S~

Hewlett Packard
Enterprise

Writing Parallel Research Software in Chapel

Brad Chamberlain

HIRSE Summer of Programming Languages
August 2025

Q: Why consider programming in Chapel?

A: It’s one of the few programming
languages designed for scalable parallel
computing from the start.

What is Scalable Parallel Computing?

Parallel Computing: Using the processors and memories of multiple compute resources

e Why? To run a program...
...faster than we could otherwise
...and/or using larger problem sizes

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e GO oo oo
GO GO GO o3k

Scalable Parallel Computing: As more processors and memory are added, benefits increase
o important for a lot of research software in which large systems are being simulated and/or analyzed

Processor Core

Memory

Key Concerns for Scalable Parallel Computing

1. parallelism: What computational tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Compute Compute Compute Compute

Node O Node 1 Node 2 Node 3

GO GO oo oo

o dR e, ‘ \ GO ‘ \ oo ‘ \ o3k
Processor Core

. Memory

Parallel Computing has become Ubiquitous

Additional, ubiquitous parallelism today:
e multicore processors

Parallel computing, historically:
 supercomputers

o commodity clusters cloud computing

e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3

B

b

B

. Memory

Processor Core

Compute Nodes with GPUs

Parallel computing, historically: Additional, ubiquitous parallelism today:
e supercomputers « multicore processors
o commodity clusters e cloud computing
e GPUs
Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
Processor Core
. Memory

: GPU Core

What is Chapel?

Chapel: A modern parallel programming language

» Portable & scalable S
. CHARPREL
e Open-source & collaborative
e Focused on expressing parallelism and locality
Goals:

e Support general parallel programming
« Make parallel programming at scale far more productive

Productive Parallel Programming: One Definition

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

..yet also as...
..fast as Fortran / C / C++

...scalable as MP| / SHMEM

...GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel

CLBG Language Comparison (selected languages, no heroic versions)

chapel
csharpcore
gcc

go

gpp

ifx

java

julia

node

perl

python3

ruby

rust

swift
gmean-smallest
gmean-fastest

100 -

more
compact

-heroic entry)
[
ool 1 Hifninni

60 -

Execution Time

(normalized to fastest non
")
o
a

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

Compressed Code Size (normalized to most compact entry)

: For more information, see this lightning talk: https://www.youtube.com/watch?v=U8KM8wv32js&list=PLugM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

https://www.youtube.com/watch?v=U8KM8wv32js&list=PLuqM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

CLBG Language Comparison (selected languages, no heroic versions, zoomed in)

chapel
csharpcore
gcc

go

app

ifx

java

julia

node

perl

python3

ruby

rust

swift
gmean-smallest
gmean-fastest

10 - i
N\ more

Y
N,
N,
A
N
NN
N
VN
LN
NN
\ Y
\ O,

ool I HHINRNND

Execution Time
(normalized to fastest non-heroic entry)

® Julia ©Go ® Java..
- ® C#
2- ™ S
™ .\\\ @) N
© chepel AV @ C++
1 1 1 ' IC ‘-s‘. Ruslt 1 1 1
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

Compressed Code Size (normalized to most compact entry)

: For more information, see this lightning talk: https://www.youtube.com/watch?v=U8KM8wv32js&list=PLugM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

https://www.youtube.com/watch?v=U8KM8wv32js&list=PLuqM5RJ2KYFi2yV4sFLc6QeRYpS35UeKl&index=6

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

|
1
TAMTRIAD'“MPHOPENMP use BlockDist; STREAM Performance (GB/s)
config const n = 1 000 000, S0000 e
alpha = 0.01; 25000 f Cha%g?%elggz—_—:—_— 7777777777777777777777777
const Dom = blockDist.createDomain({l..n}); | o el
var A, B, C: [Dom] real; % S e
—SUM, 0, comm) 7 10000 ,,
B=2.0; 5000 - e
e = W5 oceectorstoe peaes, 3, sasa ewlel 0) cC = 1. O; 0
1632 64 128 256
— A =B + alpha * C; Locales (x 36 cores / locale)
]
]
HPCC RA: MPI KERNEL
forall (, r) in zip(Updates, RAStream()) do RA Performance (GUPS)
Tlr & indexMask].xor(r):; 14 - SRR
12
10
2 8
o 6
4
2
O L
16 32 64 128 256
'72 Locales (x 36 cores / locale)

Applications of Chapel

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox

Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Python3 Client ;’:‘0 Chapel Server

ket

t Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

RH (%) at Lake Mead

Desk dot chpl: Utilities for Environmental Eng.

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

(] e " L ==
2010 2011 2012 2013 2014 2015

date

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

Nelson Luis Dias
The Federal University of Parand, Brazil

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

[images provided by their respective teams and used with permission]

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

NA
\7
l a

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
SXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Why use Chapel?

Some reasons to consider Chapel:
e You want to do parallel or distributed programming in a language designed for it
e You're using Python, R, or Matlab but need more performance or scalability

e You're doing parallelism in a conventional approach and want a more productive, integrated alternative
—you're doing multicore / multithreaded parallelism using OpenMP or pthreads
—you're doing GPU programming using CUDA, HIP, SYCL, Kokkos, OpenACC, OpenCL
—you're doing scalable parallelism using MPl or SHMEM
—you're using some combination of the above in a single program and it’'s become unwieldy

Things to be aware of:
e Chapel’s user community is much smaller than Python, C++, efc.
- However, it’s growing and the Chapel team is very active and communicative
o The current number of libraries is much smaller than Python, C++, efc.
—Interoperating with existing libraries is a common way of dealing with this
 Like a lot of HPC software, it’s a bit more rough-and-tumble than mainstream languages
- However, development proceeds at a fast pace and user issues are typically resolved quickly

—

13

Outline

e Motivation for Chapel
 Sample Chapel Applications
o Chapel Characteristics

o Sample Computation

e Wrap-up

14

Sample Chapel Applications

Applications of Chapel

Python3 Client m™ma Chapel Server
& . Socket
*HE
Code Modules [3
2
t Distributed
ﬁ Object Store
Platform MPP, SMP, Cluster, Laptop, etc. 23] |

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.
U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity
Tom Westerhout Nelson Luis Dias

Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

[images provided by their respective teams and used with permission]

Rebecca Green, Helen Fox, Scott Bachman, et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines

Systems: Desktops, HPC systems w/ GPUs

Low-pass filter with LOWESS (intrinsically parallel)

100

RH (%) at Lake Mead
S

2010 2011 2012 2013 2014 2015

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops, sometimes w/ GPUs

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel

Posted on September 17, 2024.

Tags: Computational Fluid Dynamics == User Experiences Interviews

(i

By: Engin Kayraklioglu, Brad Chamberlain

T

;j “Chapel worked as intended: the code

v maintenance is very much reduced, and

*| its readability is astonishing. This enables
of undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

%

—

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: Earth Sciences || Image Analysis = GPU Programming

User Experiences = Interviews

By: Brad Chamberlain, Engin Kayraklioglu

In this second installment of our Seven Questions for Chapel Users series, we're looking at a
recent success story in which Scott Bachman used Chapel to unlock new scales of biodiversity
analysis in coral reefs to study ocean health using satellite image processing. This is work that

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel
Posted on October 15, 2024.

Tags: User Experiences | Interviews || Data Analysis

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

In this edition of our Seven Questions for Chapel Users series, we turn to Dr. Nelson Luis Dias from

(ATTO), a project dedicated to long-term, 24/7 monitoring of greenhouse gas fluctuations. Read

1 “With the coral reef program, | was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had

=

on

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data

| 1 the features that allowed me to do it.” a

synchronization, managing threads, etc.”

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/
https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

RapidQ Coral Biodiversity Summary

P
What is it? f r 1

» Measures coral reef diversity using high-res satellite image analysis ;
e ~230 lines of Chapel code written in late 2022 L J
N

e Initial code was CPU-only

Who wrote it? By P
I~y
o Scott Bachman, NCAR/[C]Worthy ‘NCAR [V] \'\ or Lh\'

—with Rebecca Green, Helen Fox, Coral Reef Alliance @ CORAL

REEF ALLIANCE

Why Chapel?
 easy transition from Matlab/Python, which were being used
e massive performance improvement:
previous ~10-day run finished in ~2 seconds using 360 cores
« enabled unexpected algorithmic improvements

Previous performance (serial, MATLAB): ~ 10 days

Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

From Scott Bachman’s CHIUW 2023 talk: https://youtu.be/IJhh9KLL2XO0

: | 18

https://youtu.be/lJhh9KLL2X0

Coral Reef Spectral Biodiversity: Productivity and Performance

Original algorithm: Habitat Diversity, O(M - N - P)

Previous performance (serial, MATLAB): ~ 10 days

Current performance (360x cores, Chapel): ~ 2 seconds

Roughly 5 orders of magnitude improvement

Multilocale Coral Image Analysis

i
4 ===
Improved algorithm: Spectral Diversity, O(M - N - P3) o Rl
o Chapel run was estimated to require ~4 weeks on 8-core desktop @ , /,"/
« updated code to leverage GPUs &
- required adding ~90 lines of code for a total of ~320 T - Speedup over 2 nodes
« ranin ~20 minutes on 64 nodes of Frontier I — ” o
- 512 NVIDIA K20X Kepler GPUs Number of Nodes
(x8 GPUs)

: | 19

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

apel Server

d
Socket

e E I E

Python3 Client

Arithmetic

Distributed
Object Store

Platform MPP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 .

60 -

RH (%) at Lake Mead

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias
The Federal University of Parand, Brazil

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

T

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

[images provided by their respective teams and used with permission]

ChplUltra: Simulating Ultralight Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

big_add_Sum st cizrs 16 e 5 e

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

21

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
(written in Pythoni)‘_ (written in Chapel)

= Jupyter big_add_sum uasowspore 16 mots s> cnanc

Ta (1) mport arkosda as ak

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”

: | 22

Performance and Productivity: Arkouda Argsort

HPE Cray EX =g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)

HPE Cray EX @@
o Slingshot-11 network (200 Gb/s)
« 896 compute nodes
o 28 TiB of 8-byte values
e ~1200 GiB/s (~24 seconds)

HPE Apollo =3¢
e HDR-100 InfiniBand network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

GiB/s

9000
8000
/7000
6000
5000
4000
3000
2000
1000

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

—

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

LT L —

o [1): iaport arkooda as ak

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

Classic Arkouda: “A scalable version of NumPy / Pandas for data scientists”
Current Arkouda: “An extensible framework for arbitrary HPC computations”
Both: “A way to drive HPC systems interactively from Python on a laptop”

—

24

For More Information

Arkouda website: htfps://arkouda-www.github.io/

github documentation gitter

Massive-scale data science,
from the comfort of your laptop

° Arkouda
Ready for supercomputers

NumPy
Industry standard

import arkouda as ak

ak.connect(" localhost', 5555)

ak. rando. randint (0, 24x32, 24x38)
b = ak. randon. randint (0, 2#k32, 24k38) #

¢ = ak.sort(c)
print(cle:10])

Tutorial Video [Chat on Gitter

Arkouda v2024.12.06 released!

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

Read the release notes —+

Arkouda is...

Fast

Arkouda is powered by Chapel, a
programming language builtfrom the
ground up to support parallelism and
distributed computing. Make the most
out of every core and every node in
your system.

Powered by Chapel

Interactive Extensible
By distributing your data across One can expand on Arkouda’s
multiple nodes, Arkouda allows you to capabilties, thus enabling arbitrary
rapidly transform and wrangle datasets scalable computations to be performed
in real time that are simply intractable from Python.

for a laptop or deskiop.

Arkouda’s backend is in Chapel, an op parallel

language. Chapel is unique among mainstream languages as it puts parallelism and locality N
in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to
perform well and scale on many different architectures, from multicore laptops to cloud CHAPEL

systems to world's fastest supercomputers.

To learn more about Chapel, check out its blog, presentations, tutorials and demos, and the

How Can | Learn Chapel? page.

Arkouda users are saying...

...solving problems in a matter of seconds, as opposed to days...

— Tess Hayes, Bytoa

11 . . . _—
[I’'m] working with more data than | ever thought possible as a data scientist!

— Jake Trookman, Erias

25

https://arkouda-www.github.io/
https://arkouda-www.github.io/
https://arkouda-www.github.io/

Arkouda Interview

Blog: Interview with co-founding developer, Bill Reus: https://chapel-lang.org/blog/posts/7gs-reus/

Table of Contents

1. Who are you?

2. What do you do? What problems
are you trying to solve?

3. How does Chapel help you with
these problems?

4. What initially drew you to Chapel?

5. What are your biggest successes
that Chapel has helped achieve?

6. If you could improve Chapel with a
finger snap, what would you do?

7. Anything else youd like people to
know?

(., Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Bill Reus: Interactive
Supercomputing with Chapel for Cybersecurity
Posted on February 12, 2025.

Tags: User Experiences | Interviews | Data Analysis || Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

We're very excited to kick off the 2025 edition of our Seven Questions for Chapel Users series wit
the following interview with Bill Reus. Bill is one of the co-creators of Arkouda, which is one of
Chapels flagship applications. To learn more about Arkouda and its support for interactive data
analysis at massive scales, read on!

1. Who are you?

My name is Bill Reus, and | live near Annapolis, MD and the beautiful Chesapeake Bay. | am
currently a data scientist doing statistical modeling and simulation for the United States
government, but | began my career as an experimental chemist. In graduate school, | measured
electron transport through thin films of organic molecules using an apparatus that our group
invented to collect large volumes of noisy data quickly and with low cost. This approach
contrasted with the typical means of studying molecular electronics, which was to spend weeks
or months collecting a small number of exquisite measurements in ultra-high vacuum and at
ultra-low temperature.

“l was on the verge of resigning
myself to learning MPI when | first
encountered Chapel. After writing my
first Chapel program, | knew | had
found something much more
appealing.”

“Chapel's separation of concerns
immediately felt like the most natural
way to think about large-scale
computing. | would highly encourage
anyone wanting to get into HPC
programming to start with Chapel.”

—

26

https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/
https://chapel-lang.org/blog/posts/7qs-reus/

Six Key Characteristics of Chapel

1. portable: runs on laptops, clusters, the cloud, supercomputers

28

Where Does Chapel Run?

In the Browser:

o GitHub Codespaces
« Attempt This Online (ATO)

Laptops/Desktops:
o Linux/UNIX
« MacOS X
« Windows (leveraging WSL)

HPC Systems:
o Commodity clusters
« HPE/Cray supercomputers, such as:
— Frontier
- Perlmutter
- Piz Daint
- Polaris

o Other vendors’ supercomputers

—

Where does Chapel run?
Cloud:

InfiniBand v

« AWS
« Microsoft Azure (?)
e Google Cloud (™

CPUs:

o Intel
« AMD
o« Arm (M1/M2, Graviton, A64FX, Raspberry Pi, ...)

GPUs:
« NVIDIA
« AMD

Container
Supercomputer

Desktop/Laptop Cluster

Networks:
 Slingshot
o Aries/Gemini

MacOS HPE Cray EX

° InfiniBand Linux AWS HPE Apollo Cray CS

AWS E FA Windows (with WSL) Azure HPE Superdome Flex Docker

» Ethernet https://chapel-lang.org/docs/usingchapel/portability.html

| 29

https://chapel-lang.org/docs/usingchapel/portability.html
https://chapel-lang.org/docs/usingchapel/portability.html
https://chapel-lang.org/docs/usingchapel/portability.html

Where can | get Chapel?

Release Formats: @;ma DOWNLOAD DOCS ~ LEARN RESOURCES - COMMUNITY BLOG

* Source releases via GitHub DOWNLOAD AND INSTALL CHAPEL
« Spack
o E4S

« Linux packages via apt/rpm

From Source~

To download and install Chapel from source, download chapel-2.5.0.tar.gz from GitHub, then unpack and build it as described in the Quickstart instructions.

o« Homebrew With Spack»
o Docker With Docker»
o Modules on HPE Cray systems With Homebrew»

o ATO / GitHub Codespaces On HPE Systems)

With Linux Package Managers~

We provide Chapel packages for several different Linux distributions, though they come with some performance caveats. They can be installed as follows:

1. Download the package for your system using one of the following links:

Operating System Single-Locale Configuration GASNet+UDP Slurm+OF|
AlmaLinux 9 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
AlmaLinux 10 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
Amazon Linux 2023 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
Debian 11 [x86_64] [arm64] [x86_64] [arm64]

Debian 12 [x86_64] [arm64] [x86_64] [arm64]
Fedora 41 [x86_64] [arm64] [x86_64] [arm64]
Fedora 42 [x86_64] [arm64] [x86_64] [arm64]
RHEL 9 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
RHEL 10 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
RockyLinux 9 [x86_64] [arm64] [x86_64] [arm64] [x86_64] [arm64]
RockvLinux 10 [x86 641 [arme4] [x86 641 [arme4l] [x86_64] [arm641

https://chapel-lang.org/download/

https://chapel-lang.org/download/
https://chapel-lang.org/download/
https://chapel-lang.org/download/

Six Key Characteristics of Chapel

1. portable: runs on laptops, clusters, the cloud, supercomputers

2. open-source: to reduce barriers to adoption and leverage community contributions

31

Chapel is Open-Source

e Developed at, and released through, GitHub
e Using the Apache 2.0 license
e Free to download and use
e Accepts and benefits from contributions from the community

e Recently accepted into the Linux Foundation and HPSF (High Performance Software Foundation)

32

Six Key Characteristics of Chapel

1.
2.
3.
kL.
5.

portable: runs on laptops, clusters, the cloud, supercomputers

open-source: to reduce barriers to adoption and leverage community contributions
compiled: o generate the best performance possible

statically typed: to avoid simple errors after hours of execution

interoperable: with C, C++, Fortran, Python, ...

33

Chapel Interoperability

e Like most modern languages, Chapel is designed to interoperate with others
e In practice, the most common tend to be C, C++, Fortran, and Python

e Two modes:
o Chapel owns ‘main()’ and calls out to routines in other languages
o User builds a Chapel library and invokes it from another language

e Resources:

o Interoperability technical notes: https://chapel-lang.org/docs/technotes/index.html#interoperability
 Library for calling out to Python: https://chapel-lang.org/docs/modules/packages/Python.himl

34

https://chapel-lang.org/docs/technotes/index.html
https://chapel-lang.org/docs/technotes/index.html
https://chapel-lang.org/docs/technotes/index.html
https://chapel-lang.org/docs/modules/packages/Python.html
https://chapel-lang.org/docs/modules/packages/Python.html
https://chapel-lang.org/docs/modules/packages/Python.html

Six Key Characteristics of Chapel

portable: runs on laptops, clusters, the cloud, supercomputers

open-source: to reduce barriers to adoption and leverage community contributions
compiled: o generate the best performance possible

statically typed: to avoid simple errors after hours of execution

interoperable: with C, C++, Fortran, Python, ...

from scratch: not a dialect or extension of another language
(though inspiration was taken from many)

35

Chapel Tools

e VSCode support: see https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode

 chpl-language-server: provides Chapel code intelligence for most editors (VSCode, vim, emacs, ...)
o chplcheck: a Chapel linter

» c2chapel: converts C header files to Chapel extern declarations in support of interoperability

e chpldoc: HTML-based rendering of comment-based documentation

e chapel-py: Python bindings to the Chapel compiler front-end

» mason: Chapel’s package manager

More information available at https://chapel-lang.org/docs/tools/

36

https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://marketplace.visualstudio.com/items?itemName=chpl-hpe.chapel-vscode
https://chapel-lang.org/docs/tools/
https://chapel-lang.org/docs/tools/
https://chapel-lang.org/docs/tools/

Frameworks for Testing Chapel Code

1. Chapel testing system (https://chapel-lang.org/docs/developer/bestPractices/TestSystem.htmD:
« forms the basis of Chapel’s nightly regression testing

e supports two modes of testing
— correctness: compiles and runs program, capturing output and comparing to a ‘.good’ file
— performance: tracks key-value pairs and supports plotting values over time

HPCC: STREAM-EP Perf (GB/s/locale) - n=5,723,827,200

150

100

Performance (GB/s/locale)

[T T A I 47 11 1 4h40]1s] [19]

2017-08-08: With comm=ugni, register large arrays dynamically _(#6947)_‘

é

2. UnitTest package library: https://chapel-lang.org/docs/modules/packages/UnitTest.html

—

37

https://chapel-lang.org/docs/developer/bestPractices/TestSystem.html
https://chapel-lang.org/docs/developer/bestPractices/TestSystem.html
https://chapel-lang.org/docs/developer/bestPractices/TestSystem.html
https://chapel-lang.org/docs/modules/packages/UnitTest.html
https://chapel-lang.org/docs/modules/packages/UnitTest.html
https://chapel-lang.org/docs/modules/packages/UnitTest.html

Chapel Documentation

e Docs hierarchy: https://chapel-lang.org/docs/ e & / Chapel Documentation
version 2.5 ¥
e Key elements:
o Geffing started with Chapel (building and configuring)
o Platform-specific notes (Mac, Windows, AWS, HPE, ...)
Quickstart Instructions
o Primers (programs that teach specific features) T

Search docs

Chapel Documentation

Compiling and Running Chapel

® Quickstart Instructions
¢ Using Chapel

¢ Platform-Specific Notes
¢ Technical Notes

e Library module documentation: Flatform-Specifc Notes

Technical Notes

—standard modules

Tools
e Tools

— package modules Docs for Contributors « Docs for Contributors
o Language specification

Writing Chapel Programs

Quick Reference

Hello World Variants ¢ Quick Reference
Pri ¢ Hello World Variants
rimers
e Primers

LA e e e e Language Specification

Standard Modules e Standard Modules

Package Modules ¢ Package Modules

o Standard Layouts and Distributions
e Mason Packages

e Chapel Users Guide (WIP)

Standard Layouts and Distributions

Mason Packages

Chapel Users Guide (WIP)

https://chapel-lang.org/docs/
https://chapel-lang.org/docs/
https://chapel-lang.org/docs/
https://chapel-lang.org/docs/usingchapel/
https://chapel-lang.org/docs/usingchapel/
https://chapel-lang.org/docs/platforms/
https://chapel-lang.org/docs/platforms/
https://chapel-lang.org/docs/platforms/
https://chapel-lang.org/docs/platforms/
https://chapel-lang.org/docs/primers/
https://chapel-lang.org/docs/primers/
https://chapel-lang.org/docs/modules/standard.html
https://chapel-lang.org/docs/modules/standard.html
https://chapel-lang.org/docs/modules/packages.html
https://chapel-lang.org/docs/modules/packages.html
https://chapel-lang.org/docs/language/spec/
https://chapel-lang.org/docs/language/spec/

Sample Computation:
Bale Index Gather (IG)

Bale Index Gather (IG): In Pictures

0 1 2 3 4 5 6 7 8 9
o fulaa]ss]u]ss]esfrrfss]o0

Src:

o [t
[

40

Bale IG in Chapel: Array Declarations

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src:

41

Bale IG in Chapel: Compiling

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m]

int;

Slchpl bale-ig.chpl
S

—1

Src:

42

Bale IG in Chapel: Executing

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
" /vale-ig
$

—1

Src:

Locale 0

<

H

Locale 1

Locale 2

Locale 3

43

Bale IG in Chapel: Serial, Zippered Version

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

for (d, 1) in zip(Dst, Inds) do
d = Src[i];

$ chpl bale-ig.chpl
$./bale-ig

S

0 1 2 3 4 5 b 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Locale 0 Locale 1 Locale 2 Locale 3

&

VA

Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10, o 1 2 3 4 5 & 7 8 9
m = 4;
’ Src: O|11|22|33|44|55|66|77|88|99|
var Src: [0..<n] int, Inds:

Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl Locale 0 Locale 1 Locale 2 Locale 3
$./bale-ig oo I
S e dhe

Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

config const n = 10, o 1 2 3 4 5 & 7 8 9
m = 4;
’ Src: O|11|22|33|44|55|66|77|88|99|
const SrcInds = {0..<n},

DstInds = {0..<m};

var Src: [SrcInds] int, Inds:
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl Locale 0 Locale 1

Locale 2 Locale 3

$./bale-ig oo I
3 oo

Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n
m

const SrcInds
DstInds

= 10,
:4;

= blockDist.createDomain (0. .<n),
= blockDist.createDomain (0. .<m);

var Src: [SrcInds] int,

Inds, Dst:

[DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

o 1 2 3 4 _5 6 7 8 9
Src IO |11|22|33|44|55|66|77|88|99|
| |

Inds:
Dst:
|
Locale 0 Locale 1 Locale 2 Locale 3
o/o| M oo T oo/ M ele M
oo oo oo oo

Bale IG in Chapel: Distributed Parallel Version on HPE Cray EX (Slingshot-11)

use BlockDist;

config const n

m

const SrcInds

DstInds = blockDist.createDomain (0.
var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

= 10,
:4;

= blockDist.createDomain (0.

forall (d, 1) in zip(Dst, Inds) do

d = Src([i];

.<n),
.<m) ;

$ chpl bale-ig.chpl
$./bale-ig --n=..

S

--m=.. —nl [YelS

GB/s

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

25000 [---------c-s-s-s-mmmmmms-sososooooo g

Chapel —_—
.. SHMEM Exstack ——
20000 SHMEM Convey - =% -

15000 f--------- - T T
10000 |- - - - - -t T
5000 |-

]
2048
Compute Nodes

512 1024 4096

Src: 0 1122 88 | 99

Inds:

Dst:

Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

d = Srcli];

forall (d, 1) in zip(Dst, Inds) do

SHMEM (Exstack version)

Chapel ——
... SHMEM Exstack —¢— _ _ _ _ _ _ _ _ _ _ _ __ _ _ __~—__ _ ____
SHMEM Convey - -% -

GB/s

i=0;
while (exstack proceed(ex, (i==1_ num req))) {
i0 = 1;

while(i < 1 num_req) {
1 indx = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;
if (!exstack push(ex, &l_indx, pe))
break;
Aldrarg
}
exstack_exchange (ex) ;
while (exstack pop(ex, &idx , &fromth)) {
idx ltable[idx];
exstack push(ex, &idx, fromth);
}
lgp_barrier();
exstack_exchange (ex) ;

for (j=i0; j<i; j++) {
fromth = pckindx[j] & Oxffff;
(

tgt[j] = idx;
}
lgp_barrier();

}

exstack pop_ thread(ex, &idx, (uint64_t)fromth);

SHMEM (Conveyors version)

0;
while (more = convey advance (requests, (i == 1 _num req)),
more | convey advance(replies, !more))

for (; 1 < 1 _num req; i++) {

pkg.idx = i;

pkg.val = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;

if (! convey push(requests, &pkg, pe))
break;

while (convey pull (requests, ptr, &from)

pkg.idx = ptr->idx;

pkg.val = ltable[ptr->vall];

if (! convey push(replies, &pkg, from))
convey unpull (requests);
break;

}

while (convey pull (replies, ptr, NULL) ==

tgt [ptr->idx] = ptr->val;

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

== convey_OK)

—

512 1024 2048 4096
Compute Nodes

Src: 0 1122 88 | 99

Inds:

Dst:

Summary

Chapel is unique among programming languages
« features first-class concepts for parallelism and locality o e T

s . SHMEM C
DstInds = blockDist.createDomain (0. .<m) ; onvey

« ports and scales from laptops to supercomputers S— I B

e supports clean, concise code relative to conventional approaches ... «. . i siooer, e

d = Src[i];

N 2 2)
512 1024 2048 4096

e supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at all scales
e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science .
« Arkouda is a notable case, supporting extensible, interactive HPC

Ways to interact with or follow the Chapel Community

“Live” (Virtual) Community Events

e Project Meetings, weekly

e Deep Dive / Demo Sessions, weekly tfimeslot

e ChapelCon (formerly CHIUW), annually

Social Media

FOLLOW US
BlueSky
Facebook
LinkedIn
Mastodon
Reddit

X (Twitter)
YouTube

UADBEHIK

—

Discussion Forums

GET IN TOUCH
@ Discord

D Discourse
[_] Email

O GitHub Issues

3 citter

Stack Overflow

Electronic Broadcasts

e Chapel Blog, typically 1-4 articles per month

e Community Newsletter, quarterly
e Announcement Emails, around big events

Ways to Use Chapel

GET STARTED

gl Attempt This Online
@ Docker

ES E4S

Q GitHub Releases

"0 Homebrew

@ Spack

(from the footer of chapel-lang.org)

52

https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://github.com/chapel-lang/chapel/discussions/27247
https://github.com/chapel-lang/chapel/discussions/27247
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/blog/
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://chapel.discourse.group/c/announcements/8
https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

TIMELINE SESSIONS ORGANIZATION CONTACT CHAPEL WEBSITE

ChapelCon ‘25

October 7-10, 2025

Join us at the annual Chapel Programming Language event to
talk about the language, libraries, and applications! ChapelCon is
free to attend and will be held virtually.

Registration Office Hours Signup H Tutorial Topic Requests

ChapelCon 25 welcomes anyone with computing challenges that demand performance, particularly through parallelism and scalability.
ChapelCon ‘25 brings together Chapel users, enthusiasts, researchers, and developers to exchange ideas, present their work, and forge
new collaborations. Anyone interested in parallel programming, programming languages, or high performance computing is encouraged to
attend. A wide range of sessions support all levels of experience, with Tutorials and Free Coding sessions for those looking to hone their
skills, Office Hour sessions for those looking for help from Chapel developers, and Conference sessions for those looking to share and
discuss their work. ChapelCon ‘25 is free to attend and will be held virtually.

https://chapel-lang.org/chapelcon25

https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/chapelcon25/
https://chapel-lang.org/chapelcon25/

Chapel Website

The Chapel Programming Language

Productive parallel computing at every scale.

| @ Hello World writeln("Hello, world!");

// create a parallel task per processor core

coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task ", tid);

Q Distributed Hello World

Q Parallel File 10

// print these 1,000 messages in parallel using all cores
forall i in 1..1000 do

7S
(E;AEEI. DOWNLOAD DOCS ~ LEARN RESOURCES ~ COMMUNITY BLOG
=

ChapelCon ‘25

ChapelCon '25 CFP Released!
on June 26, 2025

ChapelCon 25 is coming this fall. Check out the webpage and the newly released CFP today.

CONTINUE READING

O 1D Heat Diffusion writeln("Hello from iteration ", i);
O GPU Kernel
TRY CHAPEL GET CHAPEL LEARN C

PRODUCTIVE PARALLEL

Concise and readable without
compromising speed or expressive
power. Consistent concepts for parallel

computing make it easier to learn.

Built from the ground up to implement
parallel algorithms at your desired level of
abstraction. No need to trade low-level
control for convenience.

Chapel is a comp
generating efficient]
meets or beats the pe
languaj

SCALABLE GPU-ENABLED

Chapel enables application performance
at any scale, from laptops to clusters, the
cloud, and the largest supercomputers in
the world.

Chapel supports vendor-neutral GPU Entirely open-source u:
programming with the same language license. Built by a grf
features used for distributed execution. developers)]
No boilerplate. No cryptic APls.

chapel-lang.org

USERS LOVE IT

10 Myths About Scalable Parallel Progr Languages (Redux), Part 3: New
h "

vs. L Ex

By Brad Chamberlain on June 25, 2025

A third archival post from the 2012 IEEE TCSC blog series with a current reflection on it

CONTINUE READING

The use of Chapel worked as intended: the code maintenance is very
1t reduced, and its readability is astonishing. This enables undergraduat
students to contribute to its development, something almost impossilf
think of when using very complex software.

- Eric Laurendeau, Professor, Polytd uJQc [5

Announcing Chapel 2.5!

By Brad Chamberlain, Michael Ferguson, Lydia Duncan, Jade Abraham, Ben Harshbarger, Daniel Fedorin on June
12,2025

Highlights from the June 2025 release of Chapel 2.5

[CONTINUE READING

A lot of the nitty gritty is hidden from you until you need to know it. ...

like the complexity grows as you get more comfortable - rather than
with everything at once.

- Tess Hayes] =

Paper and Presentation Refresh
on June 10, 2025

We've just completed a long-overdue refresh of Chapel-related papers and presentations from the past year or so

CONTINUE READING

CHAPEL IN PRODUCTION

AMPS

World-class multiphysics simulation

Written by students and post-docs in Eric Laurendeau's lab at Polytechnique Montreal.

its C/OpenMP using far fewer lines of code. Dramatically
accelerated the progress of grad students while also supporting contributions from
undergrads for the first time.

| L s —)
£

(Chapel Doep Dive & Demo meoting

Public Weekly Deep-Dive / Demo Meeting Launched
on May 20, 2025

In additi

demos

[onal FOLLOW US GET IN TOUCH GET STARTED

CONT
¢ Bluesky @ Dpiscord ﬂ Attempt This Online
0 Facebook D Discourse & Docker
[Linkedin] Email ES E4s
@ Mastodon ©) GitHub Issues ©) GitHub Releases
=

@ Reddit M citter %) Homebrew
X X (Twitter) 2 Stack Overflow @ spack
D YouTube

https://chapel-lang.org/
https://chapel-lang.org/
https://chapel-lang.org/

Thank you

https://chapel-lang.org
@ChapelLanguage

