
Exploring Co-Design in Chapel
Using LULESH

SIAM CSE13, MS79
February 26, 2013

Greg Titus

Principal Engineer

Chapel Team, Cray Inc.

2

Chapel

What is Chapel?

● An emerging parallel programming language
● Design and development led by Cray Inc.

● in collaboration with academia, labs, industry

● Initiated under the DARPA HPCS program

● Overall goal: Improve programmer productivity
● Improve the programmability of parallel computers

● Match or beat the performance of current programming models

● Support better portability than current programming models

● Improve the robustness of parallel codes

● A work-in-progress

● http://chapel.cray.com/

3

http://chapel.cray.com/
http://chapel.cray.com/

Chapel's Implementation

● Being developed as open source at SourceForge

● Licensed as BSD software

● Target Architectures:
● Cray architectures

● multicore desktops and laptops

● commodity clusters

● systems from other vendors

● in-progress: CPU+accelerator hybrids, manycore, …

4

Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC ↔ Mainstream Language Gap

5

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
● Types: machines, nodes, cores, instructions

6

Style of HW Parallelism Programming

Model

Unit of Parallelism

Inter-node MPI executable/process

Intra-node/multicore OpenMP iteration/task

GPU/accelerator CUDA SIMD function/task

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
● Types: machines, nodes, cores, instructions

7

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
● Styles: data-parallel, task-parallel, concurrency, nested, …

● Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
● Types: machines, nodes, cores, instructions

Style of HW Parallelism Programming

Model

Unit of Parallelism

Inter-node Chapel executable/task

Intra-node/multicore Chapel iteration/task

GPU/accelerator Chapel SIMD function/task

8

3) Multiresolution Design: Motivation

MPI

OpenMP

 CUDA

Target Machine

Low-Level

Implementation

Concepts

“Why is everything so tedious/difficult?”
“Why don’t I have more control?”

ZPL

HPF

Target Machine

High-Level

Abstractions

“Why don’t my programs port trivially?”

9

3) Multiresolution Design

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity

● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower

● permit the user to intermix layers arbitrarily

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

10

11

LULESH (in Chapel)

What is LULESH?

12

● Livermore Unstructured Lagrange Explicit Shock
Hydrodynamics challenge problem
● Developed as a proxy application at LLNL under DARPA UHPC

● Includes computations and algorithms used in production codes

● https://computation.llnl.gov/casc/ShockHydro/

● There are reference implementations in many languages
● Serial C

● C + OMP

● C + OMP + MPI (not publically available yet)

● CUDA

● Loci (logic programming)

● A++ (C++ class library)

● Chapel

https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/

What Does LULESH Do?

13

● Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single
material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

Eulerian vs. Lagrangian Meshes

14

Eulerian mesh

(grid stays fixed)

Lagrangian mesh

(grid adapts to materials)

Image Source: LULESH specification, LLNL-TR-490254

https://computation.llnl.gov/casc/ShockHydro/

https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/
https://computation.llnl.gov/casc/ShockHydro/

LULESH Compared to a Real Hydrocode

15

● LULESH
● Structured input provided (3D regular)

● Single material per cell

● Real Hydrocodes
● Unstructured input (compact, irregular)

● Could have multiple materials in a cell

● But: LULESH uses code idioms similar to those in a real
code, so as to stress compilation and execution similarly

Fundamental LULESH Concepts/Terminology

16

mesh

nodes

element

Chapel Representation (Structured)

17

● Abstract Element and Node Domains:
const nodesPerEdge = elemsPerEdge+1;

const ElemSpace = {0..#elemsPerEdge, 0..#elemsPerEdge},

 NodeSpace = {0..#nodesPerEdge, 0..#nodesPerEdge};

ElemSpace NodeSpace

● Abstract Element and Node Domains:
const ElemSpace = {0..#numElems},

 NodeSpace = {0..#numNodes};

Chapel Representation (Unstructured)

18

ElemSpace

NodeSpace

Chapel Representation (Multi-locale)

19

● Distributed Element/Node Domains:
const Elems = ElemSpace dmapped Block(ElemSpace),

 Nodes = NodeSpace dmapped Block(NodeSpace);

Elems

Nodes

Element and Node Fields

20

● Some variables (fields) are associated with elements,
others with nodes.

Nodes: Position, velocity,

acceleration, force,

mass, …

Elements: Pressure,

energy, viscosity,

volume, …

Representation of Fields in Chapel

21

● Sample field declarations:
var x, y, z: [Nodes] real;

var e, p: [Elems] real;

e, p x, y, z

(Conceptual representation)

● Not all elements will contain all materials, and some will
contain combinations

Materials Representation

22

Materials Representation (Dense)

23

naïve approach: store all materials everywhere

(reasonable for LULESH, but not in practice)

const Mat1Elems = Elems,

 Mat2Elems = Elems;



Materials Representation (Sparse)

24

improved approach: use sparse subdomains to

only store materials where necessary

var Mat1Elems: sparse subdomain(Elems) = enumerateMat1Locs(),

 Mat2Elems: sparse subdomain(Elems) = enumerateMat2Locs();



LULESH in Chapel

25

trunk/test/release/examples/benchmarks/lulesh/*.chpl
in the SourceForge repository, as of r21020 (2/14/13)

(the C+MPI+OpenMP version is nearly 4x bigger)

LULESH in Chapel

26

There are: 1288 lines of code

266 lines of comments

487 blank lines

LULESH in Chapel

27

this is all of the representation dependent code

The Representation Dependent Code

28

domains for elements and nodes

const ElemSpace = if use3DRepresentation

 then {0..#elemsPerEdge, 0..#elemsPerEdge, 0..#elemsPerEdge}

 else {0..#numElems},

 NodeSpace = if use3DRepresentation

 then {0..#nodesPerEdge, 0..#nodesPerEdge, 0..#nodesPerEdge}

 else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block(ElemSpace)

 else ElemSpace,

 Nodes = if useBlockDist then NodeSpace dmapped Block(NodeSpace)

 else NodeSpace;

var elemToNode: [Elems] nodesPerElem*index(Nodes);

var XSym, YSym, ZSym: sparse subdomain(Nodes);

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems()

 else Elems;

The Representation Dependent Code

29

potentially distributed domains for

elements and nodes

const ElemSpace = if use3DRepresentation

 then {0..#elemsPerEdge, 0..#elemsPerEdge, 0..#elemsPerEdge}

 else {0..#numElems},

 NodeSpace = if use3DRepresentation

 then {0..#nodesPerEdge, 0..#nodesPerEdge, 0..#nodesPerEdge}

 else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block(ElemSpace)

 else ElemSpace,

 Nodes = if useBlockDist then NodeSpace dmapped Block(NodeSpace)

 else NodeSpace;

var elemToNode: [Elems] nodesPerElem*index(Nodes);

var XSym, YSym, ZSym: sparse subdomain(Nodes);

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems()

 else Elems;

The Representation Dependent Code

30

const ElemSpace = if use3DRepresentation

 then {0..#elemsPerEdge, 0..#elemsPerEdge, 0..#elemsPerEdge}

 else {0..#numElems},

 NodeSpace = if use3DRepresentation

 then {0..#nodesPerEdge, 0..#nodesPerEdge, 0..#nodesPerEdge}

 else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block(ElemSpace)

 else ElemSpace,

 Nodes = if useBlockDist then NodeSpace dmapped Block(NodeSpace)

 else NodeSpace;

var elemToNode: [Elems] nodesPerElem*index(Nodes);

var XSym, YSym, ZSym: sparse subdomain(Nodes);

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems()

 else Elems;

nodes adjacent to each element

The Representation Dependent Code

31

const ElemSpace = if use3DRepresentation

 then {0..#elemsPerEdge, 0..#elemsPerEdge, 0..#elemsPerEdge}

 else {0..#numElems},

 NodeSpace = if use3DRepresentation

 then {0..#nodesPerEdge, 0..#nodesPerEdge, 0..#nodesPerEdge}

 else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block(ElemSpace)

 else ElemSpace,

 Nodes = if useBlockDist then NodeSpace dmapped Block(NodeSpace)

 else NodeSpace;

var elemToNode: [Elems] nodesPerElem*index(Nodes);

var XSym, YSym, ZSym: sparse subdomain(Nodes);

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems()

 else Elems;

symmetry planes

The Representation Dependent Code

32

const ElemSpace = if use3DRepresentation

 then {0..#elemsPerEdge, 0..#elemsPerEdge, 0..#elemsPerEdge}

 else {0..#numElems},

 NodeSpace = if use3DRepresentation

 then {0..#nodesPerEdge, 0..#nodesPerEdge, 0..#nodesPerEdge}

 else {0..#numNodes};

const Elems = if useBlockDist then ElemSpace dmapped Block(ElemSpace)

 else ElemSpace,

 Nodes = if useBlockDist then NodeSpace dmapped Block(NodeSpace)

 else NodeSpace;

var elemToNode: [Elems] nodesPerElem*index(Nodes);

var XSym, YSym, ZSym: sparse subdomain(Nodes);

const MatElems: MatElemsType = if sparseMaterials then enumerateMatElems()

 else Elems;

domain describing elements that

contain the material

The Representation Dependent Code

33

iter elemToNodes(elem) {

 for param i in 1..nodesPerElem do

 yield elemToNode[elem][i];

}

iter elemToNodesTuple(e) {{

 for i in 1..nodesPerElem do

 yield (elemToNode[e][i], i);

}

proc MatElemsType type {

 if sparseMaterials {

 if (printWarnings && useBlockDist && numLocales > 1) then

 writeln("WARNING: The LULESH Material Elements (MatElems) are not yet\n",

 " distributed, so result in excessive memory use on,\n",

 " and communication with, locale 0\n");

 return sparse subdomain(Elems);

 } else

 return Elems.type;

}

the type of the domain describing

elements that contain the material

The Representation Dependent Code

34

iter elemToNodes(elem) {

 for param i in 1..nodesPerElem do

 yield elemToNode[elem][i];

}

iter elemToNodesTuple(e) {{

 for i in 1..nodesPerElem do

 yield (elemToNode[e][i], i);

}

proc MatElemsType type {

 if sparseMaterials {

 if (printWarnings && useBlockDist && numLocales > 1) then

 writeln("WARNING: The LULESH Material Elements (MatElems) are not yet\n",

 " distributed, so result in excessive memory use on,\n",

 " and communication with, locale 0\n");

 return sparse subdomain(Elems);

 } else

 return Elems.type;

}

iterators mapping elements to their

adjacent nodes

LULESH in Chapel

35

here is example representation-independent code:
 IntegrateStressForElems()

 LULESH spec, section 1.5.1.1 (2.)

https://computation.llnl.gov/casc/ShockHydro/LULESH-files/spec.pdf

Representation Independent Physics!

36

All of this is independent of:

 structured vs. unstructured mesh

 shared vs. distributed data

 sparse vs. dense representation

proc IntegrateStressForElems(sigxx, sigyy, sigzz, determ) {

 forall k in Elems {

 var b_x, b_y, b_z: 8*real;

 var x_local, y_local, z_local: 8*real;

 localizeNeighborNodes(k, x, x_local, y, y_local, z, z_local);

 var fx_local, fy_local, fz_local: 8*real;

 local {

 /* Volume calculation involves extra work for numerical consistency. */

 CalcElemShapeFunctionDerivatives(x_local, y_local, z_local,

 b_x, b_y, b_z, determ[k]);

 CalcElemNodeNormals(b_x, b_y, b_z, x_local, y_local, z_local);

 SumElemStressesToNodeForces(b_x, b_y, b_z, sigxx[k], sigyy[k], sigzz[k],

 fx_local, fy_local, fz_local);

 }

 for (noi, t) in elemToNodesTuple(k) {

 fx[noi].add(fx_local[t]);

 fy[noi].add(fy_local[t]);

 fz[noi].add(fz_local[t]);

 }

 }

}

loop over all elements

collect nodes neighboring this

element; localize node fields

update node forces from

element stresses

37

Codesign

LULESH in Chapel, Codesign Timeline

38

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

LULESH in Chapel, Codesign Timeline

39

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
● caveat: used structured mesh to represent data arrays

LULESH in Chapel, Codesign Timeline

40

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
● caveat: used structured mesh to represent data arrays

Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)

LULESH in Chapel, Codesign Timeline

41

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
● caveat: used structured mesh to represent data arrays

Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program

● in one afternoon, converted from structured to unstructured mesh

● impact on code minimal (mostly in declarations)

LULESH in Chapel, Codesign Timeline

42

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
● caveat: used structured mesh to represent data arrays

Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program

● in one afternoon, converted from structured to unstructured mesh

● impact on code minimal (mostly in declarations)
Apr 2012: LLNL reports on collaboration at Salishan
Apr 2012: Chapel 1.5.0 release includes LULESH as an example code

LULESH in Chapel, Codesign Timeline

43

Apr 2011: LLNL expresses interest in Chapel at Salishan Conference
● Introduced us to the LULESH benchmark

Summer 2011: Cray intern ports LULESH to Chapel
● caveat: used structured mesh to represent data arrays

Nov 2011: Chapel team tunes LULESH for single-node performance
Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)
Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program

● in one afternoon, converted from structured to unstructured mesh

● impact on code minimal (mostly in declarations)
Apr 2012: LLNL reports on collaboration at Salishan
Apr 2012: Chapel 1.5.0 release includes LULESH as an example code
Sep-Nov 2012: performance tuning
Nov 2012: SC12

● Chapel HPC Challenge entry

● LLNL talk at the Chapel Lightning Talks BoF

● Cray talk at Proxy Apps BoF
Dec 2012: Multi-institution LULESH paper accepted to IPDPS ‘13

Next Steps

44

● Performance Optimizations and Tuning
● Reductions

● Communication optimizations
● Aggregation

● Overlap

● Atomics

● Explore array-of-structs vs. struct-of-arrays ideas

● Identify funding to dedicate focus on DOE proxy apps

Codesign Takeaways for Chapel Team

45

● Improved comprehension of the science behind the code
and data structures

● Deeper understanding of array-of-struct vs. struct-of-
arrays tensions

● Awareness of performance issues based on past LLNL
experience

ά¢ƘŜ ƻǇǇƻǊǘǳƴƛǘȅ ǘƻ ǿƻǊƪ ƻƴ [¦[9{I ǿƛǘƘ ŎƻƳǇǳǘŀǘƛƻƴŀƭ ǎŎƛŜƴǘƛǎǘǎ
at LLNL has been incredibly valuable. In part, this is due to the level
ƻŦ ŜȄǇŜǊǘƛǎŜ ǘƘŀǘ ǿŜϥǾŜ ƘŀŘ ŀŎŎŜǎǎ ǘƻΦ Lƴ ǇŀǊǘ ƛǘΩǎ ŘǳŜ ǘƻ [¦[9{IΩǎ
design: it is compact enough to be manageable for our team to
understand while being realistic enough to carry weight with
actual ǳǎŜǊǎΦέ

Brad Chamberlain, Chapel Technical Lead, Cray Inc.

Codesign Takeaways for LULESH Team

46

● Impact of representation-independent features made
evident firsthand

● Saw value of using global-view sparse domains to avoid
local↔global index translation

● View Chapel as an opportunity for code that ports across
next-gen architectures

ά/ƘŀǇŜƭ is a maintainable future-proof language. With additional
back-end performance enhancements, we would be using it to
develop science codes, with an eye towards multiphysics
production codesΦέ

Jeff Keasler, ASC code developer, LLNL

Summary of the LULESH Effort in Chapel

47

● Evidence that Chapel’s language design is solid
● Not just an HPCS technology demonstrator

● Evidence that people are getting serious about Chapel
● LLNL sees Chapel as a serious contender for hydrocodes

● Co-design success story
● Access to experts for a code that people actually care about

● Feedback on the language and implementation

● New challenges for the language and implementation

Questions?

48

