

Hewlett Packard Enterprise

High-Performance, Productive Programming using Chapel with Examples from the CFD Solver CHAMPS

Engin Kayraklioglu, Hewlett Packard Enterprise Éric Laurendeau, Polytechnique Montréal Karim Zayni, Polytechnique Montréal

Advanced Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, February 20th, 2025

Today's Speakers

Engin Kayraklioglu

Hewlett Packard Enterprise Principal Software Engineer

Éric Laurendeau

Polytechnique Montréal Professor

Karim Zayni

Polytechnique Montréal Ph.D. Student

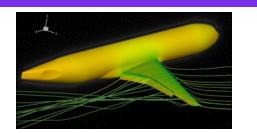
What is Chapel?

Chapel: A Modern Parallel Programming Language

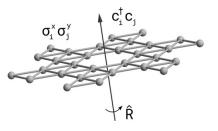
Imagine a programming language for parallel computing that is as... ...**readable and writeable** as Python

...yet also as...

- ...**fast** as Fortran / C / C++
- ...scalable as MPI / SHMEM
- ...GPU-ready as CUDA / HIP / OpenMP / Kokkos ...


...**portable** as C

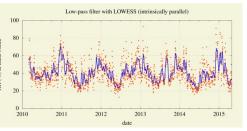
...fun as [your favorite programming language]



This is our motivation for Chapel

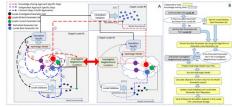
Applications of Chapel

CHAMPS: 3D Unstructured CFD Laurendeau, Bourgault-Côté, Parenteau, Plante, et al. École Polytechnique Montréal

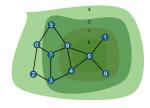


 Python3 Client
 ZMQ Socket
 Chapel Server

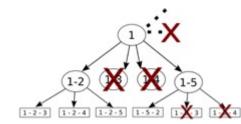
 Dispatcher
 Dispatcher


 Dispatcher
 Dispatcher

Arkouda: Interactive Data Science at Massive Scale Mike Merrill, Bill Reus, et al. *U.S. DoD*


Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

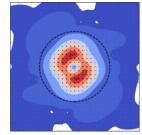
Tom Westerhout Radboud University

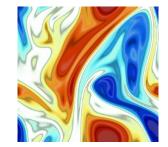


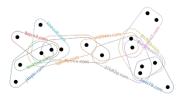
Chapel-based Hydrological Model Calibration Marjan Asgari et al. *University of Guelph*

Nelson Luis Dias The Federal University of Paraná, Brazil

Arachne Graph Analytics Bader, Du, Rodriguez, et al. New Jersey Institute of Technology


ChOp: Chapel-based Optimization T. Carneiro, G. Helbecque, N. Melab, et al. *INRIA, IMEC, et al.*


RapidQ: Mapping Coral Biodiversity Rebecca Green, Helen Fox, Scott Bachman, et al. The Coral Reef Alliance


CrayAl HyperParameter Optimization (HPO) Ben Albrecht et al. *Cray Inc. / HPE*

ChplUltra: Simulating Ultralight Dark Matter Nikhil Padmanabhan, J. Luna Zagorac, et al. *Yale University et al.*

ChapQG: Layered Quasigeostrophic CFD Ian Grooms and Scott Bachman University of Colorado, Boulder et al.

CHGL: Chapel Hypergraph Library Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al. *PNNL*

Chapel Community

Chapel is Open Source

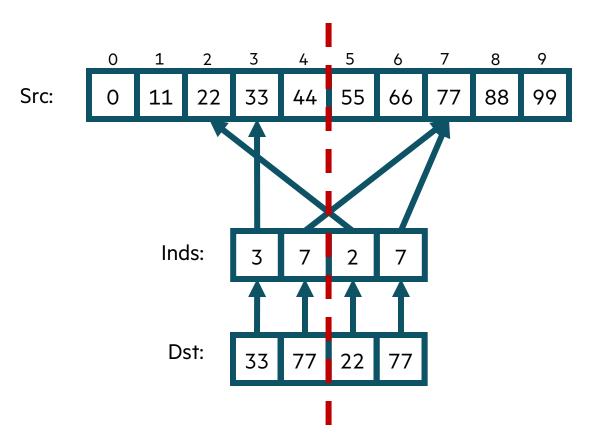
chapel Public		🔗 Edit Pins 👻	⊙ Unwatch 64 ▼	😌 Fork 425 👻 📩 Starred 1.8k 👻
° main 👻 양 51 Branches	🛇 48 Tags	Go to file t Add fil	e • <> Code •	About
riftEmber Resolve array typ	a Productive Parallel Programming Language			
.github	further limit docs-p	push ghci step	2 weeks ago	𝔅 chapel-lang.org
compiler	make sure tuples of nothing are properly removed 5 days ago			language programming-language
doc	clarify build require	clarify build requirements last week		
frontend	Resolve array type	es with module code in dyno (#26628)	6 hours ago	parallel-computing distributed-computing scientific-computing
highlight	add missing keywo	ords to chpl-mode.el	4 months ago	high-performance-computing chapel
make	Extend clang 18 de	eprecation warning silencing to 19	2 weeks ago	productive

github.com/chapel-lang/chapel

Community Events

- Office hours, live coding sessions, teaching meetups, language design discussions (new!)
- Annual conference ChapelCon

chapel-lang.org/community/


Chapel is joining the High Performance Software Foundation

What does Chapel code look like?

Bale IndexGather (IG): In Pictures

Bale IG in Chapel: Array Declarations

config const n = 10, 0 1 2 3 4 5 6 7 89 m = 4;Src: Inds: var Src: [0..<n] int,</pre> Inds, Dst: [0..<m] int;</pre> Dst: Ş

Bale IG in Chapel: Compiling

config const n = 10, 0 1 2 3 4 5 6 7 89 m = 4;Src: Inds: var Src: [0..<n] int,</pre> Inds, Dst: [0..<m] int;</pre> Dst:

Bale IG in Chapel: Executing

Inds:	
-------	--

Bale IG in Chapel: Executing, Overriding Configs

config const n = 10, m = 4;

var Src: [0..<n] int, Inds, Dst: [0..<m] int;</pre>

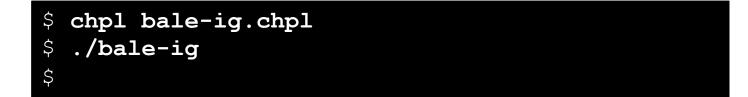
```
$ chpl bale-ig.chpl
$ ./bale-ig --n=1_000_000 --m=1_000_000
$
```

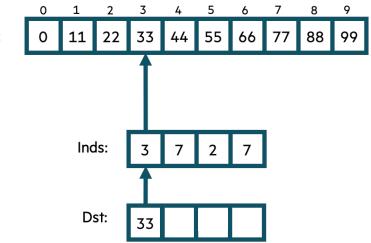
Bale IG in Chapel: Array Initialization

use Random;	
<pre>config const n = 10, m = 4;</pre>	0 1 2 3 4 5 6 7 8 9 Src: 0 11 22 33 44 55 66 77 88 99
<pre>var Src: [0<n] int,<br="">Inds, Dst: [0<m] int;<="" pre=""></m]></n]></pre>	Inds: 3 7 2 7
<pre>Src = [i in 0<n] fillrandom(inds,="" i*11;="" max="n-1);</pre" min="0,"></n]></pre>	Dst:
<pre>\$ chpl bale-ig.chpl</pre>	

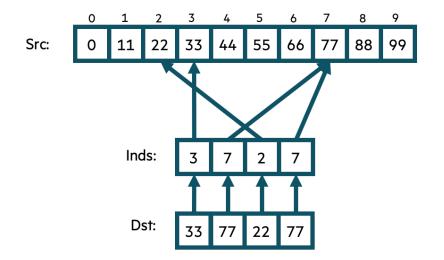
\$./bale-ig

Ş

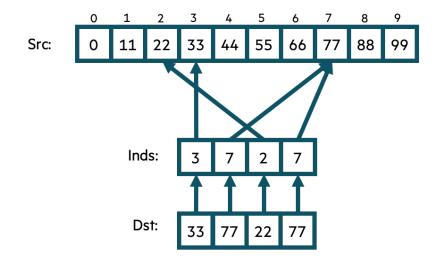

Bale IG in Chapel: Serial Version

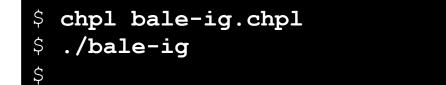

config const n = 10, 1 2 3 4 5 6 7 8 9 0 m = 4;Src: 0 11 22 33 44 55 66 77 88 99 Inds: var Src: [0..<n] int,</pre> 3 7 2 Inds, Dst: [0..<m] int;</pre> ... Dst: 33 for i in 0..<m do Dst[i] = Src[Inds[i]];

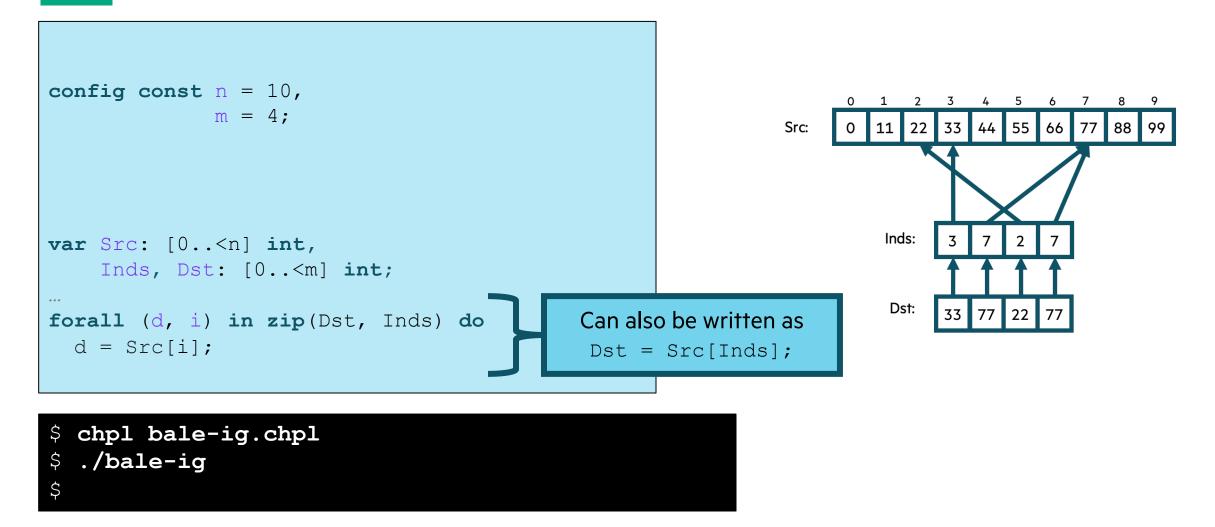
\$ chpl bale-ig.chpl
\$./bale-ig
\$


Bale IG in Chapel: Serial, Zippered Version

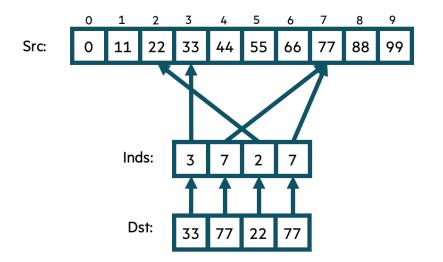
config const n = 10, m = 4; var Src: [0..<n] int, Inds, Dst: [0..<m] int; ... for (d, i) in zip(Dst, Inds) do d = Src[i];

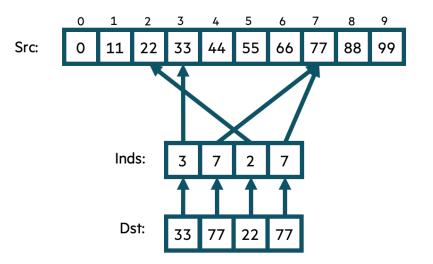



```
config const n = 10,
    m = 4;
var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
...
foreach (d, i) in zip(Dst, Inds) do
    d = Src[i];
```

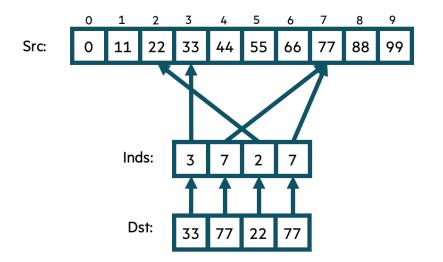


\$ chpl bale-ig.chpl
\$./bale-ig
\$

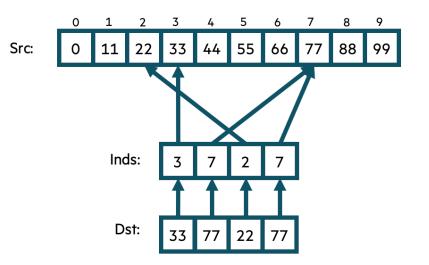

```
config const n = 10,
    m = 4;
var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
...
forall (d, i) in zip(Dst, Inds) do
    d = Src[i];
```



```
config const n = 10,
    m = 4;
var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
...
forall (d, i) in zip(Dst, Inds) do
    d = Src[i];
```


\$ chpl bale-ig.chpl
\$./bale-ig
\$


Bale IG in Chapel: Parallel, Zippered Version for a GPU

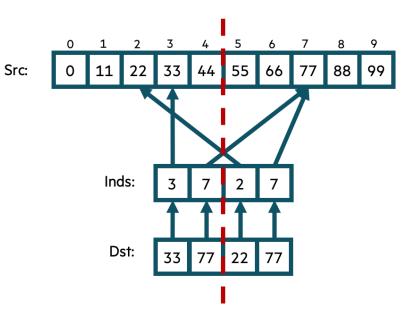
```
config const n = 10,
    m = 4;
on here.gpus[0] {
  var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
...
forall (d, i) in zip(Dst, Inds) do
    d = Src[i];
}
```



```
config const n = 10,
    m = 4;
var Src: [0..<n] int,
    Inds, Dst: [0..<m] int;
...
forall (d, i) in zip(Dst, Inds) do
    d = Src[i];
```

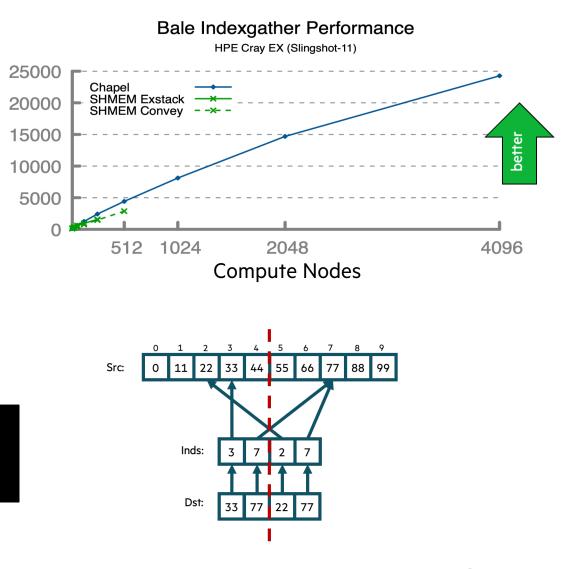

\$ chpl bale-ig.chpl
\$./bale-ig
\$

Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

```
config const n = 10,
    m = 4;
const SrcInds = {0..<n},
    DstInds = {0..<m};
var Src: [SrcInds] int,
    Inds, Dst: [DstInds] int;
...
forall (d, i) in zip(Dst, Inds) do
    d = Src[i];
```



22


Bale IG in Chapel: Distributed Parallel Version

Bale IG in Chapel: Distributed Parallel Version

```
use BlockDist;
config const n = 10,
             m = 4;
                                                     GB/s
const SrcInds = blockDist.createDomain(0..<n),</pre>
      DstInds = blockDist.createDomain(0..<m);</pre>
var Src: [SrcInds] int,
    Inds, Dst: [DstInds] int;
...
forall (d, i) in zip(Dst, Inds) do
  d = Src[i];
  chpl bale-ig.chpl --fast --auto-aggregation
Ş
  ./bale-ig -nl 4096
Ş
$
```


CHAMPS: CHApel Multi-Physics Software

Computational Aerodynamics R&D efforts within Academia

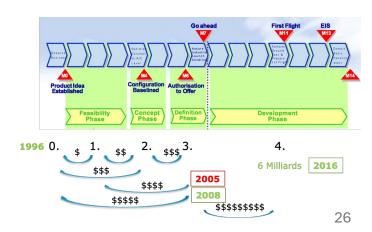
Vision for transonic aerodynamic modeling

- CFD via RANS has matured and is fully integrated within industrial workflows
 - o Including adjoint-based optimization
 - o Full-flight envelope remains elusive (e.g. unsteady flows)
- CFD's integration within multidisciplinary applications has yet to reach maturity
 - \circ $\;$ Static-Aeroelasticity, including adjoint, has been thoroughly studied
 - \circ $\$ More holistic problems can only be achieved with multi-fidelity approach

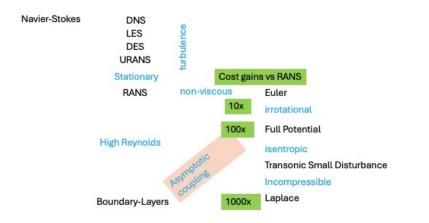
MDO Level	Fidelity	Aerodynamics	Structures	Propulsion			
CMDO	LO	Knowledge-based aerodynamics	Knowledge-based weight prediction	Fixed architecture, scaled engine model			
	L1	Quasi-3D methods (3D VLM / Panel method + 2D High-Fidelity CFD)	Beam or thin-shell models	Variable architecture, generic rubber engine			
	L1.5	Disciplinary L2 Surrogate Models		Surrogate model(s) from Engine supplier(s)			
PMDO	L2	Mid-to-High Fidelity CFD (3D TSD to RANS)	Global FEM				
	L2.5	Disciplinary L3 Surrogate Models		Real engine model (fixed)			
	L3	RANS	Detail FEM				

Table 1 MDO levels and tool sets

Source:

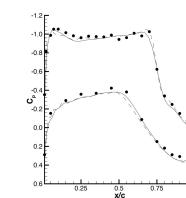

Piperni et al., Development of a Multilevel Multidisciplinary-Optimization Capability for an Industrial Environment, AIAA J, 2013.

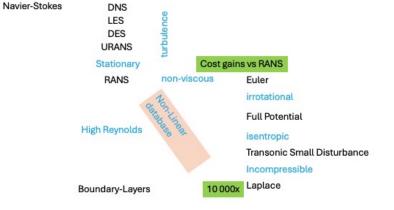
• Case study: C-Series/A220


Sources:

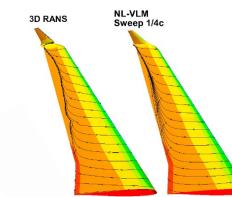
Flaig, Axel. Airbus 380: Solutions to the aerodynamic Challenges of Designing the World's Largest Passenger Aircraft, 2008

Wikipedia for cost+years




Aerodynamic modeling choices

Boundary-Layer Coupling Schemes


Captures shock-waves + flow separation

High Fidelity Database

Allows easy AI/ML treatment

Boudreau, J. & Laurendeau, E., drag Prediction Using the Euler/Navier-Stokes Code FANSC, SAE 2003-01-3022

> Parenteau et al., VLM Coupled with 2.5D RANS Sectional Data for High-Lift Design, AIAA 2018-1049

Academic Research Constraints

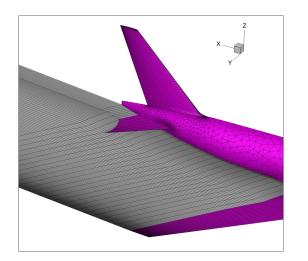
- Very High Turnaround of High-Quality Personnel (HQP)
 - Undergrad Summer Research (0.3 years), MSc (2 years), PhD (3-4 years), Post-Docs (2-years)
- Industrial Research Contracts and needs for 3D Full Aircraft Aerodynamic Modeling
 - Master complete workflow: geometry, mesh generation, flow solver, post-processing
 - o Acquire multi-disciplinary and multi-fidelity knowledge
- High-Performance Computing 'barrier'
 - Complex Source Codes, despite great advances in computer sciences
 - Computational efficiency, a nice-to-have is now a must-have to perform analysis or optimization
 - OPEN-MP + MPI paradigms makes for O(Million) lines of code

Academic Laboratory Solutions

• Cascading complexity stream of problems

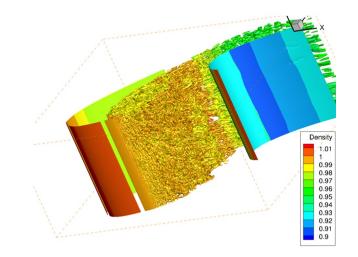
- Fundamental to applied problems
- MSc (2D, single disciplinary), PhD (3D, multidisciplinary), Post-doc (high TRL levels)

Large laboratory


- Flat governance structure
- Collaboration with single-disciplinary specialists (e.g. optimization, AI, etc.)
- o International collaboration, great also for training HQP
- High-Performance Computing
 - New unstructured RANS-based software using Chapel language: CHAMPS

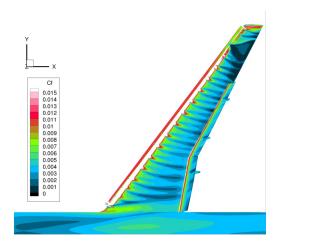
CHAMPS: Advanced 2D-3D CFD Solver

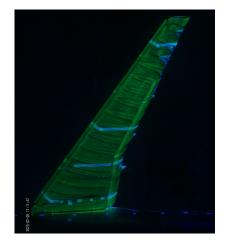
Overview of CHAMPS (Chapel Multi-Physics Software)

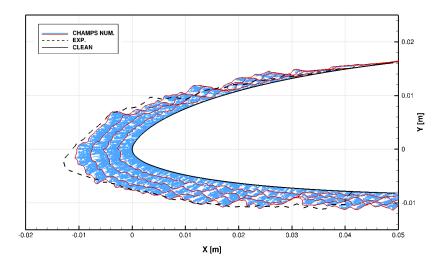

- Cutting-edge Computational Fluid Dynamics (CFD) solver
- 2D and 3D simulations using unstructured meshes.
- Three levels of fidelity for complex aerodynamic and multi-physics problems.
- Solves the Reynolds-Averaged Navier-Stokes (RANS) equations using second-order finite volume methods.
- Supports advanced convective flux schemes like Roe and AUSM.
- Includes Spalart-Allmaras (SA), k-ω SST-V, and Langtry-Menter transition models.
- Explicit Runge-Kutta solver, Implicit solvers including SGS and GMRES for enhanced stability.
- Linked with external libraries such as MKL, CGNS, METIS, MMG, CGAL and PETSc.
- Simulates icing phenomena using both deterministic and stochastic approaches.
- Handles fluid-structure interactions for advanced aerodynamics studies.

CHAMPS: Multi-Fidelity Transonic Viscous Flows

Medium Fidelity ~O(mins):


- Euler (Coupling with Boundary Layer)
- Non Linear Vortex Lattice Method (NL-VLM)

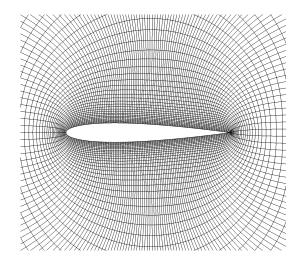


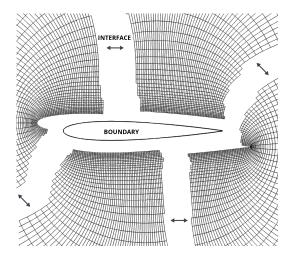

High Fidelity ~O(Hours/Days):

- Unsteady Reynolds Averaged Navier Stokes (U-RANS)
- Wall Model Large Eddy Simulation (WMLES)
- Detached Eddy Simulation (DES)

CHAMPS: Expertise & Global Impact

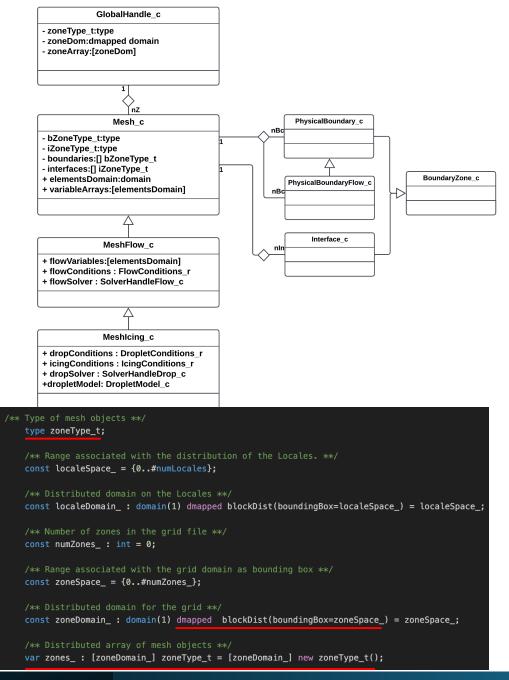
- Current Development team consists of 6 PhD and 3 MSc students
- Used at Université Strasbourg (France), Prof. Hoarau
- Used in Polytechnique Montréal's graduate class in Computational Aerodynamics
- CHAMPS has contributed to over 50 publications, including 10 journal articles
- Workshops Participation:
 - High Lift Prediction Workshops (HLPW): 4 and 5th Editions
 - Drag Prediction Workshops (DPW): 6, 7 and 8th Editions
 - Ice Prediction Workshops (IPW) : 1st and 2nd Editions

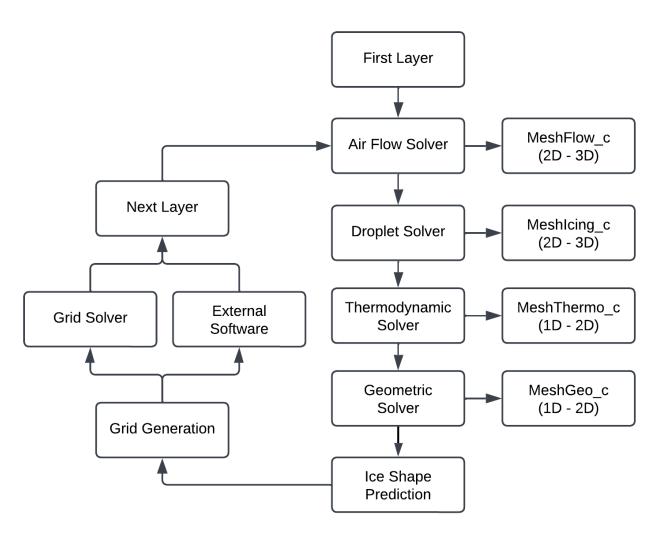

CHAMPS: Advanced 2D-3D CFD Solver


Codebase Statistics:

- CHAMPS : ~150K lines of code
- **Pre-Processor**: ~17K lines
- Flow Solver: ~15K lines
- Turbulence Solver: ~13K lines
- Droplet Solver (Eulerian + Lagrangian): ~24K lines
- **Post-Processor**: ~2K lines
- Smaller Solvers: ~5K lines (each)
- Shared Structure & APIs : ~50K lines

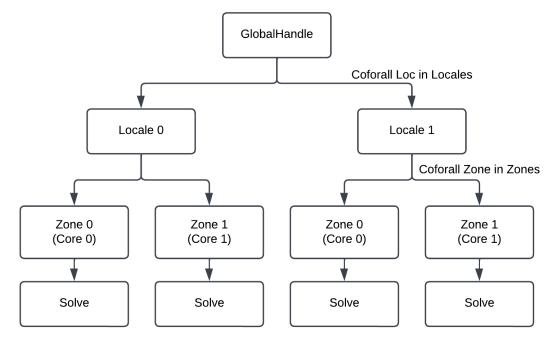
Parallel CFD for HPC


- Volumetric Meshing around complex geometries
- 2D Meshes : Ranging from 0.5 to 1.0 Million Unknowns
- 3D Meshes : Handling up to 1 Billion Unknowns
- Leveraging HPC to significantly reduce computation time
- Problem is partitioned into smaller sub-problems interconnected via interfaces
- Each sub-problem runs independently on dedicated tasks
- Minimizing communication overhead to maximize overall efficiency

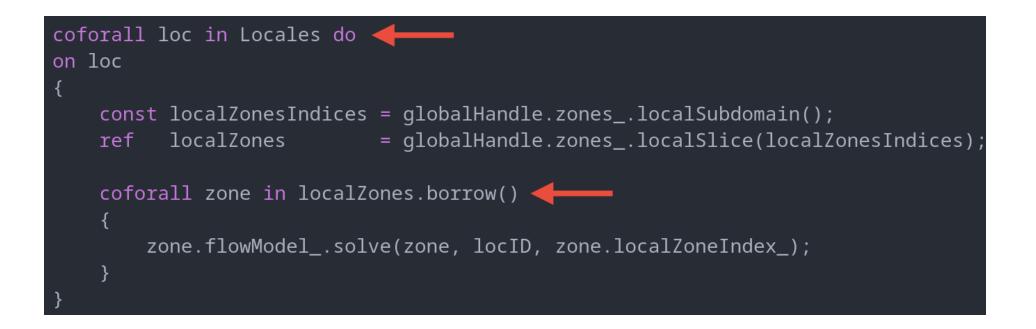

Software Structure : Framework

- Multiphysics problems require different computational domains grid (*Mesh_c*)
- *Type* aliases in *Chapel* are used to define computational domains at the start of each simulations
- Supports Generic Programming and Improve flexibility
- Distributed *domains* enable efficient handling of large-scale simulations across multiple computational nodes

Software Structure : Icing Framework

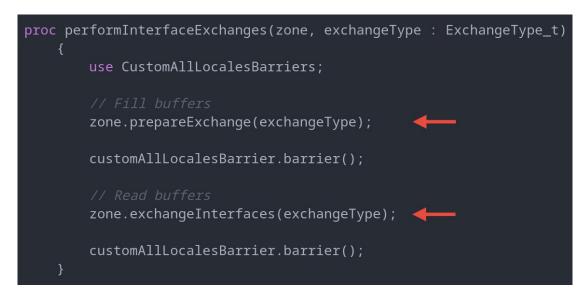

- Typical icing simulations involve four distinct computational domains
- Some domains solve the volume field (3D), while others focus on surface interactions (2D)
- Each computational domain has its own specific characteristics, variables and requirements

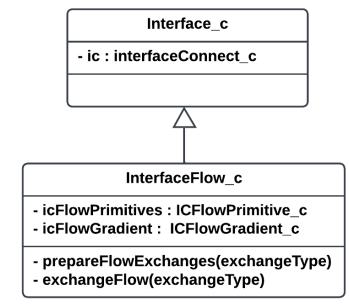
Software Structure :


Top-level Overview

- Each simulation runs in a single execution (using a *GlobalHandle*), ensuring efficiency and consistency.
- Tasks are distributed hierarchically using *coforall* statements, first at the Locale (node) level, then further subdivided at the Zone (core) level to maximize parallelism.
- Grid partitioning through METIS guarantees optimal load balancing across all cores, enhancing computational efficiency and minimizing idle time.

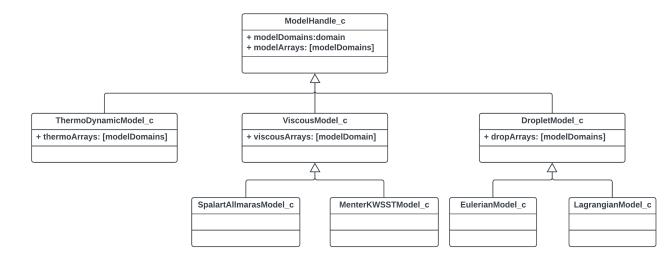

```
proc main(args : [] string)
{
    // Fetching user inputs for the flow
    var flowInputs : FlowInputs_r;
    var turbInputs : TurbInputs_r;
    ref commonInputs = flowInputs.commonInputs_;
    var globalHandle : GlobalHandleFlow_t = initializeComputationalDomain(GlobalHandleFlow_t, commonInputs);
    try! writeln("Elapsed time after reading grid: ", clock.elapsed());
    runFlowSimulation(globalHandle.borrow(), clock, flowInputs, turbInputs);
}
```


- Type GlobalHandleFlow_t will initialize MeshFlow_t computational domains
- One proc to run : runFlowSimulation()



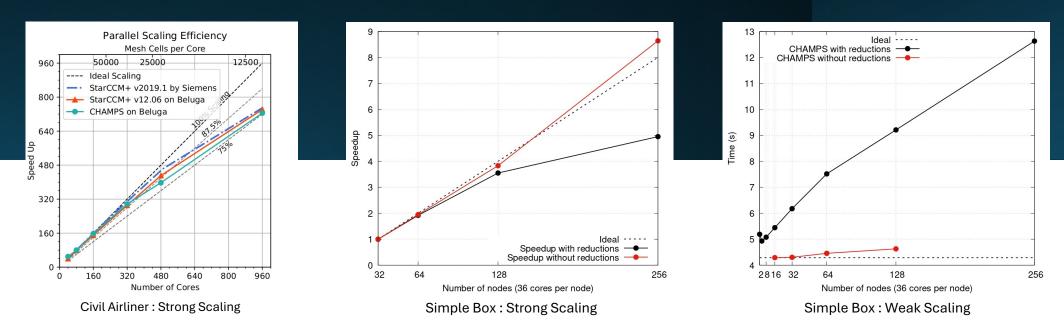
- First coforall will loop over Locales
- Second *coforall* will loop over cores to execute Solve()
- Provides greater control of each computational domain's operations

Software Structure : Data Exchanges


- Each *interface* is equipped with an *interfaceConnect* to facilitate seamless communication with adjacent zones.
- Each zone prepares for data exchanges by populating its respective buffer arrays, ensuring that all necessary information is readily available for transfer.
- Custom synchronization barriers are implemented to maximize efficiency.
- Once synchronization is achieved, all data exchanges are executed simultaneously, minimizing communication overhead and maximizing throughput.
- The global namespace support provided by *Chapel* ensures that any task can access the necessary buffers, regardless of its location across Locales.

Software Structure : Generics & Modularity

- All models inherit from a base ModelHandle_c Class
- Maximize code reusability, leading to faster implementation and enhance readability
- *Where* statements are needed to prevent compilation errors.
- This ensures compatibility when fields or methods are not present in the parent class.
- *Where* statements also prevent conflicts with sibling classes (other children of the same parent).

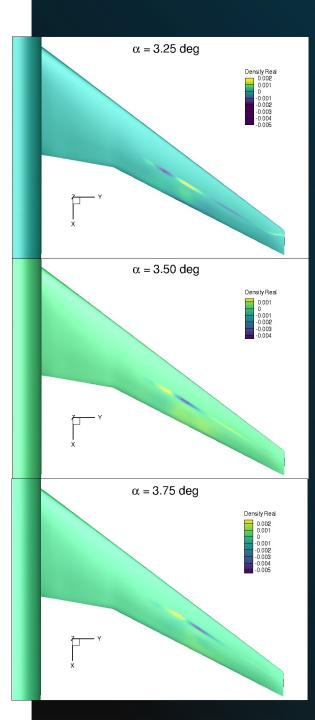

override proc solve(zone, locId : int, localTaskID : int)
where isProperSubtype(zone.type, MeshThermo_c)

Software Structure : Model Implementation

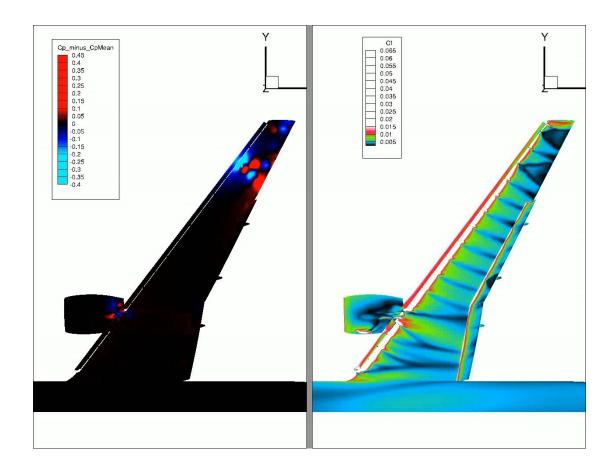
- Viscous models are decided based on user input at the start of runFlowSimulation()
- Leads to the instantiation of a new viscousModel_c object in each zone

```
proc initializeViscousModelAndSolver(globalHandle, zone, flowInputs : FlowInputs_r, turbInputs : TurbInputs_r,
    select flowInputs.FLOW_REGIME_
        when FlowRegime_t.INVISCID
           zone.viscousModel_ = new owned InviscidModel_c();
        when FlowRegime_t.LAMINAR
           zone.viscousModel_ = new owned LaminarModel_c();
        when FlowRegime_t.TURBULENT
           select turbInputs.TURB_MODEL_
               when TurbulenceModel_t.SA
                   zone.viscousModel_ = new owned SpalartAllmarasModel_c(zone, turbInputs);
               when TurbulenceModel_t.KW
                   zone.viscousModel_ = new owned MenterKWSSTModel_c(zone, turbInputs);
           zone.viscousModel_.initializeConditionsAndSolvers(globalHandle, zone);
```

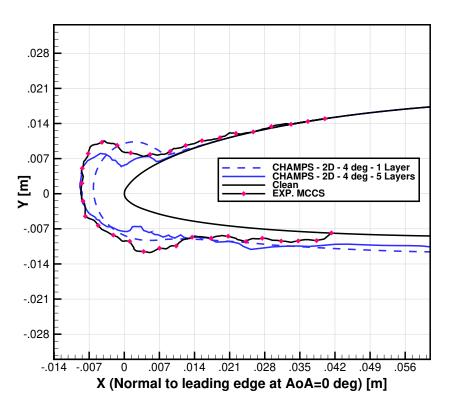
Scalability Analysis

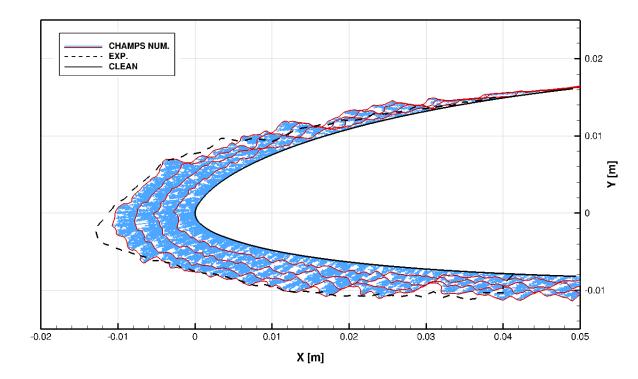

• Civil Airlines Model :

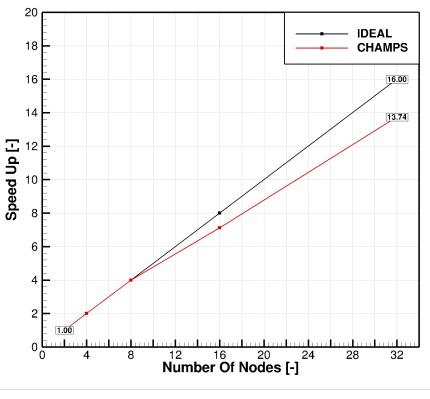
• CHAMPS' performance were similar to other softwares available industrially


• Plain Box Model:

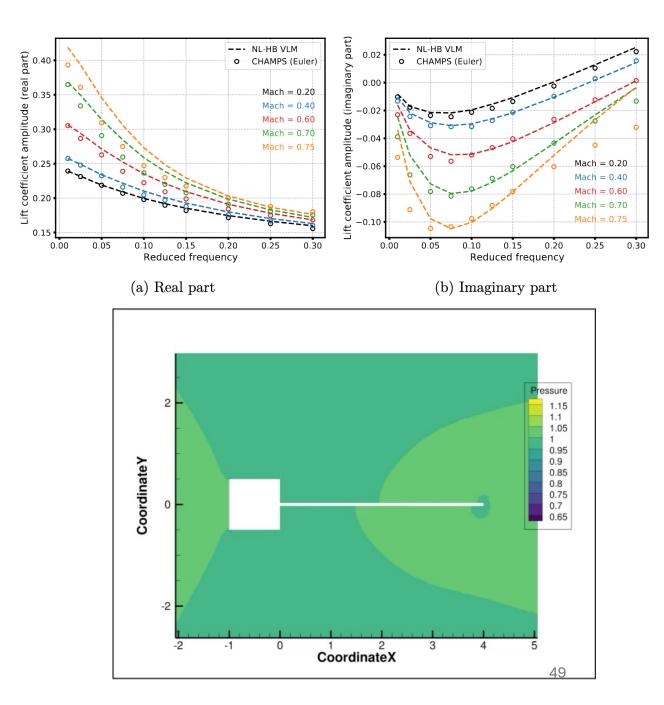
- Conducted on an **HPE HPC cluster** this test used a high number of cores (9216 cores in total) to explore CHAMPS's scalability.
- Tests with and without **reduction operations** revealed **super scalability** in the absence of reductions.


- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity


- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity

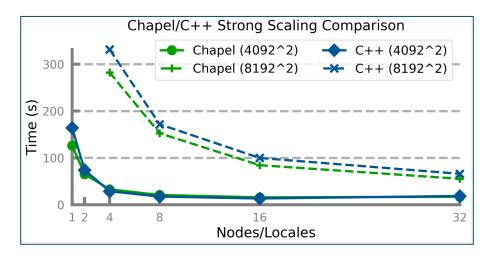

- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity

- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity



- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity

1 Node = 40 Cores Total = 1280 Cores

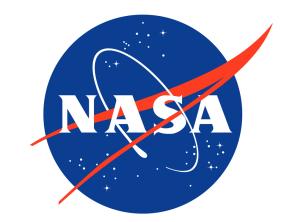

- Global Stability Analysis
- Studying High lift configurations (HLPW5)
- Predicting Ice shapes in 2D and 3D (IPW2)
- Multilayer Stochastic Ice accretion
- Lagrangian Model Scalability
- Aero-Elasticity



More on Chapel...

Navier-Stokes in Chapel

- Four introductory articles using Navier-Stokes as use-case
 - Based on an existing Python example
 - Chapel concepts are gradually introduced with side-by-side comparisons to Python
 - Basics of Chapel
 - Single-node parallelism
 - Introduction to distributed programming concepts
 - Ending with scalability and performance comparison with C++ / MPI



chapel-lang.org/blog/series/navier-stokes-in-chapel/

A Pair of Previous Talks

- Michael Ferguson (HPE) gave a talk at NASA Goddard
 - Productive Parallel Programming with the Chapel Language
 - A lot of performance comparisons to other languages
 - At-scale performance results using sorting
 - This talk may be available internally to you, as well

• A similar version from a Johns Hopkins University Applied Physics Lab Colloquium is available

7 Questions for Chapel Users

Chapel Language Blog			Highly recommend Eric's interview on Chapel blog				
About Chapel W	Peakured Series T 7 Questions for Éu Aircraft Aerodyna Image: Chapel La About Chapel Website F		Using Chapel in satellite image analysis for coral reef biodiversity analysis				
		7 Questions for Scott Bachman Coral Reefs with Chapel	: Analyzing			_	
		About Chapel Website Featured Serie	U	All Posts	Using Chapel in data analytics for atmospheri turbulence research in the Amazon		
	For the second secon			ws Data Analysis		Other success stories on graph processing and data analytics:	
					<u>chapel-lang.org/blog/series/7-questions-fo</u> stay tuned for more!	r-chapel-users/ 53	

Ways to Engage with the Chapel Community

Live/Virtual Events

- <u>ChapelCon</u> (formerly CHIUW), annually
- Office Hours, monthly
- <u>Live Demo Sessions</u>, monthly

<u>Community / User Forums</u>

- Discord
- **Discourse**
- Email Contact Alias
- GitHub Issues
- Gitter
- <u>Reddit</u>
- Stack Overflow

D Discord

III GITTER

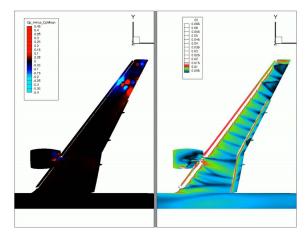
()

- C reddit
- stack overflow

chapel+qs@discoursemail.com

Electronic Broadcasts

- <u>Chapel Blog</u>, ~biweekly
- <u>Community Newsletter</u>, quarterly
- <u>Announcement Emails</u>, around big events


Social Media

- <u>Bluesky</u>
- Facebook
- Linked in • LinkedIn
- mastodon <u>Mastodon</u>
- <u>X / Twitter</u> X
- YouTube VouTube

Closing Thoughts

- Chapel is
 - productive,
 - parallel,
 - fast,
 - scalable,
 - open-source,
 - flight-proven 🙂
- Powered by Chapel, CHAMPS
 - is being developed very rapidly to increase its capabilities
 - can run on multiple nodes efficiently
 - produces high-fidelity results

Both teams are excited to hear comments, questions, and collaboration opportunities!

Thank you