(“hello world”); 

writeln(“good bye”); 

hello world 

good bye 

good bye 

hello world 



Task Parallelism: Cobegin Statements 
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// create a task per child statement 

cobegin { 

  producer(1); 

  producer(2); 

  consumer(1); 

}  // implicit join of the three tasks here 



Task Parallelism: Coforall Loops 

49 

 

 

 

 

 

 

Sample output: 

// create a task per iteration 

coforall t in 0..#numTasks {   

  writeln(“Hello from task ”, t, “ of ”, numTasks); 

} // implicit join of the numTasks tasks here 

 

writeln(“All tasks done”); 

Hello from task 2 of 4 

Hello from task 0 of 4 

Hello from task 3 of 4 

Hello from task 1 of 4 

All tasks done 



Task Parallelism: Data-Driven Synchronization 
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1) atomic variables: support atomic operations (as in C++) 
● e.g., compare-and-swap; atomic sum, mult, etc.  

 

2) single-assignment variables: reads block until assigned 

 

3) synchronization variables: store full/empty state 
● by default, reads/writes block until the state is full/empty 



Bounded Buffer Producer/Consumer Example 
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cobegin { 

  producer(); 

  consumer(); 

} 
 

 

// ‘sync’ types store full/empty state along with value 

var buff$: [0..#buffersize] sync real; 
 

 

proc producer() { 

  var i = 0; 

  for … { 

    i = (i+1) % buffersize; 

    buff$[i] = …;  // writes block until empty, leave full 

} } 
 

 

proc consumer() { 

  var i = 0; 

  while … { 

    i= (i+1) % buffersize; 

    …buff$[i]…;   // reads block until full, leave empty 

} } 



Other Task Parallel Features 
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Current: 

● serial statements to conditionally squash parallelism 

● sync statements to join dynamically generated tasks 

 

Planned: 

● task-private variables 

● task teams to support 
● collective operations (barriers, joins, reductions, etc.) 

● thread scheduling policies 
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The Locale Type 
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Definition: 

● Abstract unit of target architecture 

● Supports reasoning about locality 

● Capable of running tasks and storing variables 
● i.e., has processors and memory 

 

 

Typically: A compute node (multicore processor or SMP) 

 

 

 

 

 



Defining Locales 
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● Specify # of locales when running Chapel programs 

 

 

 

● Chapel provides built-in locale variables 

 

 

 
 

 
● User’s main() begins executing on locale #0 

 

% a.out --numLocales=8 

config const numLocales: int = …; 

const Locales: [0..#numLocales] locale = …; 

L0 L1 L2 L3 L4 L5 L6 L7 Locales: 

% a.out –nl 8 



Locale Operations 
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● Locale methods support queries about the target system: 

 

 

 

 

 

● On-clauses support placement of computations: 

 

proc locale.physicalMemory(…) { … } 

proc locale.numCores { … } 

proc locale.id { … } 

proc locale.name { … } 

writeln(“on locale 0”); 

 

on Locales[1] do 

  writeln(“now on locale 1”); 

 

writeln(“on locale 0 again”); 

cobegin { 

  on A[i,j] do 

    bigComputation(A); 

 

  on node.left do 

    search(node.left); 

} 



Chapel and PGAS 
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● Chapel is PGAS, but unlike UPC/CAF, it’s not SPMD 

  never think about “the other copies of the program” 

  “global name-/address space” comes from lexical scoping  
● rather than: “We’re all running the same program, so we must all have a 

variable named x” 

● as in traditional languages, each declaration yields one variable 

● stored on locale where task executes, not everywhere/thread 0 

 



Chapel and PGAS 
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var i: int; 

i 



Chapel and PGAS 
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var i: int; 

on Locales[1] { 

   

i 



Chapel and PGAS 
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var i: int; 

on Locales[1] { 

  var j: int; 

   

i j 



Chapel and PGAS 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      

i j 



Chapel and PGAS 
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var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k: int; 

    } 

  } 

} 

i j k k k k k 



Chapel and PGAS: Public vs. Private 
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How public a variable is depends only on scoping 
● who can see it? 

● who actually bothers to refer to it non-locally? 
var i: int; 

on Locales[1] { 

  var j: int; 

  coforall loc in Locales { 

    on loc { 

      var k = i + j; 

    } 

  } 

} 

i j k k k k k 

i j 

k k k k k 



Other Locality Features 
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Planned: 

● Locale-private variables 

● Hierarchical locales for reasoning about intra-node locality 
● (more on this at the end of the talk, time permitting) 
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Domain: 
● A first-class index set 

● The fundamental Chapel concept for data parallelism 

Domains 

config const m = 4, n = 8; 

 

var D: domain(2) = {1..m, 1..n}; 

 

var Inner: subdomain(D) = {2..m-1, 2..n-1}; 

D 

Inner 

66 



Chapel supports several types of domains (index 

sets) : 
 

 

 

 

 

 

Chapel Domain Types 

67 

dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 



All Chapel domain types support domain maps 
 

 

 

 

 

 

Chapel Array Types 
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dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 



Chapel Domain/Array Operations 
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● Data Parallel Iteration (as well as serial and coforall) 

 
 

 

● Array Slicing; Domain Algebra 

 

 

 

 

● Promotion of Scalar Operators and Functions 

 
 

 

● And many others:  indexing, reallocation, set 
operations, remapping, aliasing, queries, … 

4.3 4.4 4.1 4.2 4.5 4.6 4.7 4.8 

1.3 1.4 1.1 1.2 1.5 1.6 1.7 1.8 

2.3 2.4 2.1 2.2 2.5 2.6 2.7 2.8 

3.3 3.4 3.1 3.2 3.5 3.6 3.7 3.8 

A = forall (i,j) in D do (i + j/10.0); 

A[InnerD] = B[InnerD+(0,1)]; = 

A = B + alpha * C; A = exp(B, C); 



Notes on Forall Loops 
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forall a in A do 

  writeln(“Here is an element of A: ”, a); 

Typically 1 ≤ #Tasks << #Iterations) 

forall (a, i) in zip(A, 1..n) do 

  a = i/10.0; 

Forall-loops may be zippered, like for-loops 

• Corresponding iterations will match up 



Promotion Semantics 
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Promoted functions/operators are defined in terms of 
zippered forall loops in Chapel.  For example… 

 

    A = B; 
 

…is equivalent to: 
   

    forall (a,b) in zip(A,B) do 

      a = b; 



Impact of Zippered Promotion Semantics 
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Whole-array operations are implemented element-wise…  
 

   A = B + alpha * C;  ⇒ forall (a,b,c) in (A,B,C) do 

                             a = b + alpha * c; 

  

…rather than operator-wise. 
 

     A = B + alpha * C;  ⇒   T1 = alpha * C; 
                              A = B + T1; 

  

⇒ No temporary arrays required by semantics 
 ⇒ No surprises in memory requirements 

 ⇒ Friendlier to cache utilization 

 

⇒ Differs from traditional array language semantics 
 

 

A = A[0..n-1] + A[2..n+1]; forall (a1, a2, a3) 

  in (A, A[0..n-1], A[2..n+1]) do 

    a1 = a2 + a3; 

⇒ 

Read/write race! 



Data Parallelism Implementation Qs 
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Q1: How are arrays laid out in memory? 
● Are regular arrays laid out in row- or column-major order?  Or…? 

 

 
● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?) 

 
 

Q2: How are arrays stored by the locales? 
● Completely local to one locale?  Or distributed? 

● If distributed… In a blocked manner?  cyclically?  block-cyclically?  

recursively bisected?  dynamically rebalanced?  …? 

 
dynamically

…? 

…? 



Data Parallelism Implementation Qs 
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Q1: How are arrays laid out in memory? 
● Are regular arrays laid out in row- or column-major order?  Or…? 

 

 
● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?) 

 
 

Q2: How are arrays stored by the locales? 
● Completely local to one locale?  Or distributed? 

● If distributed… In a blocked manner?  cyclically?  block-cyclically?  

recursively bisected?  dynamically rebalanced?  …? 

 
dynamically

…? 

…? 
A: Chapel’s domain maps are designed to give the 

user full control over such decisions 
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Domain Maps 
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Domain maps are “recipes” that instruct the compiler how to 
map the global view of a computation… 

= 

+ 

α • 

Locale 0 

= 

+ 

α • 

= 

+ 

α • 

= 

+ 

α • 

Locale 1 Locale 2 

 …to the target locales’ memory and processors: 

A = B + alpha * C; 



STREAM Triad: Chapel 
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const ProblemSpace = {1..m}; 

 

  

                   

 
var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 



STREAM Triad: Chapel (multicore) 
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const ProblemSpace = {1..m}; 

  

                   

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 

No domain map specified => use default layout 
• current locale owns all indices and values 

• computation will execute using local processors only 



STREAM Triad: Chapel (multilocale, blocked) 
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const ProblemSpace = {1..m} 

                       dmapped Block(boundingBox={1..m}); 

                   

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 

boundingBox 



STREAM Triad: Chapel (multilocale, cyclic) 
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const ProblemSpace = {1..m} 

                       dmapped Cyclic(startIdx=1); 

                  

 
 

var A, B, C: [ProblemSpace] real; 

 
 

 

 

A = B + alpha * C; 

= 

α· 
+ 

startIdx = 1 



1 

Sample Distributions: Block and Cyclic 
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var Dom = {1..4, 1..8} dmapped Block( {1..4, 1..8} ); 

1 8 

4 

distributed to 

var Dom = {1..4, 1..8} dmapped Cyclic( startIdx=(1,1) ); 

L0 L1 L2 L3 

L4 L5 L6 L7 

1 
1 

8 

4 

L0 L1 L2 L3 

L4 L5 L6 L7 
distributed to 

1 



All Chapel domain types support domain maps 
 

 

 

 

 

 

Domain Map Types 
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dense strided sparse 

unstructured 

“steve” 
“lee” 
“sung” 
“david” 
“jacob” 
“albert” 
“brad” 

associative 



Chapel’s Domain Map Philosophy 
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1. Chapel provides a library of standard domain maps 
● to support common array implementations effortlessly 
 

2. Advanced users can write their own domain maps in 
Chapel 

● to cope with shortcomings in our standard library 

 
 

 

 

 

 

 

 

 

3. Chapel’s standard domain maps are written using the 
same end-user framework 

● to avoid a performance cliff between “built-in” and user-defined cases 
 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Locality Control 



Domain Map Descriptors 
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Represents: a domain 
map value 

 

Generic w.r.t.: index type 
 

State: the domain map’s 
representation 

 

Typical Size: Θ(1) 
 

Required Interface: 
● create new domains 

Domain Map 
 

Represents: a domain   
 

Generic w.r.t.: index type 
 

State: representation of 

index set 
 

Typical Size: Θ(1) → 

Θ(numIndices) 
 

Required Interface: 
• create new arrays 

• queries: size, members 

• iterators: serial, parallel 

• domain assignment 

• index set operations 
 

Domain 
 

Represents: an array 
 

Generic w.r.t.: index type,  

element type  
 

State: array elements 
 

Typical Size: 

Θ(numIndices) 
 

Required Interface: 
• (re-)allocation of elements 

• random access 

• iterators: serial, parallel 

• slicing, reindexing, aliases 

• get/set of sparse “zero” 

values 

 

Array 



HPCC Stream Performance on Jaguar (XT5) 

85 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

12 24 48 96 192 384 768 1536 3072

P
e
fo

rm
a
n

c
e
 (

G
B

/s
) 

cores 

MPI vs. Chapel STREAM Triad on Jaguar 

Chapel EP

Chapel Global

MPI EP



For More Information on Domain Maps 
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HotPAR’10: User-Defined Distributions and Layouts in Chapel:   
Philosophy and Framework                        
Chamberlain, Deitz, Iten, Choi; June 2010 

 

CUG 2011: Authoring User-Defined Domain Maps in Chapel 
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011 

 

Chapel release: 

● Technical notes detailing domain map interface for programmers:  

       $CHPL_HOME/doc/technotes/README.dsi 

● Current domain maps: 

       $CHPL_HOME/modules/dists/*.chpl 

layouts/*.chpl 

internal/Default*.chpl 



Domain Maps: Next Steps 
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● More advanced uses of domain maps: 

● Dynamically load balanced domains/arrays 

● Resilient data structures 

● in situ interoperability with legacy codes 

● out-of-core computations 

 

● Further compiler optimization via optional interfaces 

● particularly communication idioms (stencils, reductions, 
…) 



More Data Parallelism Implementation Qs 
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Q1: How are forall loops implemented? 
 

forall i in B.domain do B[i] = i/10.0; 
 

● How many tasks?  Where do they execute? 

● How is the iteration space divided between the tasks? 

A B C 

Q2: How are parallel zippered loops implemented? 
forall (a,b,c) in zip(A,B,C) do 

  a = b + alpha * c; 

 Particularly given that the iterands might have incompatible 

distributions, memory layouts, and parallelization strategies 
 



More Data Parallelism Implementation Qs 
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Q1: How are forall loops implemented? 
 

forall i in B.domain do B[i] = i/10.0; 
 

● How many tasks?  Where do they execute? 

● How is the iteration space divided between the tasks? 

A B C 

Q2: How are parallel zippered loops implemented? 
forall (a,b,c) in zip(A,B,C) do 

  a = b + alpha * c; 

 Particularly given that the iterands might have incompatible 

distributions, memory layouts, and parallelization strategies 
 

A: Chapel’s leader-follower iterators are designed to 
give users full control over such decisions 

 



Leader-Follower Iterators: Definition 

90 

● Chapel defines all forall loops in terms of leader-
follower iterators: 
● leader iterators: create parallelism, assign iterations to tasks 

● follower iterators: serially execute work generated by leader 
 

 

 
● Given… 
     forall (a,b,c) in zip(A,B,C) do 

       a = b + alpha * c; 

…A is defined to be the leader 

…A, B, and C are all defined to be followers 



Leader-Follower Iterators: Rewriting 

91 

 

Conceptually, the Chapel compiler translates: 
 

     forall (a,b,c) in zip(A,B,C) do 

       a = b + alpha * c; 

 

 

into: 
 

     inlined A.lead() iterator, which creates tasks that yield work { 

     for (a,b,c) in zip(A.follow(work), 

                        B.follow(work) 

                        C.follow(work)) do 

       a = b + alpha * c; 

   } 

 



Writing Leaders and Followers 
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Leader iterators are defined using task/locality features: 
iter BlockArr.lead() { 

  coforall loc in Locales do 

    on loc do 

      coforall tid in here.numCores do 

        yield computeMyChunk(loc.id, tid); 

} 

 

 

 

 
 

Follower iterators simply use serial features: 
 

iter BlockArr.follow(work) { 

  for i in work do 

    yield accessElement(i); 

} 

Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



Leader-Follower Iterators: Rewriting 
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● Putting it all together, the following loop… 
 

forall (a,b,c) in zip(A,B,C) do 

  a = b + alpha * c; 
 

…would get rewritten by the Chapel compiler as: 

  coforall loc in Locales do 

     on loc do 

       coforall tid in here.numCores { 

         const work = computeMyChunk(loc.id, tid); 

         for (a,b,c) in zip(A.follow(work),  

                            B.follow(work) 

                            C.follow(work)) do 

           a = b + alpha * c;         

       } 

 
= 

α· 
+ 

= 

α· 
+ 



Controlling Data Parallelism 
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Q: “What if I don’t like the approach implemented by an 
array’s leader iterator?” 

 

A: Several possibilities… 



Controlling Data Parallelism 

95 

 

forall (b,a,c) in zip(B,A,C) do 

  a = b + alpha * c; 

                                 

 

                               

 

Make something else the leader. 



Controlling Data Parallelism 
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const ProblemSize = {1..n} dmapped BlockCyclic(start=1,  

                                         blocksize=64); 

var A, B, C: [ProblemSize] real; 

 

forall (a,b,c) in zip(A,B,C) do 

  a = b + alpha * C; 

                               

 

Change the array’s default leader by changing its  domain 

map (perhaps to one that you wrote yourself). 



Controlling Data Parallelism 

97 

 

 

forall (a,b,c) in zip(dynamic(A, chunk=64), B, C) do 

  a = b + alpha * c; 

                               

 

Explicitly invoke a standalone leader iterator 

(perhaps one that you wrote yourself). 



Guided Iteration: Chapel vs. OpenMP 
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Chapel Adaptive vs. OpenMP Guided 
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Chapel loops can be competitive with OpenMP 
● OpenMP’s parallel schedules are baked into the 

language/compiler/runtime 

● Chapel’s are specified in the language at the user level  
● This permits us to write more advanced iterators like work-stealing 

Leader/Follower Experimental Takeaways 

100 



For More Information on Leader-Follower Iterators 
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PGAS 2011: User-Defined Parallel Zippered Iterators in 
Chapel, Chamberlain, Choi, Deitz, Navarro; 
October 2011 

 

Chapel release: 

● Primer example introducing leader-follower iterators: 

● examples/primers/leaderfollower.chpl 

● Library of dynamic leader-follower range iterators: 

● AdvancedIters section in language specification 



Summary of this Domain Maps Section 
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● Chapel avoids locking crucial implementation decisions 
into the language specification 

● local and distributed array implementations 

● parallel loop implementations 
 

● Instead, these can be… 

…specified in the language by an advanced user 

…swapped in and out with minimal code changes 
 

● The result separates the roles of domain scientist, parallel 
programmer, and implementation cleanly 

 



Outline 
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Motivation 

Chapel Background and Themes 

Tour of Chapel Concepts and Implementation 

Project Status and Next Steps 



Implementation Status -- Version 1.7.0 (Apr 2013) 
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Overall Status: 

● Most features work at a functional level 
● some features need to be improved or re-implemented (e.g., OOP) 

● Many performance optimizations remain 
● particularly for distributed memory (multi-locale) execution 

 

This is a good time to: 

● Try out the language and compiler 

● Use Chapel for non-performance-critical projects 

● Give us feedback to improve Chapel 

● Use Chapel for parallel programming education 



Chapel and Education 
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● When teaching parallel programming, I like to cover: 
● data parallelism 

● task parallelism 

● concurrency 

● synchronization 

● locality/affinity 

● deadlock, livelock, and other pitfalls 

● performance tuning 

● … 
 

● I don’t think there’s been a good language out there… 
● for teaching all of these things 

● for teaching some of these things well at all 

● until now: We believe Chapel can potentially play a crucial role here 

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/


The Cray Chapel Team (Summer 2012) 
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Chapel Community 
(see chapel.cray.com/collaborations.html for further details and possible collaboration areas) 
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● Lightweight Tasking using Qthreads: Sandia (Dylan Stark, et al.) 

● paper at CUG, May 2011 

● Application Studies: LLNL (Rob Neely, Bert Still, Jeff Keasler), Sandia (Richard Barrett, et al.) 

● I/O, regexp, LLVM back-end, etc.: LTS (Michael Ferguson, et al.) 

● Parallel File I/O, Bulk-Copy Opt: U Malaga (Rafael Asenjo, Maria Angeles Navarro, et al.) 

● papers at ParCo, Aug 2011; SBAC-PAD, Oct 2012 

● Interoperability via Babel/BRAID: LLNL/Rice (Tom Epperly, Shams Imam, et al.) 

● paper at PGAS, Oct 2011 

● Futures/Task-based Parallelism: Rice (Vivek Sarkar, Shams Imam, Sagnak Tasirlar, et al.) 

● Runtime Communication Optimization: LBNL (Costin Iancu, et al.) 

● Energy and Resilience: ORNL (David Bernholdt, et al.) 

● Interfaces/Generics/OOP: CU Boulder (Jeremy Siek, et al.) 

● Lightweight Tasking using MassiveThreads: U Tokyo (Kenjiro Taura, Jun Nakashima) 

● CPU-accelerator Computing: UIUC (David Padua, Albert Sidelnik, Maria Garzarán) 

● paper at IPDPS, May 2012 

● Model Checking and Verification:  U Delaware (Stephen Siegel, T. Zirkel, T. McClory) 

● Chapel-MPI Compatibility: Argonne (Pavan Balaji, Rajeev Thakur, Rusty Lusk) 

(and several others as well…) 

http://chapel.cray.com/collaborations.html


Chapel: the next five years 
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● Harden Prototype to Production-grade 
● Performance Optimizations 

● Add/Improve Lacking Features 

 

● Target more complex/modern compute node types 
● e.g., CPU+GPU, Intel MIC, … 

 

● Continue to grow the user and developer communities 
● including nontraditional circles: desktop parallelism, “big data” 

● transition Chapel from Cray-controlled to community-governed 

 

● Grow the team at Cray 
● four positions open at present (manager, SW eng, build/test/release) 

 

 



Summary 
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Higher-level programming models can help insulate 
algorithms from parallel implementation details 

● yet, without necessarily abdicating control 

● Chapel does this via its multiresolution design 
● Here, we saw it in domain maps and leader-follower iterators 

● These avoid locking crucial performance decisions into the 
language 

 

We believe Chapel can greatly improve productivity 

…for current and emerging HPC architectures 

…and for the growing need for parallel programming in the 
mainstream 

 

 

 



For More Information: Online Resources 
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Chapel project page: http://chapel.cray.com  

● overview, papers, presentations, language spec, … 

 

Chapel SourceForge page: https://sourceforge.net/projects/chapel/ 

● release downloads, public mailing lists, code repository, … 

 

Mailing Aliases: 

● chapel_info@cray.com: contact the team at Cray  

● chapel-users@lists.sourceforge.net: user-oriented discussion list 

● chapel-developers@lists.sourceforge.net: developer discussion 

● chapel-education@lists.sourceforge.net: educator discussion 

● chapel-bugs@lists.sourceforge.net: public bug forum 

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/


For More Information: Suggested Reading 

11
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Overview Papers: 
● The State of the Chapel Union [slides], Chamberlain, Choi, Dumler, 

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013. 
● a high-level overview of the project summarizing the HPCS period 

 

● A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A 
Brief Overview of Parallel Programming Models, edited by Pavan 
Balaji, to be published by MIT Press in 2014). 
● a more detailed overview of Chapel’s history, motivating themes, features 

 

Blog Articles: 
● [Ten] Myths About Scalable Programming Languages, Chamberlain.  

IEEE Technical Committee on Scalable Computing (TCSC) Blog, 
(https://www.ieeetcsc.org/activities/blog/), April-November 2012. 
● a series of technical opinion pieces designed to combat standard 

arguments against the development of high-level parallel languages 

 

http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/presentations/ChapelForCUG13-final.pdf
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/


But wait, what about those next-gen processors? 

11
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Intel MIC 

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/, 

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/,    http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf  

Nvidia Echelon Tilera Tile-Gx  

AMD Trinity 

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
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Fortran C/C++ MPI OpenMP UPC 

performance ✓ ✓ ✓ ✓ ~ 

portability (to next-gen) ✓ ✓ ~ ~ ~ 

programmability X X X ~ X 

data parallelism ~ X X ~ ~ 

task parallelism X X X ~ X 

nested parallelism X X X ~ X 

locality control X X ~ X ~ 

resilience X X ~ X X 

energy-awareness X X X X X 

user-extensibility X X X X X 

Next-Gen Scorecard for HPC Programming 
Models 
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performance ~ 

portability (to next-gen) ~* 

programmability ✓ 

data parallelism ✓ 

task parallelism ✓ 

nested parallelism ✓ 

locality control ~* 

resilience X 

energy-awareness X 

user-extensibility ✓ 

Chapel: Well-Positioned for Next-Gen 
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* (The work in this section is designed to address these items)  



Locales Today 

11
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Concept: 

● Today, Chapel supports a 1D array of locales 
● users can reshape/slice to suit their computation’s needs 
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Locales Today 
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Concept: 

● Today, Chapel supports a 1D array of locales 
● users can reshape/slice to suit their computation’s needs 

 

 

 

 

 

 

● Apart from queries, no further visibility into locales 
● no mechanism to refer to specific NUMA domains, processors, memories, … 

● assumption: compiler, runtime, OS, HW can handle intra-locale concerns 

● Supports horizontal (inter-node) locality well 
● but not vertical (intra-node) 
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Current Work: Hierarchical Locales 
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Concept: 

● Support locales within locales to describe architectural  
sub-structures within a node 

 

 

 

 

 

 

● As with traditional locales, on-clauses and domain maps 
will be used to map tasks and variables to a sub-locale’s 
memory and processors 

● Locale structure is defined using Chapel code 
● permits architectural descriptions to be specified in-language 

● continues the multiresolution philosophy 

● introduces a new Chapel role: architectural modeler 
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Sublocales: Tiled Processor Example 
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class locale: AbstractLocale { 

  const xt = 6, yt = xTiles; 

  const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …; 

  …memory interface… 

  …tasking interface… 

} 

 

class tiledLoc: AbstractLocale { 

  …memory interface… 

  …tasking interface… 

} 

Tilera Tile-Gx  



Sublocales: Hybrid Processor Example 
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class locale: AbstractLocale { 

  const numCPUs = 2, numGPUs = 2; 

  const cpus: [0..#numCPUs] cpuLoc = …; 

  const gpus: [0..#numGPUs] gpuLoc = …; 

  …memory interface… 

  …tasking interface… 

} 
 

class cpuLoc: AbstractLocale { … } 
 

class gpuLoc: AbstractLocale { 

  …sublocales for different 

     memory types, thread blocks…? 

  …memory, tasking interfaces… 

} 



Sample tasking/memory interface 
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Memory Interface: 
proc AbstractLocale.malloc(size_t size) { … } 

proc AbstractLocale.realloc(size_t size) { … } 

proc AbstractLocale.free(size_t size) { … } 

… 
 

Tasking Interface: 
proc AbstractLocale.taskBegin(…) { … } 

proc AbstractLocale.tasksCobegin(…) { … } 

proc AbstractLocale.tasksCoforall(…) { … } 

… 

 

In practice, we expect the guts of these to typically be 
implemented via calls out to external C routines 



Chapel Compiler Architecture 
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…
 

currently, the runtime interface 

is hard-coded into the compiler 

in this work, the interface 

moves to module code 

(possibly written by a user) 



Policy Questions 

12
5 

Memory Policy Questions: 

● If a sublocale is out of memory, what happens? 
● out-of-memory error? 

● allocate elsewhere?  sibling?  parent?  somewhere else? (on-node v. off?) 

● What happens on locales with no memory? 
● illegal?  allocate on sublocale?  somewhere else? 

 

Tasking Policy Questions: 

● Can a task that’s placed on a specific sublocale migrate? 
● to where?  sibling?  parent?  somewhere else? 

● What happens on locales with no processors? 
● illegal?  allocate on sublocale?  parent locale? 

● using what heuristic?  sublocale[0]?  round-robin?  dynamic load balance? 
 

Goal: Any of these policies should be possible 



Tasking Policy Example 
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Q: What happens to tasks on locales with no (direct) 
processors? 

e.g., a locale that serves as a container for other sublocales 
 

 

 

 

 

on “multicore NUMA Node” do begin foo() 



Tasking Policy Example 
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Q: What happens to tasks on locales with no (direct) 
processors? 

e.g., a locale that serves as a container for other sublocales 
 

A1: Run on a fixed or arbitrary sublocale? 
 

proc NUMANode.taskBegin(…) { 

  numaDomain[0].taskBegin(…); 

} 

 



Tasking Policy Example 
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Q: What happens to tasks on locales with no (direct) 
processors? 

e.g., a locale that serves as a container for other sublocales 
 

A2: Schedule round-robin? 
 

proc NUMANode.taskBegin(…) { 

  const subloc = (nextSubLoc.fetchAdd(1))%numSubLocs; 

  numaDomain[subloc].taskBegin(…); 

} 
 

class NUMANode { 

  … 

  var nextSubLoc: atomic int; 

  … 

} 

 



Tasking Policy Example 
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Q: What happens to tasks on locales with no (direct) 
processors? 

e.g., a locale that serves as a container for other sublocales 
 

A3: Dynamically Load Balance? 
 

proc NUMANode.taskBegin(…) { 

  numaDomain[getBestSubLoc()].taskBegin(…); 

} 
 

proc NUMANode.getBestSubLoc() { 

  const (numTasks, subloc) 

          = minloc reduce (numaDomain.numTasks(),  

                           0..#numSubLocs); 

  return subloc; 

} 



Another Tasking Policy Example 
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Q: What happens to tasks on locales with no processors? 

e.g., a sublocale representing a memory resource 
 

 

 

 

 

locale 

CPU 

sublocale 

 

 
GPU sublocale 

C C D E 

on “Texture Memory” do begin foo() 



Another Tasking Policy Example 
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Q: What happens to tasks on locales with no processors? 

e.g., a sublocale representing a memory resource 
 

A1: Throw an error? 
 

proc TextureMemLocale.taskBegin(…) { 

  halt(“You can’t run tasks on texture memory!”); 

} 

 

Downside: potential user inconvenience: 
 

on Locales[2].gpuLoc.texMem do var X: [1..n, 1..n] int; 

on X[i,j] do begin refine(X); 



Another Tasking Policy Example 
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Q: What happens to tasks on locales with no processors? 

e.g., a sublocale representing a memory resource 
 

A2: Defer to parent? 
 

proc TextureMemLocale.taskBegin(…) { 

  parentLocale.taskBegin(…); 

} 



Another Tasking Policy Example 
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Q: What happens to tasks on locales with no processors? 

e.g., a sublocale representing a memory resource 
 

A3: Or perhaps just run directly near memory? 
 

proc TextureMemLocale.taskBegin(…) { 

  extern proc chpl_task_create_GPU_Task(…); 

  chpl_task_create_GPU_Task(…); 

} 

 



Contrasts with Related Work 

13
4 

Related work: 

● Sequoia (Aiken et al., Stanford) 

● Hierarchical Place Trees (Sarkar et al., Rice) 
 

Differences: 

● Hierarchy only impacts locality, not semantics as in 
Sequoia 
● analogous to PGAS languages vs. distributed memory 

● No restrictions as to what HW must live in what node 
● e.g., no “processors must live in leaf nodes” requirement 

● Does not impose a strict abstract tree structure 
● e.g., const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …; 

● User-specifiable concept 
● convenience of specifying within Chapel 

● policies for mapping to HW can be defined in-language 



Hierarchical Locales: Design Challenges 
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Portability: Chapel code that refers to sub-locales can cause 
problems on systems with a different model 

Mitigation Strategies 
● Well-designed domain maps should buffer many typical users from 

these challenges 

● We anticipate identifying a few broad classes of locales that 
characterize broad swaths of machines “well enough” 

● More advanced runtime designs and compiler work could help guard 
most task-parallel users from this level of detail 

● Not a Chapel-specific challenge, fortunately 
 

 

Code Generation: Dealing with targets for which C is not the 
language of choice (e.g., CUDA) 

 
 



Summary: Hierarchical Locales 
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Emerging compute nodes are presenting challenges 
 

Chapel’s support for parallelism and locality positions it 
better than current HPC languages 

● Hierarchical locales extend it to support intra-node concerns 
 

Hierarchical Locales have some attractive properties 

● Defined in Chapel, potentially by users 

● Support user-level policy decisions 

● Removes hard-coding of runtime interfaces in compiler 
 

Specification and implementation effort is underway 



Longer-term Directions 
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Represent physical machine as a hierarchical locale and 
represent user’s locales as a slice of that hierarchy 

● for topology-aware programming 

● for jobs with dynamically-changing resource requirements 
● due to changing job needs 

● or failing HW 

 

Combine with containment domains (Erez, UT Austin) 

● the two concepts seem well-matched for each other 
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