
Multiresolution Global-View

Programming in Chapel

Brad Chamberlain, Chapel Team, Cray Inc.

Argonne Training Program on Extreme-Scale Computing

August 1st, 2013

Sustained Performance Milestones

• Static finite element analysis

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

1 EF – ~2018: Cray ____; ~10,000,000

Processors

2

Sustained Performance Milestones

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (Message Passing Interface)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC?

1 EF – ~2018: Cray ____; ~10,000,000

Processors

3

Prototypical Next-Gen Processor Technologies

4

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

General Characteristics of These Architectures

5

● Increased hierarchy and/or sensitivity to locality

● Potentially heterogeneous processor/memory types

⇒ Next-gen programmers will have a lot more to

think about at the node level than in the past

Sustained Performance Milestones

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (Message Passing Interface)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC?

1 EF – ~2018: Cray ____; ~10,000,000

Processors Or, perhaps

something

completely

different?
6

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures:

STREAM Triad: a trivial parallel computation

7

=

α

+

A

B

C

·

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel:

STREAM Triad: a trivial parallel computation

8

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·

α

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory):

STREAM Triad: a trivial parallel computation

9

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

Given: m-element vectors A, B, C

Compute: i  1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory multicore):

STREAM Triad: a trivial parallel computation

10

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

STREAM Triad: MPI

11

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

STREAM Triad: MPI+OpenMP

12

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

STREAM Triad: MPI+OpenMP vs. CUDA

13

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

Why so many programming models?

14

HPC has traditionally given users…

…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

…ones that support only a single type of parallelism

Examples:

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

(“Glad I’m not an HPC Programmer!”)

15

A Possible Reaction:

“This is all well and good for HPC users, but I’m a mainstream
desktop programmer, so this is all academic for me.”

The Unfortunate Reality:

● Performance-minded mainstream programmers will
increasingly deal with parallelism

● And, as chips become more complex, locality too

Rewinding a few slides…

16

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

STREAM Triad: Chapel

17

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

Philosophy: Good language design can tease details of locality and

parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

Outline

18

Motivation

Chapel Background and Themes

● Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

What is Chapel?

19

● An emerging parallel programming language
● Design and development led by Cray Inc.

● in collaboration with academia, labs, industry

● Initiated under the DARPA HPCS program

● Overall goal: Improve programmer productivity
● Improve the programmability of parallel computers

● Match or beat the performance of current programming models

● Support better portability than current programming models

● Improve the robustness of parallel codes

● A work-in-progress

Chapel's Implementation

20

● Being developed as open source at SourceForge

● Licensed as BSD software

● Target Architectures:

● Cray architectures

● multicore desktops and laptops

● commodity clusters

● systems from other vendors

● in-progress: CPU+accelerator hybrids, manycore, …

Compiling Chapel

21

Chapel

Source

Code

Chapel

Executable

Standard

Modules

(in Chapel)

chpl

Chapel Compiler Architecture

22

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

Motivating Chapel Themes

23

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC ↔ Mainstream Language Gap

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP/pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

Instruction-level vectors/threads Chapel iteration

GPU/accelerator Chapel SIMD function/task

1) General Parallel Programming

24

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
● Types: machines, nodes, cores, instructions

2) Global-View Abstractions

25

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

(

+

=

)/2

Local-View

2) Global-View Abstractions

26

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

Local-View

2) Global-View Abstractions

27

In code: “Apply a 3-Point Stencil to a vector”

Global-View

proc main() {

 var n = 1000;

 var A, B: [1..n] real;

 forall i in 2..n-1 do

 B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

 var n = 1000;

 var p = numProcs(),

 me = myProc(),

 myN = n/p,

 var A, B: [0..myN+1] real;

 if (me < p-1) {

 send(me+1, A[myN]);

 recv(me+1, A[myN+1]);

 }

 if (me > 0) {

 send(me-1, A[1]);

 recv(me-1, A[0]);

 }

 forall i in 1..myN do

 B[i] = (A[i-1] + A[i+1])/2;

}

Local-View (SPMD)

Bug: Refers to uninitialized values at ends of A

Assumes p divides n

2) Global-View Abstractions

28

In code: “Apply a 3-Point Stencil to a vector”

proc main() {

 var n = 1000;

 var A, B: [1..n] real;

 forall i in 2..n-1 do

 B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

 var n = 1000;

 var p = numProcs(),

 me = myProc(),

 myN = n/p,

 myLo = 1,

 myHi = myN;

 var A, B: [0..myN+1] real;

 if (me < p-1) {

 send(me+1, A[myN]);

 recv(me+1, A[myN+1]);

 } else

 myHi = myN-1;

 if (me > 0) {

 send(me-1, A[1]);

 recv(me-1, A[0]);

 } else

 myLo = 2;

 forall i in myLo..myHi do

 B[i] = (A[i-1] + A[i+1])/2;

}

Communication becomes

geometrically more complex

for higher-dimensional arrays

Global-View Local-View (SPMD)

2) Global-View Programming: A Final Note

29

● A language may support both global- and local-view
programming — in particular, Chapel does

proc main() {

 coforall loc in Locales do

 on loc do

 MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(myImageID, numImages) {

 ...

}

3) Multiresolution Design: Motivation

30

MPI

OpenMP

Pthreads

Target Machine

Low-Level

Implementation

Concepts

“Why is everything so tedious/difficult?”

“Why don’t my programs port trivially?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level

Abstractions

3) Multiresolution Design

31

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity

● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower

● permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

4) Control over Locality/Affinity

32

Consider:

● Scalable architectures package memory near processors

● Remote accesses take longer than local accesses

Therefore:

● Placement of data relative to tasks affects scalability

● Give programmers control of data and task placement

Note:

● Over time, we expect locality to matter more and more
within the compute node as well

Partitioned Global Address Space Languages

33

(Or perhaps: partitioned global namespace languages)

abstract concept:

● support a shared namespace on distributed memory
● permit any parallel task to access any lexically visible variable

● doesn’t matter if it’s local or remote

shared name-/address space

private

space 0

private

space 1

private

space 2

private

space 3

private

space 4

Partitioned Global Address Space Languages

34

(Or perhaps: partitioned global namespace languages)

abstract concept:

● support a shared namespace on distributed memory
● permit any parallel task to access any lexically visible variable

● doesn’t matter if it’s local or remote

● establish a strong sense of ownership
● every variable has a well-defined location

● local variables are cheaper to access than remote ones

private

space 0

private

space 1

private

space 2

private

space 3

private

space 4

partitioned shared name-/address space

Traditional PGAS Languages

35

PGAS founding members: Co-Array Fortran, UPC, Titanium
● extensions to Fortran, C, and Java, respectively

● details vary, but potential for:
● arrays that are decomposed across compute nodes

● pointers that refer to remote objects

● note that earlier languages could arguably also be considered PGAS,
but the term hadn’t been coined yet

PGAS: What’s in a Name?

36

MPI

OpenMP

 T
ra

d
.
P

G
A

S

L
a
n
g
u
a
g
e
s

Chapel

memory

model

CAF

UPC

Titanium

PGAS

distributed

memory

shared

memory

PGAS

programming

model

execution

model

global-view

parallelism

global-view

parallelism

 shared memory

multithreaded

distributed

memory

multithreaded

cooperating executables

(often SPMD in practice)

Single Program, Multiple Data

(SPMD)

co-arrays

1D block-cyc arrays/

distributed pointers

class-based arrays/

distributed pointers

co-array refs

implicit

method-based

N/A

implicit

APIs

shared

memory

arrays

manually

fragmented

global-view

distributed

arrays

communication

data

structures

Traditional PGAS Languages

37

e.g., Co-Array Fortran, UPC
+ support a shared namespace, like shared-memory

+ support a strong sense of ownership and locality
• each variable is stored in a particular memory segment

• tasks can access any visible variable, local or remote

• local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler to use best mechanisms available

Traditional PGAS Languages

38

e.g., Co-Array Fortran, UPC
– restricted to SPMD programming and execution models

– data structures not as flexible/rich as one might like

– retain many of the downsides of shared-memory
● error cases, memory consistency models

5) Reduce HPC ↔ Mainstream Language Gap

39

Consider:
● Students graduate with training in Java, Matlab, Perl, Python
● Yet HPC programming is dominated by Fortran, C/C++, MPI

We’d like to narrow this gulf with Chapel:

● to leverage advances in modern language design
● to better utilize the skills of the entry-level workforce...
● ...while not alienating the traditional HPC programmer

● e.g., support object-oriented programming, but make it optional

Outline

40

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Static Type Inference

41

const pi = 3.14, // pi is a real

 coord = 1.2 + 3.4i, // coord is a complex…

 coord2 = pi*coord, // …as is coord2

 name = “brad”, // name is a string

 verbose = false; // verbose is boolean

proc addem(x, y) { // addem() has generic arguments

 return x + y; // and an inferred return type

}

var sum = addem(1, pi), // sum is a real

 fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

(4.14, bradford)

Range Types and Algebra

42

const r = 1..10;

printVals(r # 3);

printVals(r by 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

printVals(0.. #n);

proc printVals(r) {

 for i in r do

 write(r, “ “);

 writeln();

}

1 2 3

1 3 5 7 9

10 8 6 4 2

1 3 5

1 3

0 1 2 3 4 … n-1

Iterators

43

iter fibonacci(n) {

 var current = 0,

 next = 1;

 for 1..n {

 yield current;

 current += next;

 current <=> next;

 }

}

for f in fibonacci(7) do

 writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

 const tile = {0..#tilesize,

 0..#tilesize};

 for base in D by tilesize do

 for ij in D[tile + base] do

 yield ij;

}

for ij in tiledRMO({1..m, 1..n}, 2) do

 write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

Zippered Iteration

44

for (i,f) in zip(0..#n, fibonacci(n)) do

 writeln(“fib #”, i, “ is ”, f);

fib #0 is 0

fib #1 is 1

fib #2 is 1

fib #3 is 2

fib #4 is 3

fib #5 is 5

fib #6 is 8

…

Other Base Language Features

45

● tuple types and values

● rank-independent programming features

● interoperability features

● compile-time features for meta-programming
● e.g., compile-time functions to compute types, parameters

● OOP (value- and reference-based)

● argument intents, default values, match-by-name

● overloading, where clauses

● modules (for namespace management)

● …

Outline

46

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Task Parallelism: Begin Statements

47

Possible outputs:

// create a fire-and-forget task for a statement

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world

Task Parallelism: Cobegin Statements

48

// create a task per child statement

cobegin {

 producer(1);

 producer(2);

 consumer(1);

} // implicit join of the three tasks here

Task Parallelism: Coforall Loops

49

Sample output:

// create a task per iteration

coforall t in 0..#numTasks {

 writeln(“Hello from task ”, t, “ of ”, numTasks);

} // implicit join of the numTasks tasks here

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

Task Parallelism: Data-Driven Synchronization

50

1) atomic variables: support atomic operations (as in C++)
● e.g., compare-and-swap; atomic sum, mult, etc.

2) single-assignment variables: reads block until assigned

3) synchronization variables: store full/empty state
● by default, reads/writes block until the state is full/empty

Bounded Buffer Producer/Consumer Example

51

cobegin {

 producer();

 consumer();

}

// ‘sync’ types store full/empty state along with value

var buff$: [0..#buffersize] sync real;

proc producer() {

 var i = 0;

 for … {

 i = (i+1) % buffersize;

 buff$[i] = …; // writes block until empty, leave full

} }

proc consumer() {

 var i = 0;

 while … {

 i= (i+1) % buffersize;

 …buff$[i]…; // reads block until full, leave empty

} }

Other Task Parallel Features

52

Current:

● serial statements to conditionally squash parallelism

● sync statements to join dynamically generated tasks

Planned:

● task-private variables

● task teams to support
● collective operations (barriers, joins, reductions, etc.)

● thread scheduling policies

Outline

53

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

The Locale Type

54

Definition:

● Abstract unit of target architecture

● Supports reasoning about locality

● Capable of running tasks and storing variables
● i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

Defining Locales

55

● Specify # of locales when running Chapel programs

● Chapel provides built-in locale variables

● User’s main() begins executing on locale #0

% a.out --numLocales=8

config const numLocales: int = …;

const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7 Locales:

% a.out –nl 8

Locale Operations

56

● Locale methods support queries about the target system:

● On-clauses support placement of computations:

proc locale.physicalMemory(…) { … }

proc locale.numCores { … }

proc locale.id { … }

proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do

 writeln(“now on locale 1”);

writeln(“on locale 0 again”);

cobegin {

 on A[i,j] do

 bigComputation(A);

 on node.left do

 search(node.left);

}

Chapel and PGAS

57

● Chapel is PGAS, but unlike UPC/CAF, it’s not SPMD

 never think about “the other copies of the program”

 “global name-/address space” comes from lexical scoping
● rather than: “We’re all running the same program, so we must all have a

variable named x”

● as in traditional languages, each declaration yields one variable

● stored on locale where task executes, not everywhere/thread 0

Chapel and PGAS

58

var i: int;

i

Chapel and PGAS

59

var i: int;

on Locales[1] {

i

Chapel and PGAS

60

var i: int;

on Locales[1] {

 var j: int;

i j

Chapel and PGAS

61

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

i j

Chapel and PGAS

62

var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k: int;

 }

 }

}

i j k k k k k

Chapel and PGAS: Public vs. Private

63

How public a variable is depends only on scoping
● who can see it?

● who actually bothers to refer to it non-locally?
var i: int;

on Locales[1] {

 var j: int;

 coforall loc in Locales {

 on loc {

 var k = i + j;

 }

 }

}

i j k k k k k

i j

k k k k k

Other Locality Features

64

Planned:

● Locale-private variables

● Hierarchical locales for reasoning about intra-node locality
● (more on this at the end of the talk, time permitting)

Outline

65

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Domain:
● A first-class index set

● The fundamental Chapel concept for data parallelism

Domains

config const m = 4, n = 8;

var D: domain(2) = {1..m, 1..n};

var Inner: subdomain(D) = {2..m-1, 2..n-1};

D

Inner

66

Chapel supports several types of domains (index

sets) :

Chapel Domain Types

67

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

All Chapel domain types support domain maps

Chapel Array Types

68

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

Chapel Domain/Array Operations

69

● Data Parallel Iteration (as well as serial and coforall)

● Array Slicing; Domain Algebra

● Promotion of Scalar Operators and Functions

● And many others: indexing, reallocation, set
operations, remapping, aliasing, queries, …

4.3 4.4 4.1 4.2 4.5 4.6 4.7 4.8

1.3 1.4 1.1 1.2 1.5 1.6 1.7 1.8

2.3 2.4 2.1 2.2 2.5 2.6 2.7 2.8

3.3 3.4 3.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD+(0,1)]; =

A = B + alpha * C; A = exp(B, C);

Notes on Forall Loops

70

forall a in A do

 writeln(“Here is an element of A: ”, a);

Typically 1 ≤ #Tasks << #Iterations)

forall (a, i) in zip(A, 1..n) do

 a = i/10.0;

Forall-loops may be zippered, like for-loops

• Corresponding iterations will match up

Promotion Semantics

71

Promoted functions/operators are defined in terms of
zippered forall loops in Chapel. For example…

 A = B;

…is equivalent to:

 forall (a,b) in zip(A,B) do

 a = b;

Impact of Zippered Promotion Semantics

72

Whole-array operations are implemented element-wise…

 A = B + alpha * C; ⇒ forall (a,b,c) in (A,B,C) do

 a = b + alpha * c;

…rather than operator-wise.

 A = B + alpha * C; ⇒ T1 = alpha * C;
 A = B + T1;

⇒ No temporary arrays required by semantics
 ⇒ No surprises in memory requirements

 ⇒ Friendlier to cache utilization

⇒ Differs from traditional array language semantics

A = A[0..n-1] + A[2..n+1]; forall (a1, a2, a3)

 in (A, A[0..n-1], A[2..n+1]) do

 a1 = a2 + a3;

⇒

Read/write race!

Data Parallelism Implementation Qs

73

Q1: How are arrays laid out in memory?
● Are regular arrays laid out in row- or column-major order? Or…?

● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
● Completely local to one locale? Or distributed?

● If distributed… In a blocked manner? cyclically? block-cyclically?

recursively bisected? dynamically rebalanced? …?

dynamically

…?

…?

Data Parallelism Implementation Qs

74

Q1: How are arrays laid out in memory?
● Are regular arrays laid out in row- or column-major order? Or…?

● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
● Completely local to one locale? Or distributed?

● If distributed… In a blocked manner? cyclically? block-cyclically?

recursively bisected? dynamically rebalanced? …?

dynamically

…?

…?
A: Chapel’s domain maps are designed to give the

user full control over such decisions

Outline

75

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

● Project Status and Next Steps

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Domain Maps

76

Domain maps are “recipes” that instruct the compiler how to
map the global view of a computation…

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

 …to the target locales’ memory and processors:

A = B + alpha * C;

STREAM Triad: Chapel

77

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

STREAM Triad: Chapel (multicore)

78

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values

• computation will execute using local processors only

STREAM Triad: Chapel (multilocale, blocked)

79

const ProblemSpace = {1..m}

 dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

boundingBox

STREAM Triad: Chapel (multilocale, cyclic)

80

const ProblemSpace = {1..m}

 dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

startIdx = 1

1

Sample Distributions: Block and Cyclic

81

var Dom = {1..4, 1..8} dmapped Block({1..4, 1..8});

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

All Chapel domain types support domain maps

Domain Map Types

82

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

Chapel’s Domain Map Philosophy

83

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Advanced users can write their own domain maps in
Chapel

● to cope with shortcomings in our standard library

3. Chapel’s standard domain maps are written using the
same end-user framework

● to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

Domain Map Descriptors

84

Represents: a domain
map value

Generic w.r.t.: index type

State: the domain map’s
representation

Typical Size: Θ(1)

Required Interface:
● create new domains

Domain Map

Represents: a domain

Generic w.r.t.: index type

State: representation of

index set

Typical Size: Θ(1) →

Θ(numIndices)

Required Interface:
• create new arrays

• queries: size, members

• iterators: serial, parallel

• domain assignment

• index set operations

Domain

Represents: an array

Generic w.r.t.: index type,

element type

State: array elements

Typical Size:

Θ(numIndices)

Required Interface:
• (re-)allocation of elements

• random access

• iterators: serial, parallel

• slicing, reindexing, aliases

• get/set of sparse “zero”

values

Array

HPCC Stream Performance on Jaguar (XT5)

85

0

500

1000

1500

2000

2500

3000

3500

4000

4500

12 24 48 96 192 384 768 1536 3072

P
e
fo

rm
a
n

c
e
 (

G
B

/s
)

cores

MPI vs. Chapel STREAM Triad on Jaguar

Chapel EP

Chapel Global

MPI EP

For More Information on Domain Maps

86

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

● Technical notes detailing domain map interface for programmers:

 $CHPL_HOME/doc/technotes/README.dsi

● Current domain maps:

 $CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

Domain Maps: Next Steps

87

● More advanced uses of domain maps:

● Dynamically load balanced domains/arrays

● Resilient data structures

● in situ interoperability with legacy codes

● out-of-core computations

● Further compiler optimization via optional interfaces

● particularly communication idioms (stencils, reductions,
…)

More Data Parallelism Implementation Qs

88

Q1: How are forall loops implemented?

forall i in B.domain do B[i] = i/10.0;

● How many tasks? Where do they execute?

● How is the iteration space divided between the tasks?

A B C

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

 Particularly given that the iterands might have incompatible

distributions, memory layouts, and parallelization strategies

More Data Parallelism Implementation Qs

89

Q1: How are forall loops implemented?

forall i in B.domain do B[i] = i/10.0;

● How many tasks? Where do they execute?

● How is the iteration space divided between the tasks?

A B C

Q2: How are parallel zippered loops implemented?
forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

 Particularly given that the iterands might have incompatible

distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators are designed to
give users full control over such decisions

Leader-Follower Iterators: Definition

90

● Chapel defines all forall loops in terms of leader-
follower iterators:
● leader iterators: create parallelism, assign iterations to tasks

● follower iterators: serially execute work generated by leader

● Given…
 forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers

Leader-Follower Iterators: Rewriting

91

Conceptually, the Chapel compiler translates:

 forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

into:

 inlined A.lead() iterator, which creates tasks that yield work {

 for (a,b,c) in zip(A.follow(work),

 B.follow(work)

 C.follow(work)) do

 a = b + alpha * c;

 }

Writing Leaders and Followers

92

Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

 coforall loc in Locales do

 on loc do

 coforall tid in here.numCores do

 yield computeMyChunk(loc.id, tid);

}

Follower iterators simply use serial features:

iter BlockArr.follow(work) {

 for i in work do

 yield accessElement(i);

}

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Leader-Follower Iterators: Rewriting

93

● Putting it all together, the following loop…

forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

…would get rewritten by the Chapel compiler as:

 coforall loc in Locales do

 on loc do

 coforall tid in here.numCores {

 const work = computeMyChunk(loc.id, tid);

 for (a,b,c) in zip(A.follow(work),

 B.follow(work)

 C.follow(work)) do

 a = b + alpha * c;

 }

=

α·
+

=

α·
+

Controlling Data Parallelism

94

Q: “What if I don’t like the approach implemented by an
array’s leader iterator?”

A: Several possibilities…

Controlling Data Parallelism

95

forall (b,a,c) in zip(B,A,C) do

 a = b + alpha * c;

Make something else the leader.

Controlling Data Parallelism

96

const ProblemSize = {1..n} dmapped BlockCyclic(start=1,

 blocksize=64);

var A, B, C: [ProblemSize] real;

forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * C;

Change the array’s default leader by changing its domain

map (perhaps to one that you wrote yourself).

Controlling Data Parallelism

97

forall (a,b,c) in zip(dynamic(A, chunk=64), B, C) do

 a = b + alpha * c;

Explicitly invoke a standalone leader iterator

(perhaps one that you wrote yourself).

Guided Iteration: Chapel vs. OpenMP

98

Chapel Adaptive vs. OpenMP Guided

99

Chapel loops can be competitive with OpenMP
● OpenMP’s parallel schedules are baked into the

language/compiler/runtime

● Chapel’s are specified in the language at the user level
● This permits us to write more advanced iterators like work-stealing

Leader/Follower Experimental Takeaways

100

For More Information on Leader-Follower Iterators

10
1

PGAS 2011: User-Defined Parallel Zippered Iterators in
Chapel, Chamberlain, Choi, Deitz, Navarro;
October 2011

Chapel release:

● Primer example introducing leader-follower iterators:

● examples/primers/leaderfollower.chpl

● Library of dynamic leader-follower range iterators:

● AdvancedIters section in language specification

Summary of this Domain Maps Section

10
2

● Chapel avoids locking crucial implementation decisions
into the language specification

● local and distributed array implementations

● parallel loop implementations

● Instead, these can be…

…specified in the language by an advanced user

…swapped in and out with minimal code changes

● The result separates the roles of domain scientist, parallel
programmer, and implementation cleanly

Outline

10
3

Motivation

Chapel Background and Themes

Tour of Chapel Concepts and Implementation

Project Status and Next Steps

Implementation Status -- Version 1.7.0 (Apr 2013)

10
4

Overall Status:

● Most features work at a functional level
● some features need to be improved or re-implemented (e.g., OOP)

● Many performance optimizations remain
● particularly for distributed memory (multi-locale) execution

This is a good time to:

● Try out the language and compiler

● Use Chapel for non-performance-critical projects

● Give us feedback to improve Chapel

● Use Chapel for parallel programming education

Chapel and Education

10
5

● When teaching parallel programming, I like to cover:
● data parallelism

● task parallelism

● concurrency

● synchronization

● locality/affinity

● deadlock, livelock, and other pitfalls

● performance tuning

● …

● I don’t think there’s been a good language out there…
● for teaching all of these things

● for teaching some of these things well at all

● until now: We believe Chapel can potentially play a crucial role here

http://chapel.cray.com/education.html
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/
http://cs.washington.edu/education/courses/csep524/13wi/

The Cray Chapel Team (Summer 2012)

10
6

Chapel Community
(see chapel.cray.com/collaborations.html for further details and possible collaboration areas)

10
7

● Lightweight Tasking using Qthreads: Sandia (Dylan Stark, et al.)

● paper at CUG, May 2011

● Application Studies: LLNL (Rob Neely, Bert Still, Jeff Keasler), Sandia (Richard Barrett, et al.)

● I/O, regexp, LLVM back-end, etc.: LTS (Michael Ferguson, et al.)

● Parallel File I/O, Bulk-Copy Opt: U Malaga (Rafael Asenjo, Maria Angeles Navarro, et al.)

● papers at ParCo, Aug 2011; SBAC-PAD, Oct 2012

● Interoperability via Babel/BRAID: LLNL/Rice (Tom Epperly, Shams Imam, et al.)

● paper at PGAS, Oct 2011

● Futures/Task-based Parallelism: Rice (Vivek Sarkar, Shams Imam, Sagnak Tasirlar, et al.)

● Runtime Communication Optimization: LBNL (Costin Iancu, et al.)

● Energy and Resilience: ORNL (David Bernholdt, et al.)

● Interfaces/Generics/OOP: CU Boulder (Jeremy Siek, et al.)

● Lightweight Tasking using MassiveThreads: U Tokyo (Kenjiro Taura, Jun Nakashima)

● CPU-accelerator Computing: UIUC (David Padua, Albert Sidelnik, Maria Garzarán)

● paper at IPDPS, May 2012

● Model Checking and Verification: U Delaware (Stephen Siegel, T. Zirkel, T. McClory)

● Chapel-MPI Compatibility: Argonne (Pavan Balaji, Rajeev Thakur, Rusty Lusk)

(and several others as well…)

http://chapel.cray.com/collaborations.html

Chapel: the next five years

10
8

● Harden Prototype to Production-grade
● Performance Optimizations

● Add/Improve Lacking Features

● Target more complex/modern compute node types
● e.g., CPU+GPU, Intel MIC, …

● Continue to grow the user and developer communities
● including nontraditional circles: desktop parallelism, “big data”

● transition Chapel from Cray-controlled to community-governed

● Grow the team at Cray
● four positions open at present (manager, SW eng, build/test/release)

Summary

10
9

Higher-level programming models can help insulate
algorithms from parallel implementation details

● yet, without necessarily abdicating control

● Chapel does this via its multiresolution design
● Here, we saw it in domain maps and leader-follower iterators

● These avoid locking crucial performance decisions into the
language

We believe Chapel can greatly improve productivity

…for current and emerging HPC architectures

…and for the growing need for parallel programming in the
mainstream

For More Information: Online Resources

11
0

Chapel project page: http://chapel.cray.com

● overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

● release downloads, public mailing lists, code repository, …

Mailing Aliases:

● chapel_info@cray.com: contact the team at Cray

● chapel-users@lists.sourceforge.net: user-oriented discussion list

● chapel-developers@lists.sourceforge.net: developer discussion

● chapel-education@lists.sourceforge.net: educator discussion

● chapel-bugs@lists.sourceforge.net: public bug forum

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/

For More Information: Suggested Reading

11
1

Overview Papers:
● The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
● a high-level overview of the project summarizing the HPCS period

● A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A
Brief Overview of Parallel Programming Models, edited by Pavan
Balaji, to be published by MIT Press in 2014).
● a more detailed overview of Chapel’s history, motivating themes, features

Blog Articles:
● [Ten] Myths About Scalable Programming Languages, Chamberlain.

IEEE Technical Committee on Scalable Computing (TCSC) Blog,
(https://www.ieeetcsc.org/activities/blog/), April-November 2012.
● a series of technical opinion pieces designed to combat standard

arguments against the development of high-level parallel languages

http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://chapel.cray.com/presentations/ChapelForCUG13-final.pdf
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/
https://www.ieeetcsc.org/activities/blog/

But wait, what about those next-gen processors?

11
2

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

Fortran C/C++ MPI OpenMP UPC

performance

portability (to next-gen)

programmability

data parallelism

task parallelism

nested parallelism

locality control

resilience

energy-awareness

user-extensibility

Next-Gen Scorecard for HPC Programming
Models

113

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen)

programmability

data parallelism

task parallelism

nested parallelism

locality control

resilience

energy-awareness

user-extensibility

Next-Gen Scorecard for HPC Programming
Models

114

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓

programmability

data parallelism

task parallelism

nested parallelism

locality control

resilience

energy-awareness

user-extensibility

Next-Gen Scorecard for HPC Programming
Models

115

Fortran C/C++ MPI OpenMP UPC

performance ✓ ✓ ✓ ✓ ~

portability (to next-gen) ✓ ✓ ~ ~ ~

programmability X X X ~ X

data parallelism ~ X X ~ ~

task parallelism X X X ~ X

nested parallelism X X X ~ X

locality control X X ~ X ~

resilience X X ~ X X

energy-awareness X X X X X

user-extensibility X X X X X

Next-Gen Scorecard for HPC Programming
Models

116

performance ~

portability (to next-gen) ~*

programmability ✓

data parallelism ✓

task parallelism ✓

nested parallelism ✓

locality control ~*

resilience X

energy-awareness X

user-extensibility ✓

Chapel: Well-Positioned for Next-Gen

117

* (The work in this section is designed to address these items)

Locales Today

11
8

Concept:

● Today, Chapel supports a 1D array of locales
● users can reshape/slice to suit their computation’s needs

locale

locale

locale

locale

Locales Today

11
9

Concept:

● Today, Chapel supports a 1D array of locales
● users can reshape/slice to suit their computation’s needs

● Apart from queries, no further visibility into locales
● no mechanism to refer to specific NUMA domains, processors, memories, …

● assumption: compiler, runtime, OS, HW can handle intra-locale concerns

● Supports horizontal (inter-node) locality well
● but not vertical (intra-node)

locale

locale

locale

locale

Current Work: Hierarchical Locales

12
0

Concept:

● Support locales within locales to describe architectural
sub-structures within a node

● As with traditional locales, on-clauses and domain maps
will be used to map tasks and variables to a sub-locale’s
memory and processors

● Locale structure is defined using Chapel code
● permits architectural descriptions to be specified in-language

● continues the multiresolution philosophy

● introduces a new Chapel role: architectural modeler

locale

locale

locale

locale

sub-locale

A

sub-locale B

sub-locale

A

sub-locale B

sub-locale

A

sub-locale B

sub-locale

A

sub-locale B

C C D E C C D E C C D E C C D E

Sublocales: Tiled Processor Example

12
1

class locale: AbstractLocale {

 const xt = 6, yt = xTiles;

 const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 …memory interface…

 …tasking interface…

}

class tiledLoc: AbstractLocale {

 …memory interface…

 …tasking interface…

}

Tilera Tile-Gx

Sublocales: Hybrid Processor Example

12
2

class locale: AbstractLocale {

 const numCPUs = 2, numGPUs = 2;

 const cpus: [0..#numCPUs] cpuLoc = …;

 const gpus: [0..#numGPUs] gpuLoc = …;

 …memory interface…

 …tasking interface…

}

class cpuLoc: AbstractLocale { … }

class gpuLoc: AbstractLocale {

 …sublocales for different

 memory types, thread blocks…?

 …memory, tasking interfaces…

}

Sample tasking/memory interface

12
3

Memory Interface:
proc AbstractLocale.malloc(size_t size) { … }

proc AbstractLocale.realloc(size_t size) { … }

proc AbstractLocale.free(size_t size) { … }

…

Tasking Interface:
proc AbstractLocale.taskBegin(…) { … }

proc AbstractLocale.tasksCobegin(…) { … }

proc AbstractLocale.tasksCoforall(…) { … }

…

In practice, we expect the guts of these to typically be
implemented via calls out to external C routines

Chapel Compiler Architecture

12
4

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

currently, the runtime interface

is hard-coded into the compiler

in this work, the interface

moves to module code

(possibly written by a user)

Policy Questions

12
5

Memory Policy Questions:

● If a sublocale is out of memory, what happens?
● out-of-memory error?

● allocate elsewhere? sibling? parent? somewhere else? (on-node v. off?)

● What happens on locales with no memory?
● illegal? allocate on sublocale? somewhere else?

Tasking Policy Questions:

● Can a task that’s placed on a specific sublocale migrate?
● to where? sibling? parent? somewhere else?

● What happens on locales with no processors?
● illegal? allocate on sublocale? parent locale?

● using what heuristic? sublocale[0]? round-robin? dynamic load balance?

Goal: Any of these policies should be possible

Tasking Policy Example

12
6

Q: What happens to tasks on locales with no (direct)
processors?

e.g., a locale that serves as a container for other sublocales

on “multicore NUMA Node” do begin foo()

Tasking Policy Example

12
7

Q: What happens to tasks on locales with no (direct)
processors?

e.g., a locale that serves as a container for other sublocales

A1: Run on a fixed or arbitrary sublocale?

proc NUMANode.taskBegin(…) {

 numaDomain[0].taskBegin(…);

}

Tasking Policy Example

12
8

Q: What happens to tasks on locales with no (direct)
processors?

e.g., a locale that serves as a container for other sublocales

A2: Schedule round-robin?

proc NUMANode.taskBegin(…) {

 const subloc = (nextSubLoc.fetchAdd(1))%numSubLocs;

 numaDomain[subloc].taskBegin(…);

}

class NUMANode {

 …

 var nextSubLoc: atomic int;

 …

}

Tasking Policy Example

12
9

Q: What happens to tasks on locales with no (direct)
processors?

e.g., a locale that serves as a container for other sublocales

A3: Dynamically Load Balance?

proc NUMANode.taskBegin(…) {

 numaDomain[getBestSubLoc()].taskBegin(…);

}

proc NUMANode.getBestSubLoc() {

 const (numTasks, subloc)

 = minloc reduce (numaDomain.numTasks(),

 0..#numSubLocs);

 return subloc;

}

Another Tasking Policy Example

13
0

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

locale

CPU

sublocale

GPU sublocale

C C D E

on “Texture Memory” do begin foo()

Another Tasking Policy Example

13
1

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A1: Throw an error?

proc TextureMemLocale.taskBegin(…) {

 halt(“You can’t run tasks on texture memory!”);

}

Downside: potential user inconvenience:

on Locales[2].gpuLoc.texMem do var X: [1..n, 1..n] int;

on X[i,j] do begin refine(X);

Another Tasking Policy Example

13
2

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A2: Defer to parent?

proc TextureMemLocale.taskBegin(…) {

 parentLocale.taskBegin(…);

}

Another Tasking Policy Example

13
3

Q: What happens to tasks on locales with no processors?

e.g., a sublocale representing a memory resource

A3: Or perhaps just run directly near memory?

proc TextureMemLocale.taskBegin(…) {

 extern proc chpl_task_create_GPU_Task(…);

 chpl_task_create_GPU_Task(…);

}

Contrasts with Related Work

13
4

Related work:

● Sequoia (Aiken et al., Stanford)

● Hierarchical Place Trees (Sarkar et al., Rice)

Differences:

● Hierarchy only impacts locality, not semantics as in
Sequoia
● analogous to PGAS languages vs. distributed memory

● No restrictions as to what HW must live in what node
● e.g., no “processors must live in leaf nodes” requirement

● Does not impose a strict abstract tree structure
● e.g., const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

● User-specifiable concept
● convenience of specifying within Chapel

● policies for mapping to HW can be defined in-language

Hierarchical Locales: Design Challenges

13
5

Portability: Chapel code that refers to sub-locales can cause
problems on systems with a different model

Mitigation Strategies
● Well-designed domain maps should buffer many typical users from

these challenges

● We anticipate identifying a few broad classes of locales that
characterize broad swaths of machines “well enough”

● More advanced runtime designs and compiler work could help guard
most task-parallel users from this level of detail

● Not a Chapel-specific challenge, fortunately

Code Generation: Dealing with targets for which C is not the
language of choice (e.g., CUDA)

Summary: Hierarchical Locales

13
6

Emerging compute nodes are presenting challenges

Chapel’s support for parallelism and locality positions it
better than current HPC languages

● Hierarchical locales extend it to support intra-node concerns

Hierarchical Locales have some attractive properties

● Defined in Chapel, potentially by users

● Support user-level policy decisions

● Removes hard-coding of runtime interfaces in compiler

Specification and implementation effort is underway

Longer-term Directions

13
7

Represent physical machine as a hierarchical locale and
represent user’s locales as a slice of that hierarchy

● for topology-aware programming

● for jobs with dynamically-changing resource requirements
● due to changing job needs

● or failing HW

Combine with containment domains (Erez, UT Austin)

● the two concepts seem well-matched for each other

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

