Hewlett Packard
Enterprise

Parallel Programmability from Laptops t¢
with Chapel and Arkouda

Brad Chamberlain

UW CSE PLSE
January 28, 2025






What is Chapel?

Chapel: A modern parallel programming language
» Portable & scalable =S
. CHAPEL
e Open-source & collaborative
—
Goals:

e Support general parallel programming
« Make parallel programming at scale far more productive



Productive Parallel Programming: One Definition

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

..yet also as...
..fast as Fortran / C / C++

...scalable as MP| / SHMEM

...GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel



Six Key Characteristics of Chapel

. portable: runs on laptops, clusters, the cloud, supercomputers
. open-source: to reduce barriers to adoption and leverage community contributions
. compiled: to generate the best performance possible

1
2
3
4. statically typed: to avoid simple errors after hours of execution
5. interoperable: with C, C++, Fortran, Python, ...

6

. from scratch: not a dialect or extension of another language
(though inspiration was taken from many)



Outline

» Chapel Goals and Characteristics
A Brief Introduction to Chapel

o Applications of Chapel

e Global-view vs. SPMD Programming

e Chapel Parallelism and Locality Features
 Sample Compiler Optimizations

e Programming GPUs in Chapel

e Wrap-up



A Brief Introduction to Chapel

(via Bale IndexGather)




Bale IndexGather (IG): In Pictures

0 1 2 3 4 5 6 7 8 9
o fulaa]ss]u]ss]esfrrfss]o0

Src:

o [t
[



Bale IG in Chapel: Array Declarations

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src:




Bale IG in Chapel: Compiling

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m]

int;

Slchpl bale-ig.chpl
S

—1

Src:

10



Bale IG in Chapel: Executing

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
" /vale-ig
$

—1

Src:

11



Bale IG in Chapel: Executing, Overriding Configs

config const n = 10,
m = 4;
A5Y (oSN I A A O O W
Vo RS A A
- Dst: TTTTTI
var SIC: [O..<fl] 1nt, st: LTI T T T T T T T T T T T T T T T T T I T I T T T T I T T I I T T I T T I T T I T TITITITITITTITT

Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
SA L.l --n=1 000 000 --m=1 000 000




Bale IG in Chapel: Array Initialization

use Random;

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src = [1 in O0..<n] 1i*11;
fillRandom(Inds, min=0, max=n-1);

$ chpl bale-ig.chpl
$ ./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Inds:|3|7|2|7|
DsT:D | | |

13



Bale IG in Chapel: Serial Version

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

for i in 0..<m do
Dst[i] = Src[Inds[i]];

$ chpl bale-ig.chpl
$ ./bale-ig

S

—1

0 1 2 3 4 5 b 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

|

Inds: I3I7I2I7I
o+ BT

14



Bale IG in Chapel: Serial, Zippered Version

config const n = 10, 0o 1 2 3 4 5 6 7 8 9
m = 4; Src: IO|11|22|33|44|55|66|77|88|99|
var Src: [0..<n] int, Inds: |3 |7|2 |7|
Inds, Dst: [0..<m] int; T
Eor (d, 1) in zip(Dst, Inds) do oSt |33| I I
d = Srcli];

$ chpl bale-ig.chpl
$ ./bale-ig

S

—1



Bale IG in Chapel: Parallel, Zippered Version (Vectorized)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

foreach (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

16



Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

17



Bale IG in Chapel: Parallel Promoted Version (equivalent to previous version)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m]

Dst = Src[Inds];

int;

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|




Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

19



Bale IG in Chapel: Parallel, Zippered Version for a GPU

config const n = 10,
m = 4;

on here.gpus[0] {
var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

20



Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

21



Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

config const n = 10,
S 4 Src:
const SrcInds = {0..<n},

DstInds = {0..<m};

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|




Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0. .<n),

DstInds = blockDist.createDomain (0. .<m) ;

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

$ chpl bale-ig.chpl

SEVA LRSS l-n1 4096

S

o 1 2 3 4 _5 6 7 8 9
Src IO|11|22|33|44|55|66|77|88|99|
| |

23



Bale IG in Chapel: Distributed Parallel Version

use BlockDist; Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

config const n = 10, 25000 [ chepel —
m = 4; 20000 [- SHMEM Exstack —— =T
@ 15000 [~ e e e
const SrcInds = blockDist.createDomain(0..<n), 8 10000 b--- -l
DstInds = blockDist.createDomain (0. .<m) ;
5000 |-~ g™ -t soossssososoooooooooos
[ |
: I i 0
var ir; [;ri.n?;]t;ng,] - 512 1024 2048 4096
nos, Ust: stofids] 1nt, Compute Nodes
forall (d, 1) in zip(Dst, Inds) do
d = Src[i]; I
0 1 2 3 4 5 ) 7 8 9

Src: 0 1122 88 | 99

SHle)s) WA -RN-LR K. e I -—auto-aggregation

$ ./bale-ig —-nl 4096 Inds:

S

Dst:




Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

d = Srcli];

forall (d, 1) in zip(Dst, Inds) do

SHMEM (Exstack version)

Chapel ——
... SHMEM Exstack —¢— _ _ _ _ _ _ _ _ _ _ _ __ _ _ __~—__ _ ____
SHMEM Convey - -% -

GB/s

i=0;
while ( exstack proceed(ex, (i==1_ num req)) ) {
i0 = 1;

while(i < 1 num_req) {
1 indx = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;
if (!exstack push(ex, &l_indx, pe))
break;
Aldrarg
}
exstack_exchange (ex) ;
while (exstack pop(ex, &idx , &fromth)) {
idx ltable[idx];
exstack push(ex, &idx, fromth);
}
lgp_barrier();
exstack_exchange (ex) ;

for (j=i0; j<i; j++) {
fromth = pckindx[j] & Oxffff;
(

tgt[j] = idx;
}
lgp_barrier();

}

exstack pop_ thread(ex, &idx, (uint64_t)fromth);

SHMEM (Conveyors version)

0;
while (more = convey advance (requests, (i == 1 _num req)),
more | convey advance(replies, !more))

for (; 1 < 1 _num req; i++) {

pkg.idx = i;

pkg.val = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;

if (! convey push(requests, &pkg, pe))
break;

while (convey pull (requests, ptr, &from)

pkg.idx = ptr->idx;

pkg.val = ltable[ptr->vall];

if (! convey push(replies, &pkg, from))
convey unpull (requests);
break;

}

while (convey pull (replies, ptr, NULL) ==

tgt [ptr->idx] = ptr->val;

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

== convey_OK)

—

512 1024 2048 4096
Compute Nodes

Src: 0 1122 88 | 99

Inds:

Dst:




Applications of Chapel




Applications of Chapel

Python3 Client ;’:‘0 Chapel Server

ket
Dispatcher

: IE
< .

Arithmetic

Code Modules

t Distributed
Object Store
ﬁ Platform MPP, SMP, Cluster, Laptop, etc. 23] |
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUltra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel)

b1
4
3
=
P
2
G
8
T
4

-

RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.
: FEATURES ENSEMBLES '.

.

82jens

& Micop .
e @ e ® o ° N *

EXPLORATION PARAMETERS RATIONALE B :

§

Chapel-based Hydrological Model Calibration Arachne Graph Analytics CrayAl HyperParameter Optimization (HPO) CHGL: Chapel Hypergraph Library
Marjan Asgari et al. Bader, Du, Rodriguez, et al. Ben Albrecht et al. Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
University of Guelph New Jersey Institute of Technology Cray Inc. / HPE PNNL

: [images provided by their respective teams and used with permission] I 27



Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines

Systems: Desktops, HPC systems w/ GPUs

Low-pass filter with LOWESS (intrinsically parallel)

100

RH (%) at Lake Mead
S

2010 2011 2012 2013 2014 2015

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops w/ GPUs

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel

Posted on September 17, 2024.

Tags: Computational Fluid Dynamics == User Experiences  Interviews

(i

By: Engin Kayraklioglu, Brad Chamberlain

T

;j “Chapel worked as intended: the code

v maintenance is very much reduced, and

*| its readability is astonishing. This enables
of undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

%

—

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: Earth Sciences || Image Analysis = GPU Programming

User Experiences = Interviews

By: Brad Chamberlain, Engin Kayraklioglu

In this second installment of our Seven Questions for Chapel Users series, we're looking at a
recent success story in which Scott Bachman used Chapel to unlock new scales of biodiversity
analysis in coral reefs to study ocean health using satellite image processing. This is work that

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel
Posted on October 15, 2024.

Tags: User Experiences | Interviews || Data Analysis

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

In this edition of our Seven Questions for Chapel Users series, we turn to Dr. Nelson Luis Dias from

(ATTO), a project dedicated to long-term, 24/7 monitoring of greenhouse gas fluctuations. Read

1 “With the coral reef program, | was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had

=

on

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data

| 1 the features that allowed me to do it.” a

synchronization, managing threads, etc.”

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]



https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

—

apel Server

hon3 Client o
fyt 3 Socket

Distributed
Object Store

Platform

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

(] e e i L =y
2010 2011 2012 2013 2014 2015
date

Desk dot chpl: Utilities for Environmental Eng.

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

ChOp: Chapel-based Optimization

T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

NA
\7
l a

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?



Data Science In Python at scale?

Motivation: Imagine you've got...
...HPC-scale data science problems to solve
...a bunch of Python programmers

..access fo HPC systems

—— SR
} \ i
g §
i
|
L)
v

How will you leverage your Python programmers to get your work done?

—

30



What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

big_add_Sum st cizrs 16 e 5 e

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

31



What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
(written in Pythoni)‘_ (written in Chapel)

= Jupyter big_add_sum uasowspore 16 mots s> cnanc

Ta (1) mport arkosda as ak

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”

— | 5



Performance and Productivity: Arkouda Argsort

HPE Cray EX =g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)

HPE Cray EX @@
o Slingshot-11 network (200 Gb/s)
« 896 compute nodes
o 28 TiB of 8-byte values
e ~1200 GiB/s (~24 seconds)

HPE Apollo =3¢
e HDR-100 InfiniBand network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

GiB/s

9000
8000
/7000
6000
5000
4000
3000
2000
1000

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~  HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

—



What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

LT C———————

o (1) inport arkoods as ak

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”
A’: “An extensible framework for arbitrary HPC computations”
A”: “A way to drive HPC systems interactively from Python on a laptop”

—

34



Arkouda Resources

Website: https://arkouda-www.github.io/

Arkouda github  documentation  gitter

Arkouda is...

Massive-scale data science,

f th f t f | t Fast Interactive Extensible
ro m e CO m O r o yo u r a p O p Arkouda is powered by Chapel, a By distributing your data across One can expand on Arkouda's
programming language built from the multiple nodes, Arkouda allows you to capabilities, thus enabling arbitrary
ground up to support parallelism and rapidly transform and wrangle datasets scalable computations to be performed
distributed computing. Make the most in real time that are simply intractable from Python.
out of every core and every node in for a laptop or desktop.

Arkouda ~ Numl

® Ready for supercomputers " Industry standard your system.

Ar er: ./arkouda

;.n.,m arkouda as ak ) Powered by Chapel

# connect to the server
ak.connect( ' localhost', 5555)

% Sort the array and To leam more about Chapel, check out its blog, presentations, tutorials and demos, and the
print(clo:10]) How Can | Learn Chapel? page.

Try it Out Tutorial Video [A Chat on Gitter

Arkouda users are saying...

© omraee s tore e Arkouda's backend is i in Chapel, an op parallel
a = ak. random. randint (0, 2%x32, 24438) # ——-> Won't fit language. Chapel is unique among mainstream languages as it puts parallelism and locality N

b = ak. random. randint (0, 24432, 2438) # 178 of ran in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to : :

¥ add then perform well and scale on many different architectures, from multicore laptops to cloud @APE [
c=a+b systems to world's fastest supercomputers. —

GitHub: hitps://github.com/Bears-R-Us/arkouda

[ README &[5 License =

apkolda

massive scale

data science

Arkouda (apkouda) 8
Interactive Data Analytics at Supercomputing Scale

Online Documentation
Arkouda docs at Github Pages
Nightly Arkouda Performance Charts

Arkouda nightly performance charts

Arkouda v2024.12.06 released! ¢ ...solving problems in a matter of seconds, as opposed to days...

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

— Tess Hayes, Bytoa

Read the release notes —

11
[I’'m] working with more data than | ever thought possible as a data scientis

— Jake Trookman, Erias

Coming Soon: interview with founding dev, Bill Reus

7 Questions for Bill Reus: Interactive, Massive-
Scale Data Analytics in Chapel

Posted on January 15, 2025.

Tags:| User Experiences || Interviews || Data Analysis || Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

—



https://arkouda-www.github.io/
https://github.com/Bears-R-Us/arkouda

Applications of Chapel: Links to Users’ Talks (slides + video) & Blog Interviews

——

hon3 Client ™Ma Chapel Server i
_P,y‘ 3 Socket e Ll

Dispatcher N .X
2 g >
3
g
g

Code Modules
Y S \ N
¢ . (1-2) ) (1-5)
ﬁ Object Store /;\ / "
Platform MPP, SMP, Cluster, Laptop, etc. 23] | ][ i 3) X4

CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale

ChOp: Chapel-based Optimization ChplUltra: Simulatina Ultraliaht Dark Matter

CHIUW 2021 CHIUW 2022 Blog CHIUW 2020 CHIUW 2023 CHIUW 2021 2023 ChapelCon’24 (J) CHIUW 2020 CHIUW 2022

‘54\',‘

Low-pass filter with LOWESS (intrinsically parallel)

100

RH (%) at Lake Mead
]

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity

CHIUW 2022 CHIUW 2022 ChapelCon ‘24 Blog CHIUW 2023 Blog
Arachne Graph Analytics CrayAl HyperParameter Optimization (HPO) CHGL: Chapel Hypergraph Library
CHIUW 2023 CHIUW 2023 ChapelCon ‘24 Blog CHIUW 2021 CHIUW 2020
: [NOTE: This slide focuses on presentations and blogs published in Chapel venues, but numerous external publications also exist] | 36

(images provided by their respective teams and used with permission)


https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/blog/posts/7qs-bader/
https://chapel-lang.org/blog/posts/7qs-bachman/
https://chapel-lang.org/blog/posts/7qs-laurendeau/
https://chapel-lang.org/blog/posts/7qs-dias/

Global-view vs. SPMD Programming




A Strained(?) Analogy

Gosh, | bet those
supercomputer users
have some swanky
programming languages...

Gosh, those Le Mans racers
must have an enviable
driving experience...




HPC Benchmarks Using Conventional Programming Approaches

STREAM TRIAD: C + MPI + OPENMP

#include <hpcc.h> if ('a || 'b || 'c) {
#ifdef OPENMP if (c) HPCC free(c);
#include <omp.h> if (b) HPCC free(b);
#endif if (a) HPCC_free(a);

if (doIO) {
fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize );
fclose( outFile );

static int VectorSize;
static double *a, *b, *c;

}

int HPCC_StarStream (HPCC_Params *params) { return 1;

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

HPCC RA: MPI KERNEL

#ifdef OPENMP

. #pragma omp parallel for —
MPI Comm size( comm, &commSize ); #endif
MPI_Comm rank( comm, &myRank ); for (§=0; j<VectorSize; j++) {
b[j] 2.0; /" Perform updates to main table. The scalar equivalent is | else {
rv = HPCC_Stream( params, 0 myRank) ; c[3j] = 1.0; . HPCC_InsertUpdate (Ran, WhichPe, Buckets);
T11m < ’ o DT @ 0 -~ . Vs * for (i=0; i<NUPDATE; i++) { pendingUpdates++; MPI_Test (&outreq, It
MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm ); } o R o £ 1 (it Ram < 09 2 FOLY -0 X [PETOR
*  Table[Ran & (TABSIZE-1)] = Ran; ; outreq = MPI_REQUE:
scalar = 3.0; 0 outreq o .
return errCount; Y + C_GetUpdates er, localBuffer:
else
} #lfdef 7OPENMP Ji:lha"c do:é;c?, &have_done, MPI_STATUS 4, (int)pe,
: : #pragma omp parallel for ) ! outreq = MPI_REQUEST NULL;
int HPCC_Stream(HPCC_ Params *params, int doIO) { p g b P while (i < Send p: chc GetUpdates (Buckets,
register int 5; fendif et s -
double scalar; sstaty +
] ] " q
. . . == UPDATE_TAG) MPI_REQUEST NULL; continue; }
VectorSize = HPCC LocalVectorSize( params, 3, sizeof (double), 0 ); B . e - ontme

1s, tparams

) ) /* send garbage -

MPI_Isend(

HPCC_free(c); ) 0, t, FINISHED_TAG,
X . 0; § < recvUpdates; j ++) /* send remaining updates in buckefs %/ it finis unt) ;
a = HPCC_XMALLOC( double, VectorSize ); HPCC_free (b) ; ocalRecvButfer (bufferBase+]] while (pendingUpdates > 0) (
= ; . HPCC free(a); ocalOffset = (inmsg & (tparams.TableSize - 1)) — /" receive messages */ /" Finish everyone else up...*/
b HPCC XMALLOC ( double, VectorSize ); _
HPCCixMALLOC( doubl Vectorsi ) tparams.GlobalStartMyProc; do while (NumberReceiving > 0) {
c = ouble, VectorSize ); )

no one will look at it */

HBCC_Table[Localoffset] "= inm:

! . (sinreq, &

return 0; } if (have_done

) } else if (statu: [PI_TAG == FINISHED_TAG) {
NumberReceivin ;

bufferBase = 0; for (j=0; j < recvUpdates; j ++) {
for (3=0; j < recvUpdates; j ++) { inmsg = LocalRecvBuffer [bufferBase+j];
alRecvBuffer [bufferBase+j]; Local (inmsg & (tparams.TableSize - 1)) -
(inmsg & (tparams.TableSize - 1)) - params .GlobalStartMyProc;
arans.GlobalStartMyProc; HPCC_Table[Local g
HPCC_Table[LocalOffset] "= inmsg;

—

&inreq);

set] "= inms

} while (have done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates)

(status.MPI_TAG == FINISHED TAG) {

Ran = (Ran << 1) * ((s64Int) Ran < ZEROG4B ? POLY : ZEROG4B); else if (status.MPI_TAG == FINISHED_TAG) { e. Thanks for playing...”/
GlobalOffset = Ran & (tparams.TableSize-1); /*we got a done message. Thanks for playing.. ”/
if ( GlobalOffset < tparams.Top) NumberReceiving--;

WhichPe = ( GlobalOffset / (tparams.MinLocalTableSize + 1) ); } else {
p

( (GlobalOffset - tparams.Remainder) /

e64,
tparams.MinLocalTableSize ); 1P,

nreq) ;

} while (have done && NumberReceiving > 0);

inish_statuses);

—




HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

|
1
STREAM TRIAD: C + MPI + OPENMP BlockDist;
— use ockDist STREAM Performance (GB/s)
config const n = 1 000 000, 30000 /o e e T

25000 Chapel EP —e— — - == == == == === —mm - - - —
Chapel Global - -+ -

alpha = 0.01;

. . 20000 b---------c- o g
const Dom = blockDist.createDomain({1l..n}); | 0000
2 Hpct}strevam( parans, »'XRET l; o o var A 14 B 14 C : [ Dom] real ; % 1 5000 77777777777777777777777777777777777777
e 10000 p---------"""" s m oo
}
in:egigieineanj(?ycc Params *params, int doT0) { B = 2 . O ; 5000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Vectors: Hk—‘[i( Local’ s, 3, sizeof(double), 0 ); C = 1 . O ; O
e 1632 64 128 256
— A =B + alpha * C; Locales (x 36 cores / locale)
|
HPCC RA: MPI KERNEL

RA Performance (GUPS)

14 -
forall ( , r) in zip(Updates, RAStream()) do ¢
Tlr & indexMask].xor (r); 8
L
16 32 64 128 256
'72 Locales (x 36 cores / locale)




Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

forall
d =

(d, 1)
Srcl[i];

in zip (Dst,

Inds) do

SHMEM (Exstack version)

GB/s

i=0;

while ( exstack |
i0 = 1;
while(i < 1 num_req) {

proceed(ex, (i==1 num req)) ) {

1 indx = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;
if (!exstack push(ex, &l_indx, pe))
break;

Aldrarg

}

exstack_exchange (ex) ;

while (exstack pop(ex, &idx , &fromth)) {
idx = ltable[idx];
exstack push(ex, &idx, fromth);

}

lgp_barrier();

exstack_exchange (ex) ;

for (j=1i0; j<i; j++) {
fromth = pckindx[j] & Oxffff;
exstack pop_ thread(ex, &idx, (uint64_t)fromth);
tgt[j] = idx;

}

lgp_barrier();

}

SHMEM (Conveyors version)

i=0;
while (more = convey advance (requests, (i == 1 _num req)),
more | convey advance (replies, !more)) {
for (; 1 < 1 num req; i++) {
pkg.idx = 1i;
pkg.val = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;
if (! convey push(requests, &pkg, pe))
break;
}
while (convey pull (requests, ptr, &from) == convey OK)
pkg.idx = ptr->idx; -
pkg.val = ltable[ptr->val];
if (! convey push(replies, &pkg, from)) ({
convey unpull (requests);
break;
}
}
while (convey pull (replies, ptr, NULL) == convey OK)
tgt [ptr->idx] = ptr->val;

25000
20000
15000
10000

5000

Bale Indexgather Performance

HPE Cray EX (Slingshot-11)

Chapel
SHMEM Convey

—_—

.. SHMEM Exstack —¢—
- _x_ -

512 1024

2048
Compute Nodes

1 2 3 4 5 6 7 8

Src: O J11)§22)33

44 |55 J 66 | 77 | 88

99

Inds:

Dst:

»

& |

3347742277

Q: What accounts for the code size disparities between Chapel and SHMEM / MPI?

—



A: Chapel Supports Global-view Programming

Example: “Apply a 3-point stencil to a vector”

Global-View

)/2

.......

.......

.......

.......

42



A: Chapel Supports Global-view Programming

Example: “Apply a 3-point stencil to a vector”

Global-View

(LT T T
+ 1 T D2
| P |

-

43



A: Chapel Supports Global-view Programming

SPMD pseudocode (MPI-esque)

Example: “Apply a 3-point stencil to a vector” §.

proc main () {
var n = 1000;
Global-View Chapel code var p = numProcs (),
me = myProc(),
use BlockDist; myN = n/p,
myLo = 1,
>proc main () { myHi = myN;
var n = 1000; var A, B: [0..myN+1] real;
const D = blockDist.createDomain(l..n);
if (me < p-1) {

forall i in D[2..n-1] do send (me+1, A[myN]);
B[i] = (A[i-1] + A[i+1])/2; : recv (me+l, A[myN+1l]);
} } else

myHi = myN-1;

if (me > 0) {
send (me-1, A[l]):;
recv (me-1, A[O0]);

} else
myLo = 2;
forall i in mylLo..myHi do
B[i] = (A[i-1] + A[i+1])/2;
}

VA



SPMD Programming in Chapel

That said, as a general-purpose language, Chapel supports writing SPMD patterns as well:

coforall loc in Locales do
on loc do
myMain () ;

proc myMain () {
// ... write your SPMD computation here ...

45



Chapel Features for

Parallelism and Locality




Locales in Chapel

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute Compute

Node 1

Node 2

b

B

Compute

Node 3

Processor Core

. Memory

47



Key Concerns for Scalable Parallel Computing

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale O

oo

aaﬁﬁ

Locale 1

dhe

OO

Locale 2

oo

—

ooﬁﬁ

Locale 3

oo
dho

. Memory

Processor Core

48



Built-In Locale Variables in Chapel

e Two key built-in variables for referring to locales in Chapel programs:

« Locales: An array of locale values representing the system resources on which the program is running

 here:

The locale on which the current task is executing

Locale O

Locale 1

Locale 2

il

B

Locale 3

/ |

here Locales

. Memory

Processor Core

49



Basic Features for Locality

basics-on.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

on Locales[1] {

var B: [1l..2, 1..2] real;

This is a serial, but distributed computation

All Chapel programs begin running
as a single task on locale O

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
accessed directly

Locale O Locale 1

o o

Locale 2

Locale 3

—

_ ==l



Basic Features for Locality

basics-for.chpl
writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

This loop will serially iterate over

for loc in Locales { )
the program’s locales

on loc {
var B = A;

}

Locale O ‘ Locale 1 Locale 2 Locale 3

HHeE— A




Mixing Locality with Task Parallelism

basics-coforall.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

The coforall loop creates

coforall loc in Locales { . _
a parallel task per iteration

on loc {
var B = A;

}

Locale O ‘ Locale 1 Locale 2 Locale 3

HHeE— A




The Three Ways to Create Parallel Tasks in Chapel

begin: Creafes a task to asynchronously execute the statement it prefixes
begin writeln ("Hello, PLSE!");
writeln ("Goodbye!") ;

cobegin: A compound statement in which each child statement is a distinct tfask

cobegin ({
writeln ("Hello from task 1");
writeln ("Hello from task 2");

}

writeln ("Goodbye!"™); //original task waits for child tasks to complete before proceeding

coforall: A loop form in which each iteration is a distinct task

coforall 1 in 1..numTasks do
writeln ("Hello from task ", i, " of ", numTasks);
writeln ("Goodbye!"™); //original task waits for child tasks to complete before proceeding

—

53



Wait, what about ‘forall’ and ‘foreach’?

forall: Invokes a parallel iterator, itself written in terms of ‘coforall’, ‘cobegin’, and/or ‘begin’

forall 1 in 1..n do

writeln ("Goodbye!");

writeln ("Hello from iteration ", 1, " of ", n);

// notionally, the parallel iterator for a range looks something like this:

proc range.these(..) {
const numTasks = computeNumTasks () ;
coforall i1 in 0O..<numTasks {
const chunk = computeMyChunk (lo, hi, stride,
for jJ in chunk do
yield j;

numTasks) ;

foreach: Doesn’t introduce any tasks, just hints to the compiler that the loop may / should be parallelized

—

54



Array-based Parallelism and Locality

basics-distarr.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

use BlockDist;

var B: [D] real;
B = A;

Chapel also supports distributed
domains (index sets) and arrays

Locale 2

o

O

Locale 3

O

1

55



Other Chapel Features

e Chapel is a big language
« everything you'd expect from a modern, productive language
« plus, additional features supporting parallelism, locality, and scalable performance

e As aresult, there are many features you aren’t seeing much of today:
Serial Features:
—Modules: for namespacing and code organization
- Procedures and iterators: with overloading, generics/polymorphism, rich argument passing, ...
- OOP: Value- and Reference-based objects, generic types, inheritance, fields, methods, mix-ins, ...

Parallel Features:
- Rich array support: multidimensional arrays, sparse arrays, slicing, rank change, reindexing, ...
— Implicit forms of parallelism: whole-array operations, promotion of scalar routines, reductions, scans
— Intra-task synchronization: atomic and synchronization (full-empty) variables

—

56



Sample Compiler Optimizations

(Bale IG Revisited)




Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0.
DstInds = blockDist.createDomain (0.

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

.<n),
.<m) ;

$ chpl bale-ig.chpl
$ ./bale-ig —-nl 512

S

1250
1000

(GB/s)
(@) ~
S 3

250

Aggregate Throughput

bale index gather

Chapel
=@— Unordered (auto)

+ No optimization

—— 4
32 64 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)

58



Bale IG in Chapel: Distributed Parallel Version (rewrite using parallel iterator)

use BlockDist;

config const n = 10,
m = 4; 5
o
=
S
const SrcInds = blockDist.createDomain (0. .<n), o
DstInds = blockDist.createDomain (0. .<m) ; =
()
®
var Src: [SrcInds] int, 3
Inds, Dst: [DstInds] int; =
<€

forall (d, 1) in zip(Dst, Inds) do

d Srcl[i];
Gets lowered roughly to...

$ chp coforall loc in Dst.targetlLocales do on loc do

s . /E coforall tid in 0..<here.maxTaskPar do

foreach idx in myInds(loc, tid, ..) do
Dst[idx] Src[Inds[idx]];

:
—

1250
1000

(GB/s)
(@)] ~
s 8

250

bale index gather

Chapel
. =@— Unordered (auto)

+ No optimization

Better

4’

32 64 128 256
Number of Locales (x 36 cores / locale)
Cray XC (Aries)

Create a task per compute node

Create a task per core on that node

Compute that task’s gathers

512



Bale IG in Chapel: Distributed Parallel Version (optimized using async copies)

use BlockDist;

config const n = 10,
m = 4;
const SrcInds = blockDist.createDomain (0. .<n),
DstInds = blockDist.createDomain (0. .<m);
var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do
d = Srcl[i];

= bale index gather

a 1250 p=

c Chapel

(@] . =@— Unordered (auto)

5 A1OOO + No optimization

c » 750 | o
F o ﬁ
20O 500 m
%v

0 250 |-

> ¢

< 32 64 128 256 512

Number of Locales (x 36 cores / locale)
Cray XC (Aries)

The user told us this loop was parallel, so
why perform these high-latency ops serially?

chg coforall loc in Dst.targetlLocales do on loc do

/k coforall tid in 0. .<here.maxTaskPar do
) foreach idx in myInds(loc, tid, ..) d
Dst[idx] = Src[Inds[idx]];

—

So, the Chapel compiler rewrites the inner

loop to perform them asynchronously

foreach idx in myInds(loc, tid, ..) do
asyncCopy (Dst[i1dx], Src[Inds[idx]]);
asyncCopyTaskFence () ;




Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0.
DstInds = blockDist.createDomain (0.

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

.<n),
.<m) ;

$ chpl bale-ig.chpl
$ ./bale-ig —-nl 512
S

= bale index gather
3 1250 p
c Chapel
(®)] . =@— Unordered (auto)
5 A1OOO + No optimization
£ » 750 |
lfae
QO 500 -
gv
0 250 =
> — —¢
< 32 64 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)

So far, all communications are being done in a

fine-grained manner, an element at a time




Bale IG in Chapel: Distributed, Explicitly Aggregated Version

use BlockDist, CopyAggregation;

config const n = 10,
m = 4;
const SrcInds = blockDist.createDomain (0.

DstInds = blockDist.createDomain (0.

var Src: [SrcInds]
Inds, Dst:

int,

[DstInds] int;

forall (d, 1) in zip(Dst, Inds) with
(var agg = new SrcAggregator (int)) do
agg.copy (d, Src[i]):

.<n),
.<m) ;

$ chpl bale-ig.chpl
$ ./bale-ig —-nl 512

S

8_ 1250
S

S5 1000
SR

c »n 750
s
20O 500
gv

0 250
>

< 0

bale index gather

Chapel
. == Aggregation (user)
=@— Unordered (auto)

L + No optimization

—— 4
32 64 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)



Bale IG in Chapel: Distributed, Auto-Aggregated Version

use BlockDist;

config const n = 10,
m = 4;
const SrcInds = blockDist.createDomain (0.

DstInds = blockDist.createDomain (0.

var Src:
Inds,

[SrcInds]
Dst:

int,

[DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

.<n),
.<m) ;

SHle1 s} J R -RN-ER K. Wi I --auto-aggregation

$ ./bale-ig —-nl 512

S

8_ 1250
S

S5 1000
SR

c »n 750
s
20O 500
gv

0 250
>

< 0

bale index gather

Chapel
—fe— Aggregation (auto)
== Aggregation (user)
=@— Unordered (auto)

+ No optimization

= =

32 64 128 256 512
Number of Locales (x 36 cores / locale)
Cray XC (Aries)



Bale IG in Chapel vs. SHMEM on Cray XC

Chapel (Simple / Auto-Aggregated version)

forall
d

(d, 1)
Srcl[i];

in zip (Dst,

Inds) do

Chapel (Explicitly Aggregated version)

forall (d, 1)

(var agg
agg.copy (d,

in zip (Dst,

Src[i]);

new SrcAggregator (int))

Inds) with

do

SHMEM (Exstack version)

i=0;
while ( exstack proceed(ex, (i==1_num req)) ) {
i0 g
while(i < 1 num_req) {
1 indx = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;
if (!exstack push(ex, &l_indx, pe))
break;
Aldrarg
}
exstack_exchange (ex) ;
while (exstack pop(ex, &idx , &fromth)) {
idx = ltable[idx];
exstack push(ex, &idx, fromth);
}
lgp_barrier();
exstack_exchange (ex) ;
for (j=i0; j<i; j++) {
fromth = pckindx[]j Oxffff;
(

&
exstack pop_thread(ex,

tgt (3]
}

&idx, (uint64_t) fromth);

= idx;

SHMEM (Conveyors version)

i=0;
while (more = co >y_advance (requests, (i == 1 _num_req)),
more | co >y _advance (replies, !more)) {
for (; 1 < 1 _num req; i++) {
pkg.idx = i;
pkg.val = pckindx[i] >> 16;
pe = pckindx[i] & Oxffff;
if (! convey push(requests, &pkg, pe))
break;
}
while (convey pull (requests, ptr, &from) == convey OK)
pkg.idx = ptr->idx;
pkg.val = ltable[ptr->vall];
if (! convey push(replies, &pkg, from)) {
convey unpull (requests);
break;
}
}
while (convey pull (replies, ptr, NULL) == convey OK)

tgt [ptr->idx] = ptr->val;

{

lgp_barrier();

}

—

2 1250
S

2 1000
° -
< 750
o
L0 50
G; N

(@))

o

[®)]

(@))

<

Chapel
| —f— Aggregation (auto)
=Jll— Aggregation (user)
. =@— Unordered (auto)

+ No optimization

32 64
Number of Locales (x 36 cores / locale)

Cray XC (Aries)

128

bale index gather

SHMEM
= 9€- Exstack
=3¢ Conveyor

.
l‘--
.

s
l“‘
-

256

512

Better

64



Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

forall
d

(d, 1)
Srcl[i];

in zip (Dst,

Inds) do

Chapel (Explicitly Aggregated version)

25000
20000
15000
10000

5000

}

—

forall (d, 1) in zip(Dst, Inds) with L%
. m
(var agg = new SrcAggregator (int)) do 0
agg.copy(d, Srcl[i]):
L] °
SHMEM (Exstack version) SHMEM (Conveyors version)
i=0; i=20;
while ( exstack proceed(ex, (i==1_num req)) ) { while (more = convey advance (requests, (i == 1 num req)),
i0 = i; more | OCMYGTiqﬂvdKCe(replieS, !more) ) ? N
while(i < 1 num req) ({ B
1 indx = pckindx[i] >> 16; for (; i < 1 num req; i++) {
pe = pckindx[i] & Oxffff; pkg.idx = i;
if (!exstack push(ex, &l_indx, pe)) pkg.val = pckindx[i] >> 16;
break; pe = pckindx[i] & Oxffff;
i++; if (! convey push(requests, &pkg, pe))
} break;
}
exstack_exchange (ex) ;
while (convey pull (requests, ptr, &from) == convey OK) {
while (exstack pop(ex, &idx , &fromth)) { pkg.idx = ptr->idx; -
idx = ltable[idx]; pkg.val = ltable[ptr->vall];
exstack push(ex, &idx, fromth); if (! convey push(replies, &pkg, from)) {
} convey unpull (requests);
lgp_barrier(); break;7
exstack_exchange (ex) ; }
}
for (j=i0; j<i; j++) {
fromth = pckindx[j] & Oxffff; while (convey pull (replies, ptr, NULL) == convey OK)
exstack pop_ thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx] = ptr->val;
tgt[j] = idx; }
}
lgp_barrier();

Chapel

.. SHMEM Exstack ——
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

——

- -

51

2 1024 2048

Number of Compute Nodes

Src: 0 J11 88 | 99

Inds:

Dst:

| o5



Programming GPUs with Chapel




Representing GPUs in Chapel

e In Chapel, a locale refers to a compute resource with processors and memory

« For now, think of each compute node as being a locale
e Modern systems often involve GPUs as well

e In Chapel, we represent them as sub-locales

Locale O

Locale 1

GPUO GPU1

GPUO

GPU1

CPU Core

. Memory
GPU Core

Locale 2

GPUO

Locale 3

GPUO

GPU1

67



Parallelism and Locality In The Context Of GPUs

Execution moves
to the sublocale

CPU Core

GPU Core

Locale O

. Memory

£ var A: [1.

.n, 1.

£} on here.gpus[0]

var B:
R = 2;

Q A = B;

Q writeln (A) ;

[1..n,

el

{

1.

real;

el

real;

68



Parallelism and Locality In The Context Of GPUs

var A: [l1..n, 1..n] real;

CPU Core GPU Core . Memory

Locale 0 coforall g in here.gpus do on g {
var B: [l1..n, 1..n] real;

Q B = 2;
A = B;

coforall

across
GPUs

e 2R L.,
e MR- L.,
L2k
o o0

writeln (A) ;



Parallelism and Locality In The Context Of GPUs

inner

coforall

across
GPUs

. Memory

CPU Core GPU Core

Locale O Locale 1

oo
i ooe
o o0

o oo

outer coforall across Locales

var A: [l1..n, 1..n] real;
coforall 1 in Locales do on 1 {

coforall g in here.gpus do on g {

var B: [l1..n, 1..n] real;
Q B = 2;
A = B;

}
writeln (A) ;



Parallelism and Locality In The Context Of GPUs

var A: [l1..n, 1..n] real;
coforall 1 in Locales do on 1 {

parallel statements cobeg in {
with cobegin Locale 0 Locale 1 coforall g in here.gpus do on g {

CPU Core GPU Core . Memory

var B: [l1..n, 1..n] real;

oo oo 6 -2
o ke o dR e A = B;
}
GPUO {
) I :::gl var B: [l1..n, 1..n] real;
inner
coforall eelele Q B = 2;
across 7 A = B;
GPUs GPU1 }
Lo AR 2K -2K;
to AR AR AK-; }

writeln (A) ;

| T N
: outer coforall across Locales | -



RapidQ Coral Biodiversity Summary

P
What is it? f r 1

» Measures coral reef diversity using high-res satellite image analysis ;
e ~230 lines of Chapel code written in late 2022 L J
N

e Initial code was CPU-only

Who wrote it? By P
I~y
o Scott Bachman, NCAR/[C]Worthy ‘NCAR [V] \'\ or Lh\'

—with Rebecca Green, Helen Fox, Coral Reef Alliance @ CORAL

REEF ALLIANCE

Why Chapel?
« easy transition from Python, which was being used
e massive performance improvement:
~10-day Python run finished in ~2 seconds using 360 cores
« enabled unexpected algorithmic improvements

Previous performance (serial, MATLAB): ~ 10 days

b Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

From Scott Bachman’s CHIUW 2023 talk: https://youtu.be/IJhh9KLL2XO0

: | 72



https://youtu.be/lJhh9KLL2X0

Coral Reef Spectral Biodiversity: Productivity and Performance

Original algorithm: Habitat Diversity, O(M - N - P)

Previous performance (serial, MATLAB):  ~ 10 days

Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

Multilocale Coral Image Analysis

i
4 ===
Improved algorithm: Spectral Diversity, O(M - N - P3) o Rl
o Chapel run was estimated to require ~4 weeks on 8-core desktop @ , /,"/
« updated code to leverage GPUs &
- required adding ~90 lines of code for a total of ~320 T - Speedup over 2 nodes
« ranin ~20 minutes on 64 nodes of Frontier I — ” o
- 512 NVIDIA K20X Kepler GPUs Number of Nodes
(x8 GPUs)

: | 73






Chapel Summary

Chapel is unique among programming languages
« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0..<n),
DstInds = blockDist.createDomain (0. .<m);

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, i) in zip(Dst, Inds) do
d = Srcli];

e supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at scale
e users are reaping its benefits in practical, cutting-edge applications

« applicable to domains as diverse as physical simulations and data science
« Arkouda is a particularly unique example of driving HPCs from Python

GB/s

Bale Indexgather Performance
HPE Cray E:

25000

Chapel ——
o

20000 SHMEM Exstack f ,,,,,,,,,,,,,,,,,,,,,,,,,

SHMEM Convey

)
4096

15000 === e e
10000 ===
5000 [~ =g
A
512 1024
Python3 Client ma
Socket

Roughly 5 orders of magnitude improvement

75



Takeaways for this PLSE setting

For scalable parallel computing, good language design can...
...provide built-in abstractions to simplify the expression of parallel operations
—e.g., parallel loops and iterators, global namespace

..more clearly represent parallel computations compared to standard approaches
-e.g., MPI, SHMEM, CUDA, HIP, SYCL, OpenMP, OpenCL, OpenACC, Kokkos, RAJA, ...

...permit users to create new abstractions supporting performance and/or clean code
- e.g., per-task aggregators

...enable new optimization opportunities by expressing parallelism and locality clearly
- e.g., asynchronous operations, auto-aggregation of communication

...support excellent performance and scalability
—e.g., to thousands of nodes and over a million cores

—

76



The Chapel Team at HPE

77



Ways to Engage with the Chapel Community

Live/Virtual Events
e ChapelCon (formerly CHIUW), annually

e Office Hours, monthly
e Live Demo Sessions, monthly

Community / User Forums

e Discord @@ piscord

e Discourse Discourse

e Email Contact Alias chapel+gs@discoursemail.com
e GitHub Issues )

o Gitter |I' cITTER

e Reddit (> reddit

e Stack Overflow =" stackoverflow

—

Electronic Broadcasts

e Chapel Blog, ~biweekly

e Community Newsletter, quarterly
e Announcement Emails, around big events

Social Media

o Bluesky *
e Facebook ﬁ

e Linkedin Linked[fl]
e Mastodon (@astodon

o X/ Twitter X

e YouTube [E3YouTube

78


https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/events.html
https://chapel-lang.org/events.html
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage

Chapel Website

The Chapel Programming Language

Productive parallel computing at every scale.

| @ Hello World writeln("Hello, world!");

o // create a parallel task per processor core

Q Distributed Hello World coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task *, tid);

QO Parallel File 10 // print these 1,000 messages in parallel using all cores

forall i in 1..1000 do

=
@AEE\. DOWNLOAD  DOCS ~ LEARN  RESOURCES ~  COMMUNITY
=

BLOG

WHAT’S NEW?

SC24

Aianta, [npc
GA|creates.

S$C24 from the Chapel Language Perspective
By Engin Kayraklioglu on December 18, 2024

A summary of highlights at SC24 relating to Chapel and Arkouda

CONTINUE READING

O 1D Heat Diffusion writeln("Hello from iteration *, i);
QO GPU Kernel
TRY CHAPEL GET CHAPEL LEARN CHA

PRODUCTIVE PARALLEL FAST

Concise and readable without Built from the ground up to implement Chapel is a compiled |
compromising speed or expressive parallel algorithms at your desired level of generating efficient mach|
power. Consistent concepts for parallel abstraction. No need to trade low-level meets or beats the perfornj
computing make it easier to learn. control for convenience. languages.

SCALABLE GPU-ENABLED OPEN

Chapel enables application performance Chapel supports vendor-neutral GPU Entirely open-source using

at any scale, from laptops to clusters, the programming with the same language license. Built by a great c

cloud, and the largest supercomputers in features used for distributed execution. developers. Join|
the world. No boilerplate. No cryptic APIs.

chapel-lang.org

World-class multiphysics simulation
Written by students and post-docs in Eric Laurendeau’s lab at Polytechnique Montreal.

MPS

USERS LOVE IT

The use of Chapel worked as intended: the code maintenance is very
1t reduced, and its readability is astonishing. This enables undergraduat
students to contribute to its development, something almost impossilf
think of when using very complex software.

- Eric Laurendeau, Professor, Polytd

A lot of the nitty gritty is hidden from you until you need to know it. ...
like the complexity grows as you get more comfortable - rather than
with everything at once.

- Tess Hayes]

CHAPEL IN PRODUCTION

HPC

wire

Interview with HPCWire
on December 16, 2024

If you haven't seen it, check out our recent interview with HPCWire.

CONTINUE READING

Announcing Chapel 2.3!
By Brad Chamberlain, Jade Abraham, Michael Ferguson, John Hartman on December 12, 2024
Highlights from the December 2024 release of Chapel 2.3

CONTINUE READING

Quarterly Newsletter - Fall 2024
on November 15, 2024

Our fall quarter newsletter is now available. Read about the latest Chapel news, events, and more.

CONTINUE READING

its C/OpenMP using far fewer lines of code. Dramatically
accelerated the progress of grad students while also supporting contributions from
undergrads for the first time.

Navier-Stokes in Chapel — Distributed Cavity-Flow Solver
By Jeremiah Corrado on November 14, 2024

Writing a distributed and parallel Navier-Stokes solver in Chapel, with an MPI performance comparison

Attempt This Online
Docker

E4S

GitHub Releases
Homebrew

Spack

FOLLOW US GET IN TOUCH GET STARTED
¢ Bluesky @ Dpiscord ﬂ

0 Facebook D Discourse e

[ Linkedin ] Email S

@ Mastodon o GitHub Issues O

@ Reddit M oitter ®

X X (Twitter) < stack Overflow 0

D YouTube



https://chapel-lang.org/

Thank you

https://chapel-lang.org
@ChapelLanguage



