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What is Chapel?




Chapel: A Modern Parallel Programming Language

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

..yet also as...
..Fast as Fortran / C / C++ N
...scalable as MP| / SHMEM @APEL
...GPU-ready as CUDA / HIP / OpenMP / Kokkos ... _,
...portable as C
...fun as [your favorite programming language] chapel-lang.org

This is our motivation for Chapel


https://chapel-lang.org/

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph
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rkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD
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Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias
The Federal University of Parand, Brazil

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.
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RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
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CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

[images provided by their respective teams and used with permission]

ChplUltra: Simulating Ultralight Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL



Chapel Community

Chapel is Open Source

L chapel Ppubiic > EditPins ~ & Unwatc h 64 - Y Fork 425 @~ Starred 18k

¥ main ~ ¥ 51Branches © 48 Tags Q Go to file t Add file ~ <> Code ~ About
a Productive Parallel Programming ° 4 4 °
. riftEmber Resolve array types with module code in dyno (#26628) @ 417ed9a - 6 hours ago  {Y) 106,318 Commits Language a pe I s j o I n I n g e

| .github further limit docs-push ghci step 2 weeks ago & chapel-lang.org
M8 compiler make sure tuples of nothing are properly removed 5 days ago language | (programming-language o °
i erformance Software Foundation
) doc clarify build requirements last week
hpc  gpu  concurrenc y  parallel
M frontend Resolve array types with module code in dyno (#26628) 6 hours ago parallel i distri i
scientific-computing
) highlight add missing keywords to chpl-mode.el 4 months ago
high-performance-com puting hapel

github.com/chapel-lang/chapel m HF SI
HIGH PERFORMANCE

LINUX

FOUNDATION

Community Events

e Office hours, live coding sessions, feaching meetups,
language design discussions (new!)

e Annual conference ChapelCon

chapel-lang.org/community/

— | s



https://github.com/chapel-lang/chapel
https://chapel-lang.org/community/

What does Chapel code look like?



Bale IndexGather (IG): In Pictures
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o fulaa]ss]u]ss]esfrrfss]o0

Src:

o [t
[



Bale IG in Chapel: Array Declarations

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src:




Bale IG in Chapel: Compiling

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m]

int;

Slchpl bale-ig.chpl
S

—1

Src:

10



Bale IG in Chapel: Executing

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
" /vale-ig
$

—1

Src:

11



Bale IG in Chapel: Executing, Overriding Configs

config const n = 10,
m = 4;
A5Y (oSN I A A O O W
Vo RS A A
- Dst: TTTTTI
var SIC: [O..<fl] 1nt, st: LTI T T T T T T T T T T T T T T T T T I T I T T T T I T T I I T T I T T I T T I T TITITITITITTITT

Inds, Dst: [0..<m] int;

$ chpl bale-ig.chpl
SA L.l --n=1 000 000 --m=1 000 000




Bale IG in Chapel: Array Initialization

use Random;

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

Src = [1 in O0..<n] 1i*11;
fillRandom(Inds, min=0, max=n-1);

$ chpl bale-ig.chpl
$ ./bale-ig

S

0 1 2 3 4 5 6 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

Inds:|3|7|2|7|
DsT:D | | |

13



Bale IG in Chapel: Serial Version

config const n
m

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

for i in 0..<m do
Dst[i] = Src[Inds[i]];

$ chpl bale-ig.chpl
$ ./bale-ig

S

—1

0 1 2 3 4 5 b 7 8 9
Src: IO |11|22|33|44|55|66|77|88|99|

|

Inds: I3I7I2I7I
o+ BT

14



Bale IG in Chapel: Serial, Zippered Version

config const n = 10, 0o 1 2 3 4 5 6 7 8 9
m = 4; Src: IO|11|22|33|44|55|66|77|88|99|
var Src: [0..<n] int, Inds: |3 |7|2 |7|
Inds, Dst: [0..<m] int; T
Eor (d, 1) in zip(Dst, Inds) do oSt |33| I I
d = Srcli];

$ chpl bale-ig.chpl
$ ./bale-ig

S

—1



Bale IG in Chapel: Parallel, Zippered Version (Vectorized)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

foreach (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

16



Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

17



Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

Can also be written as
Dst = Src[Inds];

$ chpl bale-ig.chpl
$ ./bale-ig

S

0 1 2 3 4 5 6 7 8 9

Src:

0 |11|22|33|44|55|66|77|88|99|
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Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

19



Bale IG in Chapel: Parallel, Zippered Version for a GPU

config const n = 10,
m = 4;

on here.gpus[0] {
var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

20



Bale IG in Chapel: Parallel, Zippered Version (Multicore)

config const n = 10,
m = 4;

var Src: [0..<n] int,
Inds, Dst: [0..<m] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

Src:

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|

21



Bale IG in Chapel: Parallel , Zippered Version with Named Domains (Multicore)

config const n = 10,
S 4 Src:
const SrcInds = {0..<n},

DstInds = {0..<m};

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do
d = Src[il];

$ chpl bale-ig.chpl
$ ./bale-ig

S

0 1 2 3 4 5 6 7 8 9

0 |11|22|33|44|55|66|77|88|99|




Bale IG in Chapel: Distributed Parallel Version

use BlockDist;

config const n = 10,
m = 4;

const SrcInds = blockDist.createDomain (0. .<n),

DstInds = blockDist.createDomain (0. .<m) ;

var Src: [SrcInds] int,
Inds, Dst: [DstInds] int;

forall (d, 1) in zip(Dst, Inds) do

$ chpl bale-ig.chpl

SEVA LRSS l-n1 4096

S

o 1 2 3 4 _5 6 7 8 9
Src IO|11|22|33|44|55|66|77|88|99|
| |

23



Bale IG in Chapel: Distributed Parallel Version

use BlockDist; Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

config const n = 10, 25000 [ chepel —
m = 4; 20000 [- SHMEM Exstack —— =T
@ 15000 [~ e e e
const SrcInds = blockDist.createDomain(0..<n), 8 10000 b--- -l
DstInds = blockDist.createDomain (0. .<m) ;
5000 |-~ g™ -t soossssososoooooooooos
[ |
: I i 0
var ir; [;ri.n?;]t;ng,] - 512 1024 2048 4096
nos, Ust: stofids] 1nt, Compute Nodes
forall (d, 1) in zip(Dst, Inds) do
d = Src[i]; I
0 1 2 3 4 5 ) 7 8 9

Src: 0 1122 88 | 99

SHNel | IR RN K. el JM- - fast --auto-aggregation

$ ./bale-ig —-nl 4096 Inds:

S

Dst: Y3377 |22177




CHAMPS: CHApel Multi-Physics Software



Computational

Aerodynamics
R&D efforts within

Academia

Vision for transonic aerodynamic modeling

* CFD via RANS has matured and is fully integrated within industrial workflows
o Including adjoint-based optimization

o Full-flight envelope remains elusive (e.g. unsteady flows)

* CFD's integration within multidisciplinary applications has yet to reach maturity

o Static-Aeroelasticity, including adjoint, has been thoroughly studied

o More holistic problems can only be achieved with multi-fidelity approach

Table 1 MDO levels and tool sets*

Propulsion

Fixed architecture,
scaled engine model

Variable architecture,
generic rubber engine

Source:

Piperni et al., Development of a Multilevel
Multidisciplinary-Optimization Capability for

Surrogate model(s) from
Engine supplier(s)

an Industrial Environment, AIAA J, 2013.

MDO Level | Fidelity Aerodynamics Structures
Knowledge-based Knowledge-based
LO . ; -
aerodynamics weight prediction
PO Quask3D methods Beam or thin-shell
L1 (3D VLM / Panel method G e
I + 2D High-Fidelity CFD)
I L1.5 Disciplinary L2 Surrogate Models
Mid-to-High Fidelity CFD
PMDO L2 (3D TSD to RANS) Global FEM
—LI L2.5 Disciplinary L3 Surrogate Models
DMDO L3 RANS Detail FEM
]

Real engine model
(fixed)

* (Case study: C-Series/A220

Sources:

Flaig, Axel. Airbus 380: Solutions to the aerodynamic Challenges
of Designing the World's Largest Passenger Aircraft, 2008

Wikipedia for cost+years

First Flight EIS

Development
Phase

0. $ 1. 45

2. $$$3. 4.

NN

R N
s [2005]
S . L N
LY
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Aerodynamic modeling choices

Navier-Stokes DNS
LES
DES
URANS =
Stationary Cost gains vs RANS
RANS non-viscous Euler
10x rotational
100x Full Potential
ligh Reynolds
sentropic
Transonic Small Disturbance
o’ ncompressible
Boundary-Layers 1000x Laplace

Boundary-Layer Coupling Schemes
*  Captures shock-waves + flow separation

08k \
06

-0.4

o &.}/,(;,\,\.\ *
I ol N NS
Boudreau, J. & Laurendeau, E., drag 0.2 '/ N \

Prediction Using the Euler/Navier-Stokes 00
Code FANSC, SAE 2003-01-3022

02

04

O_G’wwwlwwwwlwwwwlwwwwl

Navier-Stokes DNS

Full Potential

sentropic
Transonic Small Disturbance
ncompressible

Boundary-Layers 10000x Leplace

High Fidelity Database
* Allows easy Al/ML treatment

NL-VLM
Sweep 1/4c

Parenteau et al., VLM Coupled with 2.5D
RANS Sectional Data for High-Lift
Design, AIAA 2018-1049

27



Academic Research Constraints

* Very High Turnaround of High-Quality Personnel (HQP)
o Undergrad Summer Research (0.3 years), MSc (2 years), PhD (3-4 years), Post-Docs (2-years)

* Industrial Research Contracts and needs for 3D Full Aircraft Aerodynamic Modeling
o Master complete workflow: geometry, mesh generation, flow solver,post-processing
o Acquire multi-disciplinary and multi-fidelity knowledge

* High-Performance Computing 'barrier’
o Complex Source Codes, despite great advances in computer sciences

o Computational efficiency, a nice-to-have is now a must-have to perform analysis or optimization
o OPEN-MP + MPI paradigms makes for O(Million) lines of code

28



Academic Laboratory Solutions

 Cascading complexity stream of problems

o Fundamental to applied problems
o MSc (2D, single disciplinary), PhD (3D, multidisciplinary), Post-doc (high TRL levels)

* Large laboratory
o Flat governance structure
o Collaboration with single-disciplinary specialists (e.g. optimization, Al, etc.)
o International collaboration, great also for training HQP

* High-Performance Computing
o New unstructured RANS-based software using Chapel language: CHAMPS

29



Overview of CHAMPS (Chapel Multi-Physics Software)
* Cutting-edge Computational Fluid Dynamics (CFD) solver
* 2D and 3D simulations using unstructured meshes.

* Three levels of fidelity for complex aerodynamic and multi-physics problems.

C HAM PS' * Solves the Reynolds-Averaged Navier-Stokes (RANS) equations using second-order
y finite volume methods.

Adva n Ced 2 D — 3 D * Supports advanced convective flux schemes like Roe and AUSM.

* Includes Spalart-Allmaras (SA), k-w SST-V, and Langtry-Menter transition models.

C F D SO lve r * Explicit Runge-Kutta solver, Implicit solvers including SGS and GMRES for

enhanced stability.
* Linked with external libraries such as MKL, CGNS, METIS, MMG, CGAL and PETSc.
* Simulates icing phenomena using both deterministic and stochastic approaches.

* Handles fluid-structure interactions for advanced aerodynamics studies.

30
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CHAMPS: Expertise & Global Impact

CHAMPS NUM.

Y [m]

]
-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

 Current Development team consists of 6 PhD and 3 MSc students

 Used at Université Strasbourg (France), Prof. Hoarau

 Usedin Polytechnique Montréal's graduate class in Computational Aerodynamics
* CHAMPS has contributed to over 50 publications, including 10 journal articles

* Workshops Participation:
* High Lift Prediction Workshops (HLPW): 4 and 5th Editions
* Drag Prediction Workshops (DPW): 6, 7 and 8th Editions
* Ice Prediction Workshops (IPW) : 1st and 2nd Editions 32



CHAMPS:
Advanced 2D-3D

CED Solver

Codebase Statistics:

« CHAMPS : ~150K lines of code

* Pre-Processor: ~17K lines

* Flow Solver: ~15K lines

* Turbulence Solver: ~13K lines

* Droplet Solver (Eulerian + Lagrangian): ~24K lines
* Post-Processor: ~2K lines

 Smaller Solvers: ~5K lines (each)

* Shared Structure & APIs : ~50K lines

33



Parallel CFD for HPC

* Volumetric Meshing around complex geometries ﬁ

* 2D Meshes : Ranging from 0.5 to 1.0 Million Unknowns
* 3D Meshes : Handling up to 1 Billion Unknowns

* Leveraging HPC to significantly reduce computation time S

\\\ W\ INTERFACE
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* Problem is partitioned into smaller sub-problems
interconnected via interfaces

* Each sub-problem runs independently on dedicated tasks R

* Minimizing communication overhead to maximize overall
efficiency
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GlobalHandle_c

- zoneType_t:type
- zoneDom:dmapped domain
- zoneArray:[zoneDom]

1
nZ
Mesh_c PhysicalBoundary _c

Software Structure : e

- boundaries:[] bZoneType_t
- interfaces:[] iZoneType_t
+ elementsDomain:domain

F ra m eWO r k + variableArrays:[elementsDomain]
T

MeshFlow_c

* Multiphysics problems require different Ffowvarbisimentsoam
computational domains grid (Mesh_c)

BoundaryZone_c

PhysicalBoundaryFlow_c

+ flowSolver : SolverHandleFlow_c

T

* Type aliases in Chapel are used to define
computational domains at the start of each ¥ emGonditions - eingCondtiona s

+ dropSolver : SolverHandleDrop_c

S i m u lat i O n S +dropletModel: DropletModel_c

e Supports Generic Programming and Improve
fleXi bility const localeSpace_ = {0..#numLocales};

° DiStribUted domains enable effiCient handling const localeDomain_ : domain(1) dmapped blockDist(boundingBox=1ocaleSpace_) = localeSpace_;
of large-scale simulations across multiple
computational nodes

onst numZones_ : int = 0;

nst zoneSpace_ = {0..#numZones_};

nst zoneDomain_ : domain(1) dmapped blockDist(boundingBox=zoneSpace_) = zoneSpace_;

var zones_ : [zoneDomain_] zoneType_t = [zoneDomain_] new zoneType_t();



Software Structure :
lcing Framework ]
. o . . . p-| Air Flow Solver |—p MeszFlg\lljv_c
* Typicalicing simulations involve four [ (¢b - 3D)
distinct computational domains [ ] *
Next Layer r 2 r _
 Some domains solve the volume field ] Droplet Solver  — Mfzsgl.cg‘g)‘c
(3D), while others focus on surface ) ‘ 7 S
interactions (2D) . ( ‘
[ Grid Solver External ] Therrgoldynamlc | Mesf[')rhezrgo_c
« Each computational domain has its own Software | Soher L @P-2D
specific characteristics, variables and 4 4 ) Y L
i Geometric MeshGeo ¢
requirements [ [ ] somet — Mo
Grid Generation - ‘ ’ )
{ r Ice Shape
Prediction




Software Structure :
Top-level Overview

 Each simulation runsin a single execution (using a
GlobalHandle), ensuring efficiency and
consistency.

* Tasks are distributed hierarchically using coforall
statements, first at the Locale (node) level, then
further subdivided at the Zone (core) level to
maximize parallelism.

e Grid partitioning through METIS guarantees
optimal load balancing across all cores,
enhancing computational efficiency and
minimizing idle time.

[ GlobalHandle ]

l Coforall Loc in Locales
{ Locale O 1 l Locale 1 ]
l l Coforall Zone in Zones
Zone 0 Zone 1 Zone 0 Zone 1
(Core 0) (Core 1) (Core 0) (Core 1)
Solve Solve Solve Solve




proc main(args : [] string)

{

var flowInputs : FlowInputs_r;
var turbInputs : TurbInputs_r;

ref commonInputs = flowInputs.commonInputs_;

var globalHandle : GlobalHandleFlow_t = initializeComputationalDomain(GlobalHandleFlow_t, commonInputs);

try! writeln("Elapsed time after reading grid: ", clock.elapsed());

runFlowSimulation(globalHandle.borrow(), clock, flowInputs, turbInputs);

* Type GlobalHandleFlow_t will initialize MeshFlow_t computational domains

* One proc to run : runFlowSimulation()



coforall loc in Locales do
on loc

{

const localZonesIndices globalHandle.zones_.localSubdomain();
ref localZones globalHandle.zones_.localSlice(localZonesIndices);

coforall zone in localZones.borrow()

{

zone.flowModel .solve(zone, locID, zone.localZoneIndex_ );

* First coforall will loop over Locales
* Second coforall will loop over cores to execute Solve()

* Provides greater control of each computational domain’s operations



proc performInterfaceExchanges(zone, exchangeType : ExchangeType_t)

{

use CustomAllLocalesBarriers;

Software Structure :
Data Exchanges

zone.prepareExchange (exchangeType) ;

customAllLocalesBarrier.barrier();

Each interface is equipped with an interfaceConnect to zone . exchangeInterfaces(exchangeType) ;

facilitate seamless communication with adjacent zones. ' ,
customAllLocalesBarrier.barriexr();

* Each zone prepares for data exchanges by populating its
respective buffer arrays, ensuring that all necessary

information is readily available for transfer. Interface_c
* Custom synchronization barriers are implemented to - ic : interfaceConnect_c
maximize efficiency.
* Once synchronization is achieved, all data exchanges are /\
executed simultaneously, minimizing communication
overhead and maximizing throughput. r ‘

InterfaceFlow ¢

* The global namespace support provided by Chapel ensures - icFlowPrimitives : ICFlowPrimitive_c
that any task can access the necessary buffers, regardless of - icFlowGradient : ICFlowGradient ¢
its location across Locales.

- prepareFlowExchanges(exchangeType)
- exchangeFlow(exchangeType)

. J




Software Structure :
Generics & Modularity

ModelHandle_c

+ modelDomains:domain
+ modelArrays: [modelDomains]

All models inherit from a base

AN
ModelHandle_c Class ]
. . . . ThermoDynamicModel_c ViscousModel_c DropletModel_c
d MaXImIZG COde reusablllty, leadlng tO fa Ster + thermoArrays: [modelDomains] + viscousArrays: [modelDomain] + dropArrays: [modelDomains]
implementation and enhance readability x i
® Where Statements are needed to preve nt SpalartAllmarasModel_c MenterKWlSTModeLc EulerianModel_c mlm
compilation errors.
* This ensures compatibility when fields or
methods are not present in the parent class.
* Where statements also prevent conflicts override proc solve(zone, locId : int, localTaskID : int)

with sibling classes (other children of the where isProperSubtype(zone.type, MeshThermo_c)
same parent).




Oftwa re tru Ctu re P proc initializeViscousModelAndSolver(globalHandle, zone, flowInputs : FlowInputs_xr, turbInputs : TurbInputs_r,
: ; : ; {
)

select flowInputs.FLOW_REGIME_

{

MOdel Im plementation when FlowRegime_t.INVISCID

{

zone.viscousModel_ = new owned InviscidModel_c();
}
when FlowRegime_t.LAMINAR

* Viscous models are decided based {

on user input at the start of )
runFlOWSImulation() when FlowRegime_t.TURBULENT

{
1

zone.viscousModel_ = new owned LaminarModel_c();

select turbInputs.TURB_MODEL_

* Leads to the instantiation of a new  en Turbulencatodel t oa
viscousModel _c objectin each ¢
zone )

when TurbulenceModel_t.KW
{

zone.viscousModel_ = new owned SpalartAllmarasModel_c(zone, turbInputs);

zone.viscousModel_ = new owned MenterKWSSTModel_c(zone, turbInputs);
}
}

zone.viscousModel_.initializeConditionsAndSolvers(globalHandle, zone);




Scalability Analysis

Parallel Scaling Efficiency
Mesh Cells per Core CHAMPS with reductions —@—
50000 25000 12500, e CHAMPS without reductions —@—
---- Ideal Scaling <
=+ StarCCM+ v2019.1 by Siemens
1 —&— StarCCM+ v12.06 on Beluga
—&— CHAMPS on Beluga

Y

Ideal ----- 3
Speedup with reductions —@—
3 Speedup without reductions —@— T o R e R
0 T r T r T T 0 ' : q ‘ .
0 160 320 480 640 800 960 32 64 128 256 2816 32 64 128 256
Number of Cores Number of nodes (36 cores per node) Number of nodes (36 cores per node)
Civil Airliner : Strong Scaling Simple Box : Strong Scaling Simple Box : Weak Scaling

e Civil Airlines Model:

« CHAMPS' performance were similar to other softwares available industrially

* Plain Box Model:
* Conducted on an HPE HPC cluster this test used a high number of cores (9216 cores in total) to
explore CHAMPS's scalability.
* Tests with and without reduction operations revealed super scalability in the absence of
reductions.
43



CHAMPS :

Recent Results & Capabilities

* Global Stability Analysis




CHAMPS :

Recent Results & Capabilities
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CHAMPS :

Recent Results & Capabilities
* Global Stability Analysis
e Studying High lift configurations (HLPW5)

* Predicting Ice shapes in 2D and 3D (IPW2)
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CHAMPS :

Recent Results & Capabilities

Global Stability Analysis

Studying High lift configurations (HLPW5)

Predicting Ice shapes in 2D and 3D (IPW2)

Multilayer Stochastic Ice accretion
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CHAMPS :

Recent Results & Capabilities

Global Stability Analysis

Studying High lift configurations (HLPW5)
Predicting Ice shapes in 2D and 3D (IPW2)
Multilayer Stochastic Ice accretion

Lagrangian Model Scalability
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CHAMPS :

Recent Results & Capabilities

* Global Stability Analysis

e Studying High lift configurations (HLPW5)
* Predicting Ice shapesin 2D and 3D (IPW2)
* Multilayer Stochastic Ice accretion

* Lagrangian Model Scalability

* Aero-Elasticity
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More on Chapel...




Navier-Stokes in Chapel

e Four infroductory articles using Navier-Stokes as use-case

Based on an existing Python example

Chapel concepts are gradually introduced
— with side-by-side comparisons to Python

Basics of Chapel
Single-node parallelism

Introduction to distributed programming concepts

Ending with scalability and performance comparison with C++ / MPI

300

200

Time (s)

100

Chapel/C++ Strong Scaling Comparison

X -@- Chapel (409272) —€— C++ (4092"2)
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\§::~~
S~3I><
ST EE T
] —— ¢
12 4 8 16

Nodes/Locales

(, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Navier-Stokes in Chapel

A series focused on scientific computing in Chapel using steps from the Lorena A. Barba group's
12 steps to Navier-Stokes tutorial.

Navier-Stokes in Chapel — Introduction
Posted on April 10, 2024

A starting point for applying Chapel to scientific computing problems using the CFD Python
tutorial

Navier-Stokes in Chapel — 2D Simulations and Performance
Posted on July 9, 2024

An exploration of Chapel’s scientific computing capabilities using the CFD Python Tutorial and
a C++/OpenMP performance comparison

Navier-Stokes in Chapel — Distributed Poisson Solver

Posted on October 28, 2024

Introduction to Chapels distributed programming concepts used in Navier-Stokes Simulation

* Navier-Stokes in Chapel — Distributed Cavity-Flow Solver

Posted on November 14, 2024

Writing a distributed and parallel Navier-Stokes solver in Chapel, with an MPI performance
comparison

chapel-lang.org/blog/series/navier-stokes-in-chapel/

L
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A Pair of Previous Talks

e Michael Ferguson (HPE) gave a talk at NASA Goddard
Productive Parallel Programming with the Chapel Language

A lot of performance comparisons to other languages
At-scale performance results using sorting
This talk may be available internally to you, as well

"

af | |;'.'::'-| I
g ek el
‘I . L

JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

ive Parallel Progr ing with the Chapel L (Johns Hopkins APL Colloquium)

P
P

7= Chapel Parallel Programming Language

Q” bbbbbbbbbbbb the GF /> Share L Download

: www.voutube.com/watch?v=SuZckfFF pE
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7 Questions for Chapel Users

(C, Chapel Language Blog Highly recommend Eric's interview on Chapel blog
About Chapel Website Featured Series Tags Authors All Posts
7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel
- (, Chapel Language Blog Using Chapel in satellite image analysis for
About Chapel Website Featured Series Tags Authors All Posts coral reef biOdiverSiiy anaIVSis

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

C Chapel Language Blog Using Chapel in data analytics for atmospheric

turbulence research in the Amazon

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel

Other success stories on

T graph processing and data analytics:
Tags: | User Experiences | Interviews | Data Analysis @ . E

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

chapel-lang.org/blog/series/7-questions-for-chapel-users/

: ... stay funed for more!
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Ways to Engage with the Chapel Community

Live/Virtual Events
e ChapelCon (formerly CHIUW), annually

e Office Hours, monthly
e Live Demo Sessions, monthly

Community / User Forums

e Discord @@ piscord

e Discourse Discourse

e Email Contact Alias chapel+gs@discoursemail.com
e GitHub Issues )

o Gitter |I' cITTER

e Reddit (> reddit

e Stack Overflow =" stackoverflow

—

Electronic Broadcasts

e Chapel Blog, ~biweekly

e Community Newsletter, quarterly
e Announcement Emails, around big events

Social Media

o Bluesky *
e Facebook ﬁ

e Linkedin Linked[fl]
e Mastodon (@astodon

o X/ Twitter X

e YouTube [E3YouTube
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https://chapel-lang.org/ChapelCon24.html
https://chapel-lang.org/events.html
https://chapel-lang.org/events.html
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage

Closing Thoughts

e Chapelis

o productive,
parallel,
fast,
scalable,
open-source,

o flight-proven ©

e Powered by Chapel, CHAMPS
e is being developed very rapidly to increase its capabilities

« can run on multiple nodes efficiently
« produces high-fidelity results

Both teams are excited fo hear comments, questions, and collaboration opportunities!

—
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Thank you



