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What is Chapel?



Imagine a programming language for parallel computing that is as…
…readable and writeable as Python

…yet also as…
…fast as Fortran / C / C++
…scalable as MPI / SHMEM
…GPU-ready as CUDA / HIP / OpenMP / Kokkos ...
…portable as C
…fun as [your favorite programming language]

This is our motivation for Chapel

Chapel: A Modern Parallel Programming Language

4

chapel-lang.org

https://chapel-lang.org/


Applications of Chapel

5[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration 
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance



Chapel is joining the
High Performance Software Foundation
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Chapel Community

Chapel is Open Source

github.com/chapel-lang/chapel

Community Events
• Office hours, live coding sessions, teaching meetups, 

language design discussions (new!)
• Annual conference ChapelCon

chapel-lang.org/community/

https://github.com/chapel-lang/chapel
https://chapel-lang.org/community/


What does Chapel code look like?
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Bale IndexGather (IG): In Pictures

11 22 33 44 55 66 77 88 990

3 7 2 7

33 77 22 77

Src:

Inds:

Dst:

0 1 2 3 4 5 6 7 8 9
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Bale IG in Chapel: Array Declarations

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;

$  
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Bale IG in Chapel: Compiling

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
$ 
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Bale IG in Chapel: Executing

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Executing, Overriding Configs

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
$ ./bale-ig --n=1_000_000 --m=1_000_000
$
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Bale IG in Chapel: Array Initialization

use Random; 

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;

Src = [i in 0..<n] i*11;
fillRandom(Inds, min=0, max=n-1); 
 

$ chpl bale-ig.chpl
$ ./bale-ig
$



14

Bale IG in Chapel: Serial Version

config const n = 10,
             m = 4;
 

  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
for i in 0..<m do

Dst[i] = Src[Inds[i]];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Serial, Zippered Version

config const n = 10,
             m = 4;

 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
for (d, i) in zip(Dst, Inds) do

d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel, Zippered Version (Vectorized)

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
foreach (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$

Can also be written as
Dst = Src[Inds];
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Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
             m = 4;
 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel, Zippered Version for a GPU

  config const n = 10,
               m = 4;
 
  

on here.gpus[0] {
  var Src: [0..<n] int,
      Inds, Dst: [0..<m] int;
  …
  forall (d, i) in zip(Dst, Inds) do
   d = Src[i];

}

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
             m = 4;

 
  

var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$
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Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

config const n = 10,
             m = 4;

const SrcInds = {0..<n},
DstInds = {0..<m};

var Src: [SrcInds] int,
    Inds, Dst: [DstInds] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl
$ ./bale-ig
$



$ chpl bale-ig.chpl
$ ./bale-ig
$

$ chpl bale-ig.chpl
$ ./bale-ig –nl 4096
$
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Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
             m = 4;

const SrcInds = blockDist.createDomain(0..<n),
      DstInds = blockDist.createDomain(0..<m);

var Src: [SrcInds] int,
    Inds, Dst: [DstInds] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];
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Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
             m = 4;

const SrcInds = blockDist.createDomain(0..<n),
      DstInds = blockDist.createDomain(0..<m);

var Src: [SrcInds] int,
    Inds, Dst: [DstInds] int;
…
forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

$ chpl bale-ig.chpl --fast --auto-aggregation
$ ./bale-ig –nl 4096
$

Compute Nodes



CHAMPS: CHApel Multi-Physics Software



Computational 
Aerodynamics 

R&D efforts within 
Academia

Vision for transonic aerodynamic modeling

• CFD via RANS has matured and is fully integrated within industrial workflows
o Including adjoint-based optimization
o Full-flight envelope remains elusive (e.g. unsteady flows)

• CFD's integration within multidisciplinary applications has yet to reach maturity
o Static-Aeroelasticity, including adjoint, has been thoroughly studied
o More holistic problems can only be achieved with multi-fidelity approach

• Case study: C-Series/A220

Source:
Piperni et al., Development of a Multilevel
Multidisciplinary-Optimization Capability for 
an Industrial Environment, AIAA J, 2013.

Sources:
Flaig, Axel. Airbus 380: Solutions to the aerodynamic Challenges 
of Designing the World's Largest Passenger Aircraft, 2008

Wikipedia for cost+years
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Aerodynamic modeling choices

Boundary-Layer Coupling Schemes
• Captures shock-waves + flow separation

High Fidelity Database
• Allows easy AI/ML treatment

Parenteau et al., VLM Coupled with 2.5D 
RANS Sectional Data for High-Lift 
Design, AIAA 2018-1049

Boudreau, J. & Laurendeau, E., drag 
Prediction Using the Euler/Navier-Stokes 
Code FANSC, SAE 2003-01-3022
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Academic Research Constraints

• Very High Turnaround of High-Quality Personnel (HQP)
o Undergrad Summer Research (0.3 years), MSc (2 years), PhD (3-4 years), Post-Docs (2-years)

• Industrial Research Contracts and needs for 3D Full Aircraft Aerodynamic Modeling
o Master complete workflow: geometry, mesh generation, flow solver,post-processing
o Acquire multi-disciplinary and multi-fidelity knowledge

• High-Performance Computing 'barrier'
o Complex Source Codes, despite great advances in computer sciences
o Computational efficiency, a nice-to-have is now a must-have to perform analysis or optimization
o OPEN-MP + MPI paradigms makes for O(Million) lines of code

28



Academic Laboratory Solutions

• Cascading complexity stream of problems
o Fundamental to applied problems
o MSc (2D, single disciplinary), PhD (3D, multidisciplinary), Post-doc (high TRL levels)

• Large laboratory
o Flat governance structure
o Collaboration with single-disciplinary specialists (e.g. optimization, AI, etc.)
o International collaboration, great also for training HQP

• High-Performance Computing 
o New unstructured RANS-based software using Chapel language: CHAMPS

29



CHAMPS: 
Advanced 2D-3D 

CFD Solver

Overview of CHAMPS (Chapel Multi-Physics Software)

• Cutting-edge Computational Fluid Dynamics (CFD) solver 

• 2D and 3D simulations using unstructured meshes.

• Three levels of fidelity for complex aerodynamic and multi-physics problems.

• Solves the Reynolds-Averaged Navier-Stokes (RANS) equations using second-order 
finite volume methods.

• Supports advanced convective flux schemes like Roe and AUSM.

• Includes Spalart-Allmaras (SA), k-ω SST-V, and Langtry-Menter transition models.

• Explicit Runge-Kutta solver, Implicit solvers including SGS and GMRES for 
enhanced stability.

• Linked with external libraries such as MKL, CGNS, METIS, MMG, CGAL and PETSc.

•  Simulates icing phenomena using both deterministic and stochastic approaches. 

• Handles fluid-structure interactions for advanced aerodynamics studies.

30



CHAMPS: Multi-Fidelity Transonic Viscous Flows

Medium Fidelity ~O(mins):
• Euler (Coupling with Boundary Layer)
• Non Linear Vortex Lattice Method (NL-VLM)

High Fidelity ~O(Hours/Days):
• Unsteady Reynolds Averaged Navier Stokes (U-RANS) 
• Wall Model Large Eddy Simulation (WMLES)
• Detached Eddy Simulation (DES) 

31



CHAMPS: Expertise & Global Impact

• Current Development team consists of 6 PhD and 3 MSc students
• Used at Université Strasbourg (France), Prof. Hoarau
• Used in Polytechnique Montréal's graduate class in Computational Aerodynamics
• CHAMPS has contributed to over 50 publications, including 10 journal articles
• Workshops Participation:

• High Lift Prediction Workshops (HLPW):  4 and 5th Editions
• Drag Prediction Workshops (DPW): 6, 7 and 8th Editions
• Ice Prediction Workshops (IPW) : 1st and 2nd Editions 32



CHAMPS: 
Advanced 2D-3D 

CFD Solver

Codebase Statistics:

• CHAMPS : ~150K lines of code
• Pre-Processor: ~17K lines
• Flow Solver: ~15K lines

• Turbulence Solver: ~13K lines
• Droplet Solver (Eulerian + Lagrangian): ~24K lines
• Post-Processor: ~2K lines
• Smaller Solvers: ~5K lines (each)

• Shared Structure & APIs : ~50K lines
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Parallel CFD for HPC
• Volumetric Meshing around complex geometries
• 2D Meshes : Ranging from 0.5 to 1.0 Million Unknowns
• 3D Meshes : Handling up to 1 Billion Unknowns

• Leveraging HPC to significantly reduce computation time
• Problem is partitioned into smaller sub-problems 

interconnected via interfaces

• Each sub-problem runs independently on dedicated tasks
• Minimizing communication overhead to maximize overall 

efficiency
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Software Structure : 
Framework

• Multiphysics problems require different 
computational domains grid (Mesh_c)

• Type aliases in Chapel are used to define 
computational domains at the start of each 
simulations

• Supports Generic Programming and Improve 
flexibility

• Distributed domains enable efficient handling 
of large-scale simulations across multiple 
computational nodes
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Software Structure : 
Icing Framework

• Typical icing simulations involve four 
distinct computational domains

•  Some domains solve the volume field 
(3D), while others focus on surface 
interactions (2D)

• Each computational domain has its own 
specific characteristics, variables and 
requirements

36



Software Structure : 
Top-level Overview

• Each simulation runs in a single execution (using a 
GlobalHandle), ensuring efficiency and 
consistency.

• Tasks are distributed hierarchically using coforall 
statements, first at the Locale (node) level, then 
further subdivided at the Zone (core) level to 
maximize parallelism.

• Grid partitioning through METIS guarantees 
optimal load balancing across all cores, 
enhancing computational efficiency and 
minimizing idle time.
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• Type GlobalHandleFlow_t will initialize MeshFlow_t computational domains

• One proc to run : runFlowSimulation()

38



• First coforall will loop over Locales
• Second coforall will loop over cores to execute Solve()
• Provides greater control of each computational domain’s operations

39



Software Structure : 
Data Exchanges

• Each interface is equipped with an interfaceConnect to 
facilitate seamless communication with adjacent zones.

•  Each zone prepares for data exchanges by populating its 
respective buffer arrays, ensuring that all necessary 
information is readily available for transfer.

•  Custom synchronization barriers are implemented to 
maximize efficiency.

•  Once synchronization is achieved, all data exchanges are 
executed simultaneously, minimizing communication 
overhead and maximizing throughput.

•  The global namespace support provided by Chapel ensures 
that any task can access the necessary buffers, regardless of 
its location across Locales.
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Software Structure : 
Generics & Modularity

•  All models inherit from a base 
ModelHandle_c Class

•  Maximize code reusability, leading to faster 
implementation and enhance readability

•  Where statements are needed to prevent 
compilation errors.

•  This ensures compatibility when fields or 
methods are not present in the parent class.

•  Where statements also prevent conflicts 
with sibling classes (other children of the 
same parent).
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Software Structure : 
Model Implementation

• Viscous models are decided based 
on user input at the start of 
runFlowSimulation()

• Leads to the instantiation of a new 
viscousModel_c object in each 
zone

42



Scalability Analysis

• Civil Airlines Model : 
• CHAMPS' performance were similar to other softwares available industrially

• Plain Box Model: 
• Conducted on an HPE HPC cluster this test used a high number of cores (9216 cores in total) to 

explore CHAMPS's scalability.
• Tests with and without reduction operations revealed super scalability in the absence of 

reductions. 

Civil Airliner : Strong Scaling Simple Box : Strong Scaling Simple Box : Weak Scaling
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CHAMPS :
Recent Results & Capabilities

• Global Stability Analysis

• Studying High lift configurations (HLPW5)

• Predicting Ice shapes in 2D and 3D (IPW2)

• Multilayer Stochastic Ice accretion

• Lagrangian Model Scalability

• Aero-Elasticity

44



CHAMPS :
Recent Results & Capabilities

• Global Stability Analysis

• Studying High lift configurations (HLPW5)

• Predicting Ice shapes in 2D and 3D (IPW2)

• Multilayer Stochastic Ice accretion

• Lagrangian Model Scalability

• Aero-Elasticity

45



CHAMPS :
Recent Results & Capabilities

• Global Stability Analysis
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1 Node = 40 Cores
Total = 1280 Cores



CHAMPS :
Recent Results & Capabilities
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More on Chapel...



• Four introductory articles using Navier-Stokes as use-case
• Based on an existing Python example
• Chapel concepts are gradually introduced

– with side-by-side comparisons to Python

• Basics of Chapel
• Single-node parallelism
• Introduction to distributed programming concepts
• Ending with scalability and performance comparison with C++ / MPI

51

Navier-Stokes in Chapel

chapel-lang.org/blog/series/navier-stokes-in-chapel/

https://chapel-lang.org/blog/series/navier-stokes-in-chapel/


• Michael Ferguson (HPE) gave a talk at NASA Goddard
• Productive Parallel Programming with the Chapel Language
• A lot of performance comparisons to other languages
• At-scale performance results using sorting
• This talk may be available internally to you, as well

• A similar version from a Johns Hopkins University Applied Physics Lab Colloquium is available

52

A Pair of Previous Talks

www.youtube.com/watch?v=SuZckfFF_pE

https://www.youtube.com/watch?v=SuZckfFF_pE
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7 Questions for Chapel Users

Highly recommend Eric's interview on Chapel blog

Using Chapel in satellite image analysis for 
coral reef biodiversity analysis

Using Chapel in data analytics for atmospheric 
turbulence research in the Amazon

Other success stories on
graph processing and data analytics: 

chapel-lang.org/blog/series/7-questions-for-chapel-users/

... stay tuned for more!

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/


Live/Virtual Events
• ChapelCon (formerly CHIUW), annually
• Office Hours, monthly
• Live Demo Sessions, monthly

Community / User Forums
• Discord 
• Discourse
• Email Contact Alias     chapel+qs@discoursemail.com
• GitHub Issues
• Gitter
• Reddit
• Stack Overflow

Electronic Broadcasts
• Chapel Blog, ~biweekly
• Community Newsletter, quarterly
• Announcement Emails, around big events

Social Media
• Bluesky
• Facebook
• LinkedIn
• Mastodon
• X / Twitter
• YouTube
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Ways to Engage with the Chapel Community

https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/events.html
https://chapel-lang.org/events.html
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage


• Chapel is
• productive,
• parallel,
• fast,
• scalable,
• open-source,
• flight-proven J

• Powered by Chapel, CHAMPS
• is being developed very rapidly to increase its capabilities
• can run on multiple nodes efficiently
• produces high-fidelity results
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Closing Thoughts

chapel-lang.org

Both teams are excited to hear comments, questions, and collaboration opportunities!

https://chapel-lang.org/


Thank you


