Chapel Update

Chapel Team, Cray Inc.
SC17 Briefings
November 2017

=

cRasr
CcCHAaARPEL
—

=

Safe Harbor Statement

~

Ghis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
\ ? Y,

Copyright 2017 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

= Copyright 2017 Cray Inc.

YR
&/

What does “Productivity” mean to you? o

Recent Graduate:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmer:

“that sugary stuff that | can’t use because | need full control to ensure good
performance”

Computational Scientist:

“something that lets me express my parallel computations without requiring me to
wrestle with architecture-specific details”

Chapel Team:
“something that lets the computational scientist express what they want,
without taking away the control the HPC programmer needs,
implemented in a language as attractive as recent graduates would like.”
Y

C/ ; (4)

=/ Copyright 2017 Cray Inc.

Chapel and Other Languages

Chapel strives to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

=/ Copyright 2017 Cray Inc.

The Challenge ==AYf '

)
S \

\
Q: So why don’t we already have such a language already?
A: fechnical-challenges? \
e while they exist, we don’t think this is the main issue...
A: Due to a lack, in HPC, of...
...long-term efforts

...resources
...Co-design between developers and users

...community will
...patience

Chapel is our attempft to reverse this trend

Copyright 2017 Cray Inc.

A Brief History of Chapel

2002-2012: DARPA HPCS

e Cray pursued a new language, Chapel
e Delivered a compelling research prototype

2013-2018: “the 5-year push”

e Based on positive user response, Cray set out to improve Chapel
e performance improvements
e fixing / improving features
e maintaining / improving portability

nurturing the community

exploring governance models

= Copyright 2017 Cray Inc.

14 fuII-tlme employees + 2 summer mterns + 2—4 GSoC students

Chapel Community R&D Partners A~

P N,
THE GEORGE
Ll 7 WASHINGTON -//_,\
HAVERFORD S OVem WESTERN
COLLEGE AMD i\/}“:\\ WASHINGTON, DC WASHINGTON UNIVERSITY

pkmky A gSRicE @m

THE UNIVERSITY OF TOKYO
THE UNIVERSITY
OF ARIZONA

wg Lawrence Livermore
National Laboratory

BERKELEY LAB

Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)
https://chapel-lang.org/collaborations.html

®
\
CRAY |
(Y \

Highlights of the Past Year or 47/
=

cRasr
CcCHAPRPEL
—

=/

\
u ® '
'he Year in Downloads (~3400 total, a record) &=RANY
J
e \
S \
Chapel 1.15.0 — Total downloads \
2000 — github-chapel-lang-chapel-3568187
— bintray-homebrew-bottles-chapel-1.15.0
1500
3 \
©
o 1000
c
2
o
[a]
500
0 1
Jan 2017 Apr 2017 Jul 2017 Oct 2017
Chapel 1.14.0 — Total downloads
— github-chapel-lang-chapel-2433994
— bintray-homebrew-bottles-chapel-1.14.0
1500 — sourceforge-chapel-chapel-1.14.0-chapel-
1.14.0.tar.gz
L2}
g 1000
o
S
o
(=}
500 /
0 1
Jan 2017 Apr 2017 Jul 2017 Oct 2017

@ ©
k../ Copyright 2017 Cray Inc. N

Computer Language Benchmarks Game (cLBG) ==A:Yf '

S \
The Computer Language . . \
Website supporting cross-

64-bit quad core data set Ianguage com parisons

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

e 13 toy benchmark programs x
~28 languages x many implementations
Ada C Chapel ~C# Cr+ Dart e exercise key computational idioms

Erlang F# Fortran Go Hack

e specific approach prescribed

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest

stories

Computer Language Benchmarks Game (cLBG) ==A:Yf '

64-bit quad core data

The Computer Language
Benchmarks Game

set

Will your toy benchmark program be faster if you write it in

it!

Which programs are fast?

Ada c Chapel

a different programming language? It depends how you write

Which are succinct? Which are efficient?

C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby

Rust Smalltalk

Swift TypeScript

{ for researchers }

fast-faster-fastest

stories

S \
\

Chapel’s approach to the CLBG:

e striving for elegance over heroism

e ideally: “Want to learn how program xyz
works? Read the Chapel version.”

\
Scatter plots of CLBG code size x speed SRR
: : [0 smallest

— O fastest :
g - 3 5 gmean-smallest
ol @) § § () gmean-fastest
EB | 5 | .
L | 0 . . .
c O
22 [
g
'ﬁ‘_;“ § 5 ?
¢ g m . " &
= 9 ;
: m B . @

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary el
(Oct 2017 standings) « o

100 _ i T \

I csharpcore

B dart

Il erlang

I fpascal

B fsharp \
S gec

N ghc

I gnat

g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
o[l PND
S~ : python3

“._Erlan
ang Smalltalk - g mm s
‘\‘ i sbcl
H g B scala
swift
ocaml m Racket PHP T B B = ::pescript
Dal't m- ,‘\\\ ® () . . yarv
J@V@@@Tﬂpﬂ: \. ﬁ . o D ﬂ__l[lglp i D gmean-smallest

Typescript ™ m-5- wyom- N i S O gneen-fostest

Compressed Code Slze (normallzed to smallest entry)

Execution Time
(normalized to fastest entry)

~
=3

CLBG Cross-Language Summary
(Oct 2017 standings)

10

\

5 N |
Typescr!pt I~'.\\ |
Javaseript ©
8 b L R B \\\\\\ Ij\ .

“Scala
Haskell ® “F#
N

Execution Time
(normalized to fastest entry)

’

o)

’I
0
o, I
o

1.5 3.0

Compressed Code Size (normalized to smallest entry)

2.0 2.5

fsharp

gcc

ghc

gnat

g0

gpp

hack

ifc

java

jruby

lua

node

ocaml

perl

php
python3
racket

i

sbhcl

scala
swift
typescript
VW

yarv
gmean-smallest
gmean-fasest

CLBG Cross-Language Summary el

(Oct 2017 standings)

10
B chapel
Il csharpcore

\

5 N |
Typescr!pt I~'.\\ |
Javaseript ©

8 b L R B \\\\\\ Ij\ .

Bl fsharp
H gcc
I chc
N gnat
g0
. gpp
hack
ifc
java
jruby
lua
node
ocaml
perl
php
python3
racket
i
sbhcl
scala
swift
typescript
VW
yarv
gmean-smallest
gmean-fasest

“Scala
Haskell ® “F#
B e

Execution Time
(normalized to fastest entry)

’

’

0
o, 2
PS +

o)

1.0 1.5 2.0 2.5 3.0 3.5

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary el
(Oct 2017 standings) « o

100 - T : \

: : i g B chapel
: : : I csharpcore

B dart

Il erlang

I fpascal

B fsharp \
S gec

N ghc

I gnat

g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
o[l PND
S~ : python3

\\\‘\ Erlan \\\\; racke
ceang Smalltalk - g mm s
‘\‘ : sbcl
é : B scala
PHP swift
OCamI m Racket ~ e R R — = ::pescript

IN e) . O ; i B yarv
J@V@@@E’ﬂpﬂ: Dal't - ;. ﬁ . . D ﬂ__lﬁglp [] gmean-smallest
Typescrlpt

W= ﬂ Er % - 3~‘ —‘;::::‘E‘:":"”‘\f':-—:-::‘— O gmean-fastest
Chapel -

2.0 2.5 3.0 3.5

Execution Time
(normalized to fastest entry)

~
=3

Compressed Code Size (normalized to smallest entry)

CLBG: Qualitative Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() {
printColorEquations();

const groupl
const group2

= [i in 1..popSizel] new Chameneos(i, ((i-1)%3):Color);
= [i in 1..popSize2] new Chameneos(i, colorslO[i]);
cobegin {

holdMeetings(groupl, n);

holdMeetings(group2, n);
}

print(groupl);
print(group2);

for ¢ in groupl do delete c;
for ¢ in group2 do delete c;

//
// Print the results of getNewColor() for all color pairs.
//
proc printColorEquations() {
for cl in Color do
for c2 in Color do
writeln(cl, " + ", c2,
writeln();

-> ", getNewColor(cl, c2));

//
// Hold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;

}

excerpt from 1210 gz Chapel entry

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

{

Copyright 2017 Cray Inc.

cpu_set_t active_cpus;
FILE* ;

char buf [2048];
char const* pos;

int cpu_idx;

int physical_id;
int core_id;

int cpu_cores;
int apic_id;
size_t cpu_count;
size_t i;

char const* processor_str "processor";

size_t processor_str_len strlen(processor_str);
char const* physical_id str "physical id";

size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str "core id";

size_t core_id_str_len strlen(core_id_str);
char const* cpu_cores_str "cpu cores";

size_t cpu_cores_str_len = strlen(cpu_cores_str);

CPU_ZERO(&active_cpus);

sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
cpu_count = 0;

for (i = 0; i != CPU_SETSIZE; i += 1)

{
if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
}
}

if (cpu_count 1)

is_smp[0] = 0;
return;

}

is_smp[0] = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

]
CRAY

\

CLBG: Qualitative Comparisons =|=A:Yj' '

Can also browse program source code (but this requires actual thought!):

proc main() { . i int* , cpu_set_t* affinityl, cpu_set_t* affinity2)
printColorEquations(); __ ,.aee - - -
.
t 1 [iin.1 512._1.]..---‘::;1" . . active_cpus;
const groupl = [i in l..pepSi%el] new Chameneos(i, b £,
const g_r-qlmi-x'li":i.'l; 1..popSize2] new Chameneos(i, ¢ co egln { bl’,f [2048]; \

cobegin { holdMeetings(groupl, n); Son. tax;

holdMeetings(groupl, n); physical_id;

j horanestings(roup2, m; holdMeetings(group2, n); Sore.id;

cpu_cores;

T apic_id;
Pﬁhﬂ‘!ﬂmﬂlli.,__ } cpu_cou\:xt;
print(group2); "Tttrreean,,, i
..........
for c in groupl do delete c; "tTTrsaaa,,, processor_str = "processor";
for c in group2 do delete c; size_t pr “str_len = strlen(processor str);
} char const* physical_id str = "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str = "core id";
?f Print th 1ts of getNewColor() f 11 colqa*pd n(core_id_str);
rint e resu s O ge ewColor or a colgs G . . . lcores" :
77 e proc holdMeetings(population, numMeetings) { o (epa. cores_str);
proc printColorEquations() { ““' . . - -
for cl in Color do R const place = new MeetingPlace(numMeetings);
for c2 in Color do .

.
writeln(cl, " + ", c2, "‘“""', getNewColor(cl, d
writeln(); .

e coforall c in population do // creat
1 - c.haveMeetings(place, population);

// Hold‘;née'zings among the population by creating a sH
// plate, and then creating per-chameneos tasks to ha
o

delete place;

g g
const place = new MeetingPlace(numMeetings);

coforall c in population do // creatp a tg }
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Comparisons <=|=A:Yj’ '

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

. . {
char const* core_id_str = "core id"}L cpu_set_t active_cpus;
: .4 K FILE* £;
size_t core_id_str_ len = strlen(coj: char buf [2048]; \
char const* cpu_cores_str = "cpu core{ 3 ;‘;:2‘ constr opa. daxy
size_t cpu_cores_str_len = strlen(cpy * i Pyl
“_ int cpu_zores ;
. int apic_id;
CPU_ZERO(&active_cpus); El size t cpu_count;
- . P Size | 17
sched getaffinity(0, sizeof(active cpus), &active cpus); B
Cpu Csunt - 0 . - - " cl.:ar const* processor_str N = "griceisor"; r)
L - r . size_t processor_str_len = strlen(processor_str);
s o ne s _ W 3 oa— * ch tx hysical id_st = "physical id";
for (l = 0 HE 8 l"‘ CPU_SETSIZE, 1 += 1) "' zi::_:ons ghzziz:l_;d_:ti_len = sEr{:xll‘(::hy;ical_id_str);
{ size_t core:id:str_len ; strlen(o;'e_id_str);
3 1 1 h t* t =" "
1f (CPU—ISSET(1, &aCtlve—cpus)) si::_‘tmns zg::z?;::::t:_len = s:l;‘llefl?q;\sx_cores_str);
{ CPU_ZERO(&active_cpus);
Cpu Count += 1; sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)
{
} if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
if (cpu_count == 1)) }
{ . if (cpu_count == 1)
is smp[0] = 0;
- is_smp[0] = 0;
teturn ; return;
} }
es Lae is_smp[0] = 1;
[CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

@
—
K.,/ Copyright 2017 Cray Inc.

Chapel Performance: HPC Benchmarks

.

LCALS: Chapel vs. C + OpenMP =l='A‘V\‘

.

Shared memory performance competitive with hand-coded
Serial LCALS kernels: Chapel vs. g++

\

LCALS

HPCC RA

HPCC RA Performance: Chapel vs. MPI :nA:Y"‘

Performance of RA (atomics)

°
8,02 ge+ seria
zE
EF | II|IIIIII|II||“II]II|II|I|IIIIIIIII|II|I|IIIIIIII »
= 5
V]
Parallel LCALS kernels: Chapel vs g++ w/
° OMP
STREAM PRK o
SE
EF 2 ug++ OMP Locales (x 36 cores per locale)
g oMmmummn dawnn = Chapel parallel P baeing —— 115 usq overstbscried o
. .
@ C
[riad 1Sx Stencil L
o \ o \ ® \
HPCC Stream Triad: Chapel vs. MPI+OpenMP = =Ras Isx Peformance: Chapel vs. MPI, SHMEM R Stencil PRK Scalability cRas
. i s | . \
A\ \ Stencil PRK (weak scaling) 3
Performance of STREAM I1Sx weakiSO Total Time 12000
14
25000 ‘«((" " 10000
20000 T - o 8000
- % 10 2
2 15000 T [g
O 10000 g SHMEM G oo —MPI-OpenMP
5000 b 2 © —Chapel 4000 Chapel
0 1 1) s - 5 2000
1632 64 128 256 2 K
o -
Locales 0 8 16 32 64 1 2 4 8 16 32 64 128 256
Reference —e— 1.12EP —=— 112 Global e Nodes (x 36 cores per node) Nodes
ILINEP —=— L1] Global ---=-
@ C @

Nightly performance graphs online
at: https://chapel-lang.org/perf

Performance: Progress Since HPCS

-
CC=RANY

[\
S \

Significant improvements throughout the past 42 years

LT == R W] Cma - s -) s
Version 1.8 Performance Summary SRas HPCC STREAM Global: historical cRas HPCC Performance Trends (16 locales of Cray XC) ‘=‘="T;" Scalability: STREAM Global Efficiency | | Scalability: STREAM Performance | | Scalability: RA (atomics) Performance R
: : STREAM (GBIS) RA, stomic version (GUPS) s s s
o Happily, in most cases 1.8 matched or beat 1.7 - « Stream performance more than doubled since last release RA (atomics) summary
Eiciny of STREAM Giob + EPis on par with the « 5x betler perormancs for ugnl-qhreads
STREAM Trad - Gobal i et + Global is very com 3 bete perormance forugni-muned
EF STREAN (fagmented) e P Performance of RA (stomics)
e o ’
[—— v @) 3
e = - 3
i §oo
K Locales Local
. . by e G G (1 s T | e o e
M SR [SRR e - EE
LCALS Status: Serial Performance v1.14.0 =225 | | Multidocale Performance == | 1sx: Performance Summary S=A7 | | Multi-locale Performance S22 | | LeALs status: Impact: Parallel Perf. v1.15.0 <=7 | | Scalability TR

Long problem size

Serial Chapel vs g+

serial reference is 1.0

H
5

chpl ~fast
~no-icee-float

g++-Ofast fopenmp.

for many

* Gathered on Cray XC with default problem size
« Let's zoom in.

1Sx weakiSO Total Time

« 1o known regressions

i
i
i

Long problem size

Parallel Chapel vs g++/OMP Lol ee 0e 10

Normalized Time

chpl —fast
—no-eee-float

[g+ -Ofast -fopenmp.

for
« Result of dynamic registration leading to affinity improvements

Library Highlights: Past Year —_— Y

New libraries:
e Crypto
Collections: DistributedBag, DistributedDeque \
DateTime
Distributedlters
Futures
LinearAlgebra (ongoing effort)
OwnedObject / SharedObject
e TOML (ongoing effort)
Library improvements:
e BLAS
FFTW
MPI
ZMQ
various: added ‘throw’ing versions of several routines

¢

Copyright 2017 Cray Inc.

Library Highlights: Past Year

New libraries:

Crypto

Collections: DistributedBag, DistributedDeque
DateTime

DistributedlIters

Futures

LinearAlgebra (ongoing effort)

OwnedObject / SharedObject

TOML (ongoing effort)

Library improvements:

BLAS
FFTW
MP|
ZMQ

(developed by GSoC student)
(developed by Cray intern)
(externally developed)

various: added ‘throw’ing versions of several routines

Copyright 2017 Cray Inc.

Libraries: Progress Since HPCS

bradc — ssh bradc@troll.cray.com — bash

/ Copyright (c) 20@ (See LICENSE file for more details)

// Random Module

// This standard module contains a random number generator based on
// the one used in the NPB benchmarks. Tailoring the NPB comments to
// this code, we can say the following:

// This generator returns uniform pseudorandom real values in the
// range (@, 1) by using the linear congruential generator

1/ x_{k+1} = a x_k (mod 2#*46)

// where @ < x_k < 2%k46 and @ < a < 2#*46. This scheme generates
// 2%x44 numbers before repeating. The seed value must be an odd
// 64-bit integer in the range (1, 2746). The generated values are
// normalized to be between @ and 1, i.e., 2%k(-46) * x_k

// This generator should produce the same results on any computer
// with at least 48 mantissa bits for real(64) data.

// Open Issues

// 1. We would like to support general serial and parallel iterators
// on the RandomStream class, but this is not possible with our
// current parallel iterator framework.

// 2. The random number generation functionality in this module is
// currently restricted to 64-bit real, 64-bit imag, and 128-bit

// complex values. This should be extended to other primitive types
// for which this would make sense. Coercions are insufficient.

// 3. Can the multiplier 'arand' be moved into the RandomStream class
// so that it can be changed by a user of this class.

// 4. By default, the random stream seed is initialized based on the
// current time in microseconds, allowing for some degree of

// randomness. The intent of the SeedGenerator enumerated type is to
// provide a menu of options for initializing the random stream seed,
// but only one option is implemented to date.

// Note on Private

// It is the intent that once Chapel supports the notion of 'private’,
// everything prefixed with RandomPrivate_ will be made private to

bradc — ssh bradc@troll.cray.com

extern type gio_regexp_t

extern record gio_regexp_options_t {
var utf8:bool;
var posix:bool;
var literal:bool;
var nocapture:bool;
// These ones can be set inside the regexp
var ignorecase:bool; // (?i)
var multiline:bool; // (?m)
var dotnl:bool; // (?s)
var nongreedy:bool; // (?U)
¥

extern proc gio_regexp_null():qio_regexp_t

extern proc qio_regexp_init_default_options(ref options:qio_regexp_options_t);
extern proc qio_regexp_create_compile(stristring, strlen:int(64), ref options:q\
io_regexp_options_t, ref compiled:qio_regexp_t)

extern proc qio_regexp_create_compile_flags(stristring, strlen:int(64), flags:s\
tring, flagslen:int(64), isUtf8:bool, ref compiled:qio_regexp_t)

extern proc qio_regexp_create_compile_flags_2(str:c_ptr, strlen:int(64), flags:\
c_ptr, flagslen:int(64), isUtf8:bool, ref compiled:qio_regexp_t)

extern proc qio_regexp_retain(ref compiled:qio_regexp_t);

extern proc qio_regexp_release(ref compiled:qio_regexp_t);

extern proc qio_regexp_get_options(ref regexp:qio_regexp_t, ref options: gio_re\
gexp_options_t);
extern proc qio_regexp_get_pattern(ref regexp:qio_regexp_t, ref pattern: string\
extern proc gio_regexp_get_ncaptures(ref regexp:qio_regexp_t):int(64);

extern proc qio_regexp_ok(ref regexp:qio_regexp_t):bool

extern proc gio_regexp_error(ref regexp:qio_regexp_t):string;

extern const QIO_REGEXP_ANCHOR_UNANCHORED:c_int;
extern const QIO_REGEXP_ANCHOR_START:c_in
extern const QIO_REGEXP_ANCHOR_BOTH:c_int;

extern record qio_regexp_string_piece_t {
var offset:int(64); // counting from @, -1 means "NULL"
var len:int(64);

extern proc qio_regexp_string_piece_isnull(ref sp:qio_regexp_string_piece_t):bo\
ol;

—uu-:-—-F1 Random.chpl Top L1 (Chapel/1 Abbrev
Mark set

B F1 Regexp.chpl Top L1 (Chapel/1 Abbrev)-——-

-
CC=RANY

[\
Q

Then: ~25 modules, documented via comments (if at all

Libraries: Progress Since HPCS

-
CC=RANY

[\
Q

Now: ~58 documented modules, many user-contributed

Chapel Documentation 1.16

Quickstart Instructions
Using Chapel
Platform-SpecificNotes
Technical Notes

Tools

Quick Reference
Hello World Variants
Primers
Language Specification
Built-in Types and Functions
6 Standard Modules
Assert
Barrier
Barriers
Biginteger
BitOps
Buffers
CommDiagnostics
DateTime
Dynamiclters
FileSystem
GMP
Help
10
List
Math

Docs » Standard Modules

Standard Modules

Standard module lich describe features that i pa

Standard Library.
All Chapel programs automatically use the modules Assert , 10 , Hath

o Assert
Barrier

Barriers
Biginteger
BitOps

Buffers
CommDiagnostics
DateTime
Dynamiclters
FileSystem

. GMP

« Help

.10

o List

« Math

« Memory

« Path

« Random

« Reflection

* Regexp

« Spawn

. Sys

« SysBasic

« SysCTypes

« SysError

« Time

« Types

« UtilReplicatedVar

View page source

Chapel Documentation 1.16

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Quick Reference
HelloWorld Variants
Primers

Language Specification
Built-in Types and Functions

Standard Modules

© Package Modules
BLAS
Collection
Crypto
Curl
DistributedBag
DistributedDeque
Distributediters
FFTW
FFTW_MT
Futures

HDFS

Docs » Package Modules

Package Modules

Package modules are libraries that currently live outside of the Chapel Standard Library, either
because they are not considered to be fundamental enough or because they are not yet mature

enough for inclusion there.

- BLAS

« Collection

+ Crypto

- curl

« DistributedBag
DistributedDeque
Distributediters
- FFTW
FFTW_MT
Futures

- HDFs
HDFSiterator
LAPACK
LinearAlgebra
« MPI

« Norm
OwnedObject
RangeChunk
RecordParser

Search
SharedObject
. Sort
VisualDebug
. ZMQ

View page source

Documentation: Progress Since HPCS

Then

e a PDF language specification
e a Quick Reference sheet

e a number of READMEs
e ~22 primer examples

-
CRANY

[\

Chapel Quick Reference Page |
Quick Start Expression Precedence and Associativity' Statements \
How 1o write a onelie “bell, workd” pogram £ cond then semel () elee stne2)¢
membes sccev, cll nd nden 3€ cond (atacl(ys | alee (seme2007)
. Crete e e ellochp oo ca
ieein (re1to, norldn)
2 Compleandrunc weves i‘dul"‘i",fll'. Py
T e et e
el e RG] vn
T 4 sy
iy =] povive ey, negaion
Ao, ubincuon ;
Rt g i
e lope and-
i i v Procedurcs
e ol or
proc bar(r: zea1, 5: inag): complex |
Chapel Language 0 g mryion
1 o = oop oo Pro footi) zetumm 147 + 5+
Version 0.93 e) ange Fdomain il and count
e EoreTT T ool s, il Formal Asgume:
i IR S T T
EEITTTT o F—TEY
Cray Tne - Comms s e o o
901 Ffth Aveono, Suts 1000 Variables, Constants and Configuration e i bt EErr
Seattle, WA 98164 Casts and coercions Tyl o e T
April 18,2013 var x: vead - 2; ety T ez e o s
Conditional and Loop Expressions
iceintrer s in toonde o des)

Chapel doc README

This directory contains the following documentation:

README : this file
README. bugs how to report bugs or suggestions to the Chapel team
README. building information about building the Chapel cnmpuer

README. chplenv setting up your environment to use Chay

READNE conpiling | how 0 use the Chapel compiler fo conpile code
execution options for Chapel programs

how to execute Chapel on multiple locales

README. threads : explains how Chapel tasks are inplemented using threads
notes for Cray XT (UNICOS/lc) users

notes for Cygwin users

: technical note on interfacing with external C routines
technical note on controlling value-to-string formatting

README, cygwin
README, extern
README. fornat

README. prereqs : prerequisites for using Chapel
chapell df : the current draft of the Chapel language
specification

hpccoverview.pdf ¢ a high-level overview of our implementations of
the HPC Challenge benchmarks for STREAM Triad,
Randon Access, and FFT in Chapel

hpecTutorial.pdf @ a companion paper to the previous that provides a
detailed walkthrough of our implementations of
the HPCC benchmarks to serve as a tutorial to
Chapel and the codes themselves

quickReference.pdf : a one-sheet, tri-fold overview of Chapel syntax
for quick reference

For more Information

For additional information about Chapel, please refer to:

* "Parallel Programmability and the Chapel Language" by Bradford
L. Chamberlain, David Callahan, and Hans P. Zina, published in the
International Journal of High Performance Computing Applications,
August 2007, 21(3): 291-312

Top L1 «)

1/
/7 This primer illustrates Chapel's parallel tasking features,
// namely the begin, cobegin, and coforall statements.

config const n = 10;
writeln(b |
// The begin statement spawns a thread of execution that is independent

/1 of the current (main) thread of execution
begin writeln(ron)

// The main thread of execution continues on to the next statement.
/7 There is no guarantee as to which statment will execute first.
writeln()

writeln(n)

// For more structured behavior, the cobegin statement can be used to
7/ spaun a block of tasks, one for each statement. Control continues
77 atter the cobegin block, but only after all the tasks within the
// cobegin block have completed.
cobegin {

writeln(u

writeln(

// The output from within the cobegin statement will always precede the
// following output from the main thread of execution.
writeln()i

writeln("3 e cobegin state

// Tf any begin statenents are used within a cobegin statement,
// the thread of execution does not a wait for those begin statements
// to complete
cobegin {
begin writeln("
begin writeln(r)i

= e L L
Loading /users/bradc/chapel/highlight/emacs/22/chpl-mod

Documentation: Progress Since HPCS — Yo

[\
S \

Now: > 200 modern, hyperlinked, web-based doc pages

#A Chapel Documentation 1.16

Docs » Chapel Documentation View page source \

Chapel Documentation

apel Do e atio 6
Quickstart Instructiol (no subject) - Docs » Using Chapel View page source
o0 - bradford.chamberlain@gmail.com - Gmail
Using Chapel Compiling and Running Chapel
Platform-Specific Not: 0
atiorm-opeciiic Notes « Quickstart Instructions US]_ng Chapel
Technical Notes « Using Chapel
g P Q o
Tool -Speci :
ools « Platform-Specific Notes © Using Chapel Contents:
- Technical Notes # Chapel Documentation 1.16

o Docs » Primers » Task Parallelism View page source
Chapel Prerequisites page

ick Ref « Tools « Chapel Prerequisites
Quick Reference Sehttingl up Your Environment for « Setting up Your Environment for Chap e AT
q 0nQ Chape T as! arallelism
Hello World Variants Wntlng Chapel Programs o « Building Chapel
Primers Building Chapel « Compiling Chapel Programs View taskParallelchpl on GitHub
Language Specification * Quick Reference Gl Eizr ez Ens + Chapel Man Page This primer llustrates Chapel's parallel tasking features, namely the begin , cobegin ,and coforall
_— . « Hello World Variants Chapel Man Page * Executing Chapel Programs statements.
Built-in Types and Functions « Primers « Multilocale Chapel Execution

Executing Chapel Programs config const n = 16;

Standard Modules

Chapel Launchers
Chapel Tasks :
Debugging Chapel Programs & Primers.

Language Specification
Built-in Types and Functions

Multilocale Chapel Execution

Package Modules Begin Statements

Chapel Launchers .
Standard Layouts and Distributions « Standard Modules Chapel Tasks « Reporting Chapel Issues Language Basics The begin 0 s independent of the current (main) thread
. « Package Modules o terators of execution.

Chapel Users Guide (WIP) o Debugging Chapel P

« Standard Layouts and Distributions ebugging Chapel Programs) © Task Parallelism .

) @ Previous Pt writeln("3: w88 The begin statenent #es°);

« Chapel Users Guide (WIP) RepzHigEiepE e o [T ———

Chapel Evolution Platform-Specific Notes B CobeginStatements
. ey 1 Cofoaltatements The mai i i the There s towhich
Archived Language Specifications Language HIStOIY Syc/Singhes statement will execute first.
Atomics
« Chapel Evolution = witeln("1: output fron main task®);
o Archived Language Specifications Data Parallelism)
— Cbco Sttements

Tool Highlights: Past Year A

¢ Initial version of Chapel package manager, ‘mason’
e modeled after Cargo, enables community to develop and share decentralized libraries

> mason build

Updating mason-registry
Downloading dependency: Bob-1.1.0
Downloading dependency: Alice-0.3.0

e First release of ‘c2chapel’ tool
e converts C header files to Chapel ‘extern’ declarations

C99 Chapel
struct alllInts { extern record alllInts ({
int a; var a : c_int;
unsigned int b; var b : c uint;
long long c; var ¢ : c longlong;
}i }
void msg (const char* fmt); extern proc msg(fmt : c string) : void;

Copyright 2017 Cray Inc.

\
CRAY |
(Y \

What’s Next?
7=

cRas
CcCHAPRPEL
—

=/

What’s Next? (Big Ticket ltems)

e Work towards Chapel 2.0 release
e goal: no changes that break backwards compatibility

e LLVM back-end by default

e GPU support

e Support for delete-free computation

e Application studies / application partnerships

Copyright 2017 Cray Inc.

Crossing the Stream of Adoption cRas

"‘ Resech Prototype -

that e the next § [your productlon
app here]

e el oerom stepplng stones?

\ ‘ « SN R
RA LULESH : startups. . Who S mterested in

Time-to-science J meeting us partway?
academlc codes B

image source: http://feelgrafix.com/813578-free-stream-wallpaper.html

CHIUW 2017 Keynote cRas

Chapel’s Home in the Landscape of

New Scientific Computing Languages \
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

O)

Quote from CHIUW 2017 keynote :l:Ayf '

S \
\

“My opinion as an outsider...is that Chapel is important,
Chapel is mature, and Chapel is just getting started. :
“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.
“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”

—Jonathan Dursi

Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://ljdursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

'/C—:\
L,
k_/ Copyright 2017 Cray Inc.

cRaNy
A PRPEL

Chapel Central: https://chapel-lang.org/

N The Chapel Parallel Programming Language

CHAPEL
—
What is Chapel?

Chapel is a modern programming language that is...

Home
Chapel Overview

parallel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the cloud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

What's New?
Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Documentation

Download Chapel New to Chapel?
Try It Now
Release Notes

As an introduction to Chapel, you may want to...
User Resources.
Educator Resources

read a blog article or book chapter
Developer Resources

.
« watch an overview talk or browse its slides

Social Media / Blog Posts « download the release

Press « browse sample programs
« view other resources to learn how to trivially write distributed programs like this:

Presentations
Tutorials
Publications and Papers use CyclicDist; // use the Cyclic distribution Library
CHIUW config const n = 100; // use ./a.out --n=<val> to override this default
CHUG
Lightning Talks forall i in {1..n} dmapped Cyclic(startIdx=1) do

writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);
Contributors / Credits
Research Groups
License

What's Hot?

chapel-lang.org « Chapel 1.16 is now available—download a copy today!

chapel_info@cray.com

The CHIUW 2018 call for participation is now available!

s
(P « A recent Cray blog post reports on highlights from CHIUW 2017.
Evyo « Chapel is now one of the supported languages on Try It Online!

Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.

Browse slides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.

See also: What's New?

How to Stalk Chapel

http://facebook.com/ChapelLanquage

http://twitter.com/ChapelLanguaqge

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

=

n Sl i o S -

Page Messages Notifications Insights Publishing Tools

=

ol Liked v X\ Following v 4 Share

| Programming Language
47pm- €

We're pleased to note that Chapel is currently ranked 5th in the

= Computer Language Benchmarks Game's “fast-faster-fastest” graphs.
That said, we're even prouder of how clear and concise the Chapel
i entries that p .

Chapel org/.

Programming Fl How many times slower?
Language H 300 232
@ChapelLanguage ém : : :
ome. 50 z -
E 30
Posts 3 gIISeR
S
Videos g s égéé
T 3
E
Pk] 2ed
1
ADY £ Benchmarks game 20 Apr 2017 ubdq
Likes
= 270 pecsleresched
& ke W Comment A Share C-
(© Russel Winder, Mykola Rabchevsiiy and 2 others Top Comments ™

C s

Chapel Language
@ChapelLanguage

Chapel is a productive parallel
programming language designed for
large-scale computing whose
development is being led by @cray_inc
& chapel.cray.com

[) Joined March 2016

3 115 Photos and videos

TWEETS FOLLOWING FOLLOWERS LIKES

222 12 129 32

Tweets Tweets & replies Media

/75 Chapel Language @ChapelLanguage - 5h
(?/ Doing interesting applications work in Chapel or another PGAS language?
' submit it to the PAW 2017 workshop at @SC17.
sourceryinstitute.github.io/PAW/

PAW;

2~
7 %l

The 2nd Annual PGAS Applications

Copyright 2017 Cray Inc.

N

@

=/

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

=~ SC16 Chapel Tutorial Promo

Chapel Parallel Programming Language

6 months ago + 392 views

This s & ~4-minute promotional video for our SC16 Chapel tutorial, and also a good way to
geta quick taste of Chapel. All codes shown represent complete Chapel programs, not.

Chapel Productive, Muli ion Parallel |Brad
Cray, Inc.

ANL Training

7 months ago + 651 views

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016.

CHIUW 2016 keynote: “Chapel in the ical) Wild", Nikhil

Chapel Parallel Programming Language
10 months ago + 277 views

This is Nikhil Padmanabharis keynote talk from CHIUW 2016: the 3rd Annual Chapel
Impl d Users workshop. The siid bl

Suggested Reading (healthy attention spans) ==as

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Suggested Reading (short attention spans) cRas

(Y \
S \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events
Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a Series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

C/ y ‘ 40 ‘

=/ Copyright 2017 Cray Inc.

Chapel StackOverflow and GitHub Issues e

votes

24 views

votes

45 views

votes

NS — 0
S stackoverflow Questions Jobs Documentaton Tags Users Q_ [chapel] @ = logh Sign Up \
(’ This repository Pull requests Issues Marketplace Gist
Tagged Questions nfo newest frequent votes acti
1 0 - -
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray. - cha pel lang / Chapel © Watch as % Unstar | 455 ? Fork | 145
learn more... top users synonyms \
1 Code @®lssues 292 Pull requests 26 Projects 0 Settings Insights ~
2 Can one generate a grid of the Locales where a Distribution is mapped? i . . i
votes X § X B Filters ~ is:tissue is:open Labels Milestones New issue
If 1 run the following code: use BlockDist; config const dimension: int = 5; const space = {0..#
0..#di ion}; const i domain(2) pace) = space|
chapel asked 13 hours & N f a
parrymel @® 292 Open v 77 Closed Author ~ Labels v Projects v Milestones ~ Assignee v Sort v
22 views . v
52 02
@® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
3 Is “[<var> in <distributed variable>]" equivalent to “forall’? iyps:Eecformancs]

#6357 opened 13 hours ago by ronawho

| noticed something in a snippet of code | was given: var D: domain(2)
= Space; var A: [D] int; [a in A] a = a.locale.id; Is [a in A] equivalentto forallainAa= ...

(@ Consider using processor atomics for remote coforalls EndCount area: Compiler J13
syntax chapel asked 15 hours af type: Performance
- :zrryv;m #6356 opened 13 hours ago by ronawho 0of 6
(® make uninstall area: BTR |type: Feature Request
Get Non-primitive Variables from within a Cobegin - Chapel #6353 opened 14 hours ago by mppf

| want to compute some information in parallel and use the result outside the cobegin. To be . .
my requirement is to retrieve a domain (and other non primitive types) like this var a,b: ... © make check doesn't work with ./configure area: BTR 37

16 hi f
chapel asked Apr 18 at 6352 opened 16 hours ago by mpp!

-

4v> :ii”":‘ | (@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, D2
not a task-private one area: Compiler [type: Bug

#6351 opened a day ago by cassella

Is there a default String conversion method in Chapel?

Is there a default method that gets called when | try to cast an object into a string? (E.g. toStf © Remove chpl_comm_make_progress area: Runtime easy [type: Design (k]
__str__in Python.) | want to be able to do the following with an array of Objects, ... #6349 opened a day ago by sungeunchoi
@® Runtime error after make on Linux Mint area: BTR user issue J1s

#6348 opened a day ago by danindiana

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel _bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

Copyright 2017 Cray Inc.

(®)
N

\
Legal Disclaimer SR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

Copyright 2017 Cray Inc.

=

cRasyr
CcCHARPEL
—

=/

C R0y

THE SUPERCOMPUTER COMPANY

