®e
CRANY
\

° \
\

Exploring Co-Design in Chapel
Using LULESH

SIAM CSE13, MS79
February 26, 2013

Greg Titus
Principal Engineer
Chapel Team, Cray Inc.

Chapel

=
&

What is Chapel?

e An emerging parallel programming language \

e Design and development led by Cray Inc.
e In collaboration with academia, labs, industry
e Initiated under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress

e http://Ichapel.cray.com/

http://chapel.cray.com/
http://chapel.cray.com/

Chapel's Implementation S TS

e Being developed as open source at SourceForge \
e Licensed as BSD software

e Target Architectures:

Cray architectures

multicore desktops and laptops

commodity clusters

systems from other vendors

In-progress: CPU+accelerator hybrids, manycore, ...

Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC < Mainstream Language Gap

N
&

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Types: machines, nodes, cores, instructions

&= ®

1) General Parallel Programming \

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Types: machines, nodes, cores, instructions

Style of HW Parallelism Programming Unit of Parallelism
Model

Inter-node MPI executable/process

Intra-node/multicore OpenMP iteration/task

GPU/accelerator CUDA SIMD function/task

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Types: machines, nodes, cores, instructions

Style of HW Parallelism Programming Unit of Parallelism
Model

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

GPU/accelerator Chapel SIMD function/task

3) Multiresolution Design: Motivation RSO

O —
oL

Low-Level
Implementation

Concepts

Target Machine Target Machine

“‘Why is everything so tedious/difficult?”

“‘Why don'’t | have more control?”
“Why don’t my programs port trivially?”

R e
| caPeEL

3) Multiresolution Design

Multiresolution Design: Support multiple tiers of features

e higher levels for programmability, productivity
e lower levels for greater degrees of control

Chapel language concepts

Data Parallelism
Task Parallelism

Base Language
Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

\

LULESH (in Chapel)

®e
CRANY |
i

° \
\

What is LULESH?

e Livermore Unstructured Lagrange Explicit Shock \
Hydrodynamics challenge problem
e Developed as a proxy application at LLNL under DARPA UHPC
e Includes computations and algorithms used in production codes

e https://computation.linl.gov/casc/ShockHydro/

e There are reference implementations in many languages
e Serial C
e C+OMP

C + OMP + MPI (not publically available yet)

CUDA

Loci (logic programming)

A++ (C++ class library)

Chapel

&= @

https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/

What Does LULESH Do? =R
e Solve one octant of the spherical Sedov problem (blast \

wave) using Lagrangian hydrodynamics for a single
material

DB: sedov_001.00617 A
Cycle: 617 Time:0.0/],/'

i

DB: sedov_001.00000 T T,
Cycle:0 — Tme:d iy

user. kaasler
Thu Apr 12 11:57:44 2012

user. keasler
Thu Apr 12 11:56:04 2012

N
@“E“ pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

Eulerian vs. Lagrangian Meshes

Eulerian mesh Lagrangian mesh
(grid stays fixed) (grid adapts to materials)

_ Image Source: LULESH specification, LLNL-TR-490254
@?&t https://computation.linl.gov/casc/ShockHydro/

https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/

LULESH Compared to a Real Hydrocode

e LULESH

e Structured input provided (3D regular)
e Single material per cell

e Real Hydrocodes
e Unstructured input (compact, irregular)
e Could have multiple materials in a cell

e But: LULESH uses code idioms similar to those in a real
code, so as to stress compilation and execution similarly

Fundamental LULESH Concepts/Terminology =R
o o |
nodes
o o

mesh element

Chapel Representation (Structured)

e Abstract Element and Node Domains:

const nodesPerkEdge = elemsPerEdge+1;
const ElemSpace = {0..#elemsPerkEdge, 0..#elemsPerkdge},

;‘ii\' =
‘ CCCCCC

NodeSpace = {0..#nodesPerEdge, O..#nodesPerEdge};

ElemSpace

OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO0000000O0
OO000000OO

NodeSpace

Chapel Representation (Unstructured) \

e Abstract Element and Node Domains: \
const ElemSpace = {0..#numElems},
NodeSpace = {0..#numNodes};

ElemSpace

0]0]0]0]0]0]0]0/0]0]0]0]0]0]0]0]00]0]0]0]0/0]0]0]0]0.
NodeSpace

i =rane
s
=

Chapel Representation (Multi-locale) \

e Distributed Element/Node Domains: \
const Elems = ElemSpace dmapped Block (ElemSpace),
Nodes NodeSpace dmapped Block (NodeSpace) ;

|
Elems 1 ! l .

ooooopoooodoooodooooodooooo
Nodes ! l . l

Element and Node Fields

e Some variables (fields) are associated with elements,
others with nodes.

Elements: Pressure,
energy, viscosity,
volume, ...

Nodes: Position, velocity,
acceleration, force,
mass, ...

o PEL

\

Representation of Fields in Chapel

e Sample field declarations:
var x, y, z: [Nodes] real;
var e, p: [Elems] real;

(Conceptual representation)

e, P

Materials Representation \

e Not all elements will contain all materials, and some will \
contain combinations

=
C= ®

Materials Representation (Dense) \

naive approach: store all materials everywhere
(reasonable for LULESH, but not in practice)

const MatlElems = Elems,
Mat2Elems = Elems;

C= @

Materials Representation (Sparse)

Improved approach: use sparse subdomains to
only store materials where necessary

var MatlElems: sparse subdomain (Elems)
Mat2Elems: sparse subdomain (Elems)

enumerateMatlLocs (),

enumerateMat2Locs () ;

LULESH in Chapel

(:\\ o
cHaPEL
\—ﬂ/

LULESH in Chapel SRS

trunk/test/release/examples/benchmarks/lulesh/*.chpl
In the SourceForge repository, as of r21020 (2/14/13)

There are: 1288 lines of code
266 lines of comments
487 blank lines

(the C+MPI+OpenMP version is nearly 4x bigger)

LULESH in Chapel

is all of the rep

The Representation Dependent Code RSO

\
\

const ElemSpace = if use3DRepresentation
then {0..#elemsPerEdge, 0..#elemsPerEdge, O..#elemsPerEdge}
else {0..#numElems},

if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O..#nodesPerEdge}
else {0..#numNodes};

NodeSpace

if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)

else NodeSpace;

const Elems

var elemToNode: [Elems] nodesPerElem*index (Nodes) ;
var XSym, YSym, ZSym: sparse subdomain (Nodes) ;

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems ()
else Elems;

domains for elements and nodes

=
| S PEL
N

The Representation Dependent Code RSO

\
\

const ElemSpace = if use3DRepresentation
then {0..#elemsPerEdge, 0..#elemsPerEdge, O..#elemsPerEdge}

else {0..#numElems},

NodeSpace = if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O..#nodesPerEdge}

else {0..#numNodes};

if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)

else NodeSpace;

const Elems

var elemToNode: [Elems] nodesPerElem*index (Nodes) ;
var XSym, YSym, ZSym: sparse subdomain (Nodes) ;

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems ()
else Elems;

potentially distributed domains for
elements and nodes

f":\- mrane
| SHaEEL
Ny

The Representation Dependent Code RSO

\
\

const ElemSpace = if use3DRepresentation
then {0..#elemsPerEdge, 0..#elemsPerEdge, O..#elemsPerEdge}

else {0..#numElems},

NodeSpace = if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O..#nodesPerEdge}

else {0..#numNodes};

if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)

else NodeSpace;

const Elems

var elemToNode: [Elems] nodesPerElem*index (Nodes) ;
var XSym, YSym, ZSym: sparse subdomain (Nodes) ;

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems ()
else Elems;

nodes adjacent to each element

f":\- mrane
| SHaEEL
N

The Representation Dependent Code RSO

\
\

const ElemSpace = if use3DRepresentation
then {0..#elemsPerEdge, 0..#elemsPerEdge, O..#elemsPerEdge}

else {0..#numElems},

NodeSpace = if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O..#nodesPerEdge}

else {0..#numNodes};

if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)

else NodeSpace;

const Elems

var elemToNode: [Elems] nodesPerElem*index (Nodes) ;
var XSym, YSym, ZSym: sparse subdomain (Nodes) ;

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems ()
else Elems;

symmetry planes

o A
| SHaEEL
N

The Representation Dependent Code RSO

\
\

const ElemSpace = if use3DRepresentation
then {0..#elemsPerEdge, 0..#elemsPerEdge, O..#elemsPerEdge}

else {0..#numElems},

NodeSpace = if use3DRepresentation
then {0..#nodesPerEdge, O0..#nodesPerEdge, O..#nodesPerEdge}

else {0..#numNodes};

if useBlockDist then ElemSpace dmapped Block (ElemSpace)
else ElemSpace,

Nodes = if useBlockDist then NodeSpace dmapped Block (NodeSpace)

else NodeSpace;

const Elems

var elemToNode: [Elems] nodesPerElem*index (Nodes) ;
var XSym, YSym, ZSym: sparse subdomain (Nodes) ;

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems ()
else Elems;

domain describing elements that
contain the material

f":\- mrane
| SHaEEL
N

The Representation Dependent Code RSO

\
\

proc MatElemsType type {
if sparseMaterials ({
if (printWarnings && useBlockDist && numLocales > 1) then
writeln ("WARNING: The LULESH Material Elements (MatElems) are not yet\n",
" distributed, so result in excessive memory use on,\n",
" and communication with, locale 0\n");
return sparse subdomain (Elems) ;
} else
return Elems. type;

iter elemToNodes (elem) {
for param i in 1. .nodesPerElem do
yield elemToNode[elem] [i];

}

iter elemToNodesTuple(e) {{
for i in 1. .nodesPerElem do
yield (elemToNodel[e][i], 1)

the type of the domain describing
elements that contain the material

- N e
| SHaEEL
S

=

The Representation Dependent Code RSO

\
\

proc MatElemsType type ({
if sparseMaterials { b
if (printWarnings && useBlockDist && numLocales > 1) then
writeln ("WARNING: The LULESH Material Elements (MatElems) are not yet\n",
" distributed, so result in excessive memory use on,\n",
" and communication with, locale 0\n");
return sparse subdomain (Elems) ;
} else
return Elems. type;

iter elemToNodes (elem) {
for param i in 1. .nodesPerElem do
yield elemToNode[elem] [i];

}

iter elemToNodesTuple (e) {{
for i in 1. .nodesPerElem do
yield (elemToNodel[e][i], 1)

iterators mapping elements to their
adjacent nodes

- N e
| SHaEEL
S

=

LULESH in Chapel

here is example represe

https://computation.llnl.gov/casc/ShockHydro/LULESH-files/spec.pdf

Representation Independent Physics! RSSO

° \
\

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) {
forall k in Elems { €
varb x, by, b_z: 8*real;

_ \
var X_local, y_local, z_local: 8*real,
localizeNeighborNodes(k, x, x_local, y, y_local, z, z_local);

var fx_local, fy_local, fz_local: 8*real,

local {
/* Volume calculation involves extra work for numerical consistency. */
CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,
b x,b_y, b z determ[k]);

CalcElemNodeNormals(b_x, b_y, b_z, x_local, y local, z_local);

SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[K], sigyy[K], sigzz[K],
'TL fx_local, fy local, fz_local);
}

for (noi, t) in elemToNodesTuple(k) { _

fx[noi].add(fx_local[t]);
fy[noil.add(fy_localll]): <
fz[noi].add(fz_local[t]);
}

}

}

/.-“ =

Codesign

=
&

LULESH in Chapel, Codesign Timeline

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
e Introduced us to the LULESH benchmark

=
C=

=

®e
CRANY
\

° \
\

LULESH in Chapel, Codesign Timeline

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
e Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
e caveat: used structured mesh to represent data arrays

&=

LULESH in Chapel, Codesign Timeline RS

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
e Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel

e caveat: used structured mesh to represent data arrays
Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)

=
C=

=

LULESH in Chapel, Codesign Timeline S S

° \
\

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference :
e Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
e caveat: used structured mesh to represent data arrays
Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program
e In one afternoon, converted from structured to unstructured mesh
e impact on code minimal (mostly in declarations)

N

LULESH in Chapel, Codesign Timeline RS

® \
\
Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
e Introduced us to the LULESH benchmark
Summer 2011: Cray intern ports LULESH to Chapel
e caveat: used structured mesh to represent data arrays
Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program
e In one afternoon, converted from structured to unstructured mesh
e impact on code minimal (mostly in declarations)
Apr 2012: LLNL reports on collaboration at Salishan
Apr 2012: Chapel 1.5.0 release includes LULESH as an example code

&=

LULESH in Chapel, Codesign Timeline S S

° \
\

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference :
e Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
e caveat: used structured mesh to represent data arrays
Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program
e In one afternoon, converted from structured to unstructured mesh
e impact on code minimal (mostly in declarations)
Apr 2012: LLNL reports on collaboration at Salishan

Apr 2012: Chapel 1.5.0 release includes LULESH as an example code
Sep-Nov 2012: performance tuning
Nov 2012: SC12

e Chapel HPC Challenge entry
e LLNL talk at the Chapel Lightning Talks BoF
e Cray talk at Proxy Apps BoF
Dec 2012: Multi-institution LULESH paper accepted to IPDPS ‘13

N

Next Steps

e Performance Optimizations and Tuning
e Reductions

e Communication optimizations
e Aggregation
e Overlap
e Atomics

e Explore array-of-structs vs. struct-of-arrays ideas

e |ldentify funding to dedicate focus on DOE proxy apps

Codesign Takeaways for Chapel Team \

e Improved comprehension of the science behind the code
and data structures

e Deeper understanding of array-of-struct vs. struct-of-
arrays tensions

e Awareness of performance issues based on past LLNL
experience

a¢KS 2LIRNUdzyAUE U2 62N) 2y |
at LLNL has been incredibly valuable. In part, this is due to the le
2F SELISNIAAS GKIFIG 6SUOS KIFER |
design:it is compact enouglo be manageable foour team to
understand while being realistic enough to carry weight with
actualdza S NR ®¢

Brad Chamberlain, Chapel Technical Lead, Cray Inc.

E=

Codesign Takeaways for LULESH Team

e Impact of representation-independent features made
evident firsthand

e Saw value of using global-view sparse domains to avoid
local—global index translation

e View Chapel as an opportunity for code that ports across
next-gen architectures

G / K lisd$nkintainable futureproof language. With additional
backend performance enhancements, we would be using it to
develop science codes, with an eye towardsltiphysics
production code® €

Jeff Keasler, ASC code developer, LLNL

C=

\

®e
CRANY |
o

° \
\

Summary of the LULESH Effort in Chapel

e Evidence that Chapel’s language design is solid \
e Not just an HPCS technology demonstrator

e Evidence that people are getting serious about Chapel
e LLNL sees Chapel as a serious contender for hydrocodes

e Co-design success story
e Access to experts for a code that people actually care about
e Feedback on the language and implementation
e New challenges for the language and implementation

.
=

® e
cRAaY |
\

° \

Questions?

