Chapel’s New Adventures in Data Locality

Brad Chamberlain
Chapel Team, Cray Inc.
August 2, 2017

=

CRANY
CHAaAARPEL
=

COMPUTE STORE | ANALYZE

Safe Harbor Statement .

@

N

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ 0 Y,

Copyright 2017 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:
e Support general parallel programming at scale
e Make parallel programming far more productive

/é\ COMPUTE | STORE | ANALYZE
—

J Copyright 2017 Cray Inc.

Chapel and Productivity

e Chapel strives to be...
...as programmable as Python
...as fast as Fortran
...as scalable as MPI, SHMEM, or UPC
...as portable as C
...as flexible as C++
...as fun as [your favorite programming language]

/C“\ COMPUTE | STORE | ANALYZE

=/ Copyright 2017 Cray Inc.

The Chapel Team at Cray (May 2017)

g@:@,@:&:&:&;&:&;&%"g?ig;v KX
BE NONOMGMGESE)
N5 XX (X)

9%

TR '
4
g TR
Z

9%
TEETEE mnny)’““““ :‘:‘ ‘
TR TTTTTY i\ ‘:‘ "’ “
’ 7 x/\/\ :"‘

G
oS et

14 full-time employees + 2 summer interns AT e

The Broader Chapel Community (a subset) o

HERIOT P\ [0 pessoree 22
DWATT amp ST WESTERN

UNIVERSITY WASHINGTON UNIVERSITY

g ~ &
(’ ?ﬁuﬁsnjygm%o @RICE UNIVERSITY OF
< %o MARYLAND

University

-~

A
frreeee '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

http://chapel.cray.com/collaborations.html

C ©

Scalable Parallel Programming Concerns OO0

Typical Chapel programmers should focus on: \
o What should execute simultaneously?
e Locality: Where should those tasks execute? their data reside?

Bm
+p + 0+ o+ 0+ + 0+ 0+

N e e
« @, @B B @

(@ o

\
. CRAY |
Outline .

J \\
» Classic Chapel Concepts for Locality (‘CCC’s)

e Three Recent Locality Endeavors (“New Adventures”)

e Wrap-up

CCC #1: Locales ='=A.‘Y~® i

e \
\

locale: Chapel typel/values representing architectural locality .
e (think “compute node”)

/é\ COMPUTE | STORE | ANALYZE
_// Copyright 2017 Cray Inc. @

. v

\] \
=AY \"
(Y \

e \
\

CCC #1: Locales

locale: Chapel type/values representing architectural locality .
e (think “compute node”)
e Chapel automatically provides a 1D array of locales:

const Locales: [0..#numLocales] locale;

(i COMPUTE | STORE | ANALYZE
J

Copyright 2017 Cray Inc.

CCC #2: on-clauses .

on-clause: Moves the current task to the specified locale \

®

) \
CRAY |

CCC #2: on-clauses SO0

e \
\

on-clause: Moves the current task to the specified locale \
// programs begin execution as a single task on locale #0

config const n = computelocalProblemSize(),
alpha = 0.5;

EEE

(i COMPUTE | STORE | ANALYZE
= Copyright 2017 Cray Inc. @

®

\
CRAY |

CCC #2: on-clauses SO0

e \
\

on-clause: Moves the current task to the specified locale \

// programs begin execution as a single task on locale #0
config const n = computelocalProblemSize(),
alpha = 0.5;
coforall loc in Locales do // creates a task per locale
on loc f{ // moves the task to its locale

COMPUTE | STORE | ANALYZE

Copyright 2017 Cray Inc. @

O

CCC #2: on-clauses KOO

on-clause: Moves the current task to the specified locale \

// programs begin execution as a single task on locale #0
config const n = computelocalProblemSize(),
alpha = 0.5;
coforall loc in Locales do // creates a task per locale
on loc { // moves the task to its locale
var A, B, C: [1l..n] real;
A =B + alpha * C;

g — —

] o

A AL AL L AL
CENENEEE g CESEEEEE g CESEEEES g CEEEEEEE
CII#O CII#1 CII#2 CII#3

(conceptual view)

(@ ®

CCC #2: on-clauses KOO

on-clause: Moves the current task to the specified locale \

// programs begin execution as a single task on locale #0
config const n = computelocalProblemSize(),
alpha = 0.5;
coforall loc in Locales do // creates a task per locale
on loc { // moves the task to its locale
var A, B, C: [1l..n] real;
A =B + alpha * C;

e —~

] lof ln] o ln] o ln] o
AL AL AL AL
B B B B
[CENEEEENE py CENEEEEE n CENEEEEE g -ENEEEEN

locale #0 locale #1 locale #2 locale #3

(optimized view)

CCC #3: Distributions / Domain Maps .

distribution: Maps domains (“index sets”) to locales \

CCC #3: Distributions / Domain Maps

distribution: Maps domains (“index sets”) to locales \

config const n = computeGlobalProblemSize(),
alpha = 0.5;
a N N N N
locale locale locale locale
#0 #1 #2 #3

CCC #3: Distributions / Domain Maps

distribution: Maps domains (“index sets”) to locales \

config const n = computeGlobalProblemSize(),
0.5;

alpha =
use BlockDist;

const ProblemSpace =

{l1..n} dmapped Block(..);

ProblemSpace UL L1 1 I VI 1T 111 V111114111111
a H ! N ! H ! H
locale locale locale locale
#0 #1 #2 #3

CCC #3: Distributions / Domain Maps SO0

distribution: Maps domains (“index sets”) to locales \

config const n = computeGlobalProblemSize(),
alpha = 0.5;

use BlockDist;

const ProblemSpace = {1l..n} dmapped Block(..);

var A, B, C: [ProblemSpace] real;

ProblemSpace L1 L 1 1 V1 1 1 11 V11111411 11J]
A

1 1 1
S I O
1 1 1
A B
« W O O O

locale locale locale locale
#0 #1 #2 #3

CCC #3: Distributions / Domain Maps

distribution: Maps domains (“index sets”) to locales

config const n = computeGlobalProblemSize(),
alpha = 0.5;

use BlockDist;

const ProblemSpace = {1l..n} dmapped Block(..);

var A, B, C: [ProblemSpace] real;

A =B + alpha * C;

A
=1 = 1 = 1 = 1 =1 = I =1 =
B
+ 0+ 1+ o+ 0+ o+ 4+
C
I T - -S B
a N i] i N i N
locale locale locale locale
#0 #1 #2 #3

CCC #4: User Control over Locality Policies SO

e In Chapel, users can... \

...write their own distributions
“How should domains & arrays be mapped to locales and their memories?”

...write their own parallel iterators
“How should forall-loops be implemented? How many tasks, running where?”

...write their own locale models
“How should tasks, memory, communication be mapped to the system?”

e This gives users full control over key locality policies
e Moreover, all “built-in” Chapel features are written in this framework

(@ ®

Locality Adventure #1: NUMA Locale Model

The Perils of NUMA Obliviousness KOO

e Accessing non-NUMA-local memory = performance hit \
e €e.g., Stream EP on Cray XC w/ 2 NUMA domains per node:

100
80
, 60 ¥ poorly-aligned memory
o
© 40 -
= well-aligned memory
20 -
O |
7= COMPUTE | STORE | ANALYZE
C_:'y Copyright 2017 Cray Inc. @

Flat vs. Hierarchical Locales

e Traditionally, Chapel has supported a “flat” locale model \
e intra-locale decisions are managed on the user’s behalf

locale #0

locale #1

locale #2

locale #3

e But, users can also write hierarchical locale models

sub-locale sub-locale
A A
Cl||C||D||E Cl||C||D||E
sub-locale B sub-locale B
locale #0 locale #1

sub-locale sub-locale
A A
Cl||C||D||E Cl||C||D||E
sub-locale B sub-locale B
locale #2 locale #3

Adventure #1: NUMA locale model

e Created ‘numa’ locale model to describe NUMA nodes

NUMA O
\ sub-locale
) 4
4 NUMA 1
sub-locale
numa locale

NUMA compute node

e Also made the default domain map NUMA-aware

e allocates local arrays using a chunk per sublocale
var A: [1l..n] real; A ||]
numa locale

Adventure #1: Positive Impact

100
90
80
70
60
50
40
30
20
10

GB/s

Stream EP

u flat locale model*

® numa locale model

Chapel 1.15

* = ostensibly... we'll come back to this in a few slides

COMPUTE | STORE | ANALYZE

Copyright 2017 Cray Inc.

Adventure #1: Negative Impact

e Array accesses like A[1i] now require a divide

numa locale

LCALS (raw, medium) ISx (Release)
12
K S O —
10!
g)
c c 8
) o -
E £ T
[S = 4 R R R R /
- — — — ,,_,{,
/ e e e - -
2 ,/’7’ ““““““““““““““
e —— =
0
14 Dec 16 Dec 18 Dec 20 Dec 22 Dec 24 Dec 26 Dec 14 Dec 16 Dec 18 Dec 20 Dec 22 Dec 24 Dec 26 Dec
PRK stencil time Performance of Various Jacobi2D Implementations
——————————————————— | o ————————————————— e ——————
150 8 !
!
) w !
B e 6 !
@ & !/
o o L — i
£ £ /7
/
50 ,’II
_se==s=s=s=============z===z== 2 I’/
£=:::::::::::::::::::::::::::::f’:' i
0 = o#
14 Dec 16 Dec 18 Dec 20 Dec 22 Dec 24 Dec 26 Dec 14 Dec 16 Dec 18 Dec 20 Dec 22 Dec 24 Dec 26 Dec

Adventure #1: Summary

e The increased array access cost is problematic

e We'd like these idioms to all perform equivalently in Chapel:
e whole-array operations:
A =B + alpha * C;

e zippered iteration:
forall (a, b, c¢) in zip (A, B, C) do
a = b + alpha * c;

e random access:
forall i in ProblemSpace do

A[i] = B[i] + alpha * C[i];

e While there are ways to mitigate the overheads, they aren'’t ideal
e still not overhead-free (in some approaches)
e too expensive to implement (in others)

e SO, let’s try something else...

?} COMPUTE | STORE | ANALYZE
—

=/ Copyright 2017 Cray Inc.

Locality Adventure #2: PGAS, Networks, & Locality

Flat Locale Model: Correcting a White Lie .o

e | suggested that the flat locale model is NUMA-oblivious \

e Itis, but the default domain map actually is not
e it distributes array indices using first-touch, heuristically

CEEEEEES

flat locale

e Sometimes results in good performance, but not always:

100
80 -
» 60 - B comm = gashet/mpi
1)
O 40 - _
® comm = ugni
20 -
O -
Chapel 1.14
7= COMPUTE | STORE | ANALYZE
C.:.'y Copyright 2017 Cray Inc.

Flat Locale Model: Why does GASNet/MPI win? <"~ s "

e Chapel usually performs best when using ugni
e leverages Cray network capabilities
e matches Chapel’s PGAS features well
Q: why not here, when no communication is used?

A: PGAS-based network registration of heap at program startup
e serves as first-touch, pinning all memory to NUMA domain O
e lack of communication magnifies memory-oriented bottlenecks

100
80 -
» 60 - B comm = gashet/mpi
)
O 40 - _
®comm = ugni
20 -
O -
Chapel 1.14
7= COMPUTE | STORE | ANALYZE
C.:.'y Copyright 2017 Cray Inc. @

NUMA locale model and network registration = . o

e For ’numa’, each sublocale registers its own local heap

e thus, this is one approach to addressing the problem

100

GB/s

80 -

® comm = gasnet-mpi,
locale = flat

® comm = ugni,
locale = numa

e but, it introduces the aforementioned overheads for random access

COMPUTE | STORE | ANALYZE

Copyright 2017 Cray Inc. @

Adventure #2: Dynamic Memory Registration .

e Register array memory with network at allocation time
e heuristically, divide array into approximately equal # of pages

e Impact: Restores performance for ugni:
100 A NN

flat locale

o
o
|

gasnet-mpi ugni, static ugni, dynamic
registration registration

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.

Locality Adventure #3: Intel Xeon Phi (“KNL”) HBM

Adventure #3: KNL Locale Model

NUMA O
sub-locale

NUMA 1
sub-locale

NUMA k
sub-locale

Image Source: https://newsroom.intel.com/press-kits/intel-xeon-phi-processor-family/

/C‘\ COMPUTE | STORE | ANALYZE

=/ Copyright 2017 Cray Inc.

KNL Locale Model: Usage and Status

e Chapel can target KNL's MCDRAM via normal on-clauses

e accessor methods expose memory-based sub-locales

e methods implemented across all standard locale models for portability

on here.highBandwidthMemory () {
x = new myClass () ; // placed in MCDRAM

on here.defaultMemory () {
y = new myClass () ; // placed in DDR

Status: Supported as of Chapel 1.15

e no performance results to report at this time

e next step: improve support for memory introspection (“if | have...”)

?5 COMPUTE | STORE | ANALYZE
—

=/ Copyright 2017 Cray Inc.

\

General Chapel Performance Snapshots

LCALS Timings: Chapel 1.15vs. C [+ OpenMP] =707

e \

Shared memory performance competitive with hand-coded .

Serial LCALS kernels: Chapel vs. g++

(4]
E 3 .
- ® g++ serial
E 2 ® Chapel serial
T 1
: III|I|IIIII|IIIII I IIIII|IIIII|IIIIIIIIIII|III‘IIIIIIIIIIII
o O o & o o «/ & 5 <2> o & o 0 o o @ «a ooooooooooooo
S0 S s P ¢ PSSP PSS E PSP P
Parallel LCALS kernels: Chapel vs g++ w/ OMP
3.5
e 3
= 25
3 2 mg++ OMP
T 15 ® Chapel parallel
E
o
Z°-5| ||||||| i |||||||I
0

EE

HPCC RA Performance: Chapel 1.15 vs. MPI SOON

Performance of RA (atomics)

GUP/s

16 32 64 128 256
Locales (x 36 cores per locale)
ref MPI no-bucketing —— [.15u+tq ——
ref MPI bucketing —=— [.15 u+q oversubscribed -------

ISx Timings:

14

12

10

Time (seconds)

Chapel 1.15 vs. MPIl, SHMEM

2

ISx weaklSO Total Time

4

Cray XC nodes (x 36 cores per node)

8 16

32

64

e==SHMEM
—MPI
—Chapel 1.15

COMPUTE

STORE

Copyright 2017 Cray Inc.

ANALYZE

®
i
CRAaY |

The Computer Language Benchmarks Game (CLBG) « o

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in

a different programming language? It depends how you write
it!

Which programs are fast?

Which are succinct? Which are efficient?

Ada C @ C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest

stories

Chapel entry accepted

Fall 2016

CLBG Language Cross-Language Summary cR.as
(May 2017 standings) SO

BN chapel

Il gcc \
g0

. gpp
ifc

Bl java
python3

B rust

BN scala

,,,

swift
[] gmean-smallest
() gmean-fastest

(normalized to fastest entry)

Geometric mean execution time

Geometric mean code size (normalized to smallest entry)

CLBG Language Cross-Language Summary cR.as |
(May 2017 standings, no Python) LA

sc
[K § : swift
. : O gmean- fastest

Geometric mean execution time
(normalized to fastest entry)

Geometric mean code size (normalized to smallest entry)

A Closing Quote
(source: Jonathan Dursi’'s CHIUW 2017 keynote)

CHIUW 2017 keynote (excerpt) R

“My opinion as an outsider...is that Chapel is important, \
Chapel is mature, and Chapel is just getting started.

“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for
our problems, they’re going to come from a project like
Chapel.

“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”

—Jonathan Dursi
Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)

CHIUW 2017 keynote

(@ ®

Questions?

Chapel Resources

Ways to Track Chapel Remotely

Facebook: http://facebook.com/ChapellLanquage

Twitter: http://twitter.com/ChapelLanguage

Youtube: https://Iwww.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

e-mail: chapel-announce@lists.sourceforge.net

ll £ chapel Programming Language Q
Page Messages Notifications @ Insights Publishing Tools

/‘ o Liked v X\ Following v 4 Share

C\‘\ Chapel Programming Language

J
Chapel
Programming

Language
@ChapelLanguage

We're pleased to note that Chapel is currently ranked 5th in the
Computer Language Benchmarks Game's “fast-faster-fastest"
That said, we're even prouder of how clear and concise the Ch:
programs are relative to other entries that perform well.

alioth.debian.org]... which

How many times slower?

- ow
w5 888 8

program time / fastest program time

benchmarks game

20 Apr 2017,

270 people reached

=

=4

Chapel Language

@ChapelLanguage

Chapel is a productive parallel
programming language designed for
large-scale computing whose
development is being led by @cray_inc

& chapel.cray.com
Joined March 2016

3 115 Photos and videos

& Like W Comment 4 Share
© Russel Winder, Mykola Rabchevskiy and 2 others Top Cof -
oS
E writea comment
Viadimir Fuka It measeres how many f given

TWEETS FOLLOWING FOLLOWERS LIKES
222 12 129 32
Tweets Tweets & replies Media

Chapel Language @ChapellLanguage - 5h

Z>

@

Submit it to the PAW 2017 workshop at @5C17.
sourceryinstitute.github.io/PAW/

PAW

Doing interesting applications work in Chapel or another PGAS

=

@

=/

Chapel Parallel Programming Language

Home Videos

Playlists Channels About

Chapel videos

SC16 Chapel Tutorial Promo

Chapel Parallel Programming Language

6 months ago * 392 views

This is a ~4-minute promotional video for our SC16 Chapel tutorial, and also a good way to
get a quick taste of Chapel. All codes shown represent complete Chapel programs, not.

Chapel P
Cray, Inc.

ANL Training

7 months ago * 651 views

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016.

Parallel P | Brad C|

CHIUW 2016 keynote: "Chapel in the (Ct
Chapel Parallel Programming Language

10 months ago + 277 views

This is Nikhil Padmanabhan’s keynote talk from CHIUW 2016: the 3rd Annual Chapel
Implementers and Users workshop. The slides are available at:

Wild®, Nikhil

)

COMPUTE

STORE |

Copyright 2017 Cray Inc.

ANALYZE

Suggested Reading . o

Chapel chapter from Programming Models for Parallel Computing \
e a detailed overview of Chapel’s history, motivating themes, features
e published by MIT Press, November 2015
e edited by Pavan Balaji (Argonne)
e chapter is now also available online

PROGRANMMING
MODELS
FOR PARALLEI

COMPUTING

epiTep Y PAVAN BALAJ

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

@ ®

Suggested Short Reads (Blog Articles) .

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e a run-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.

e a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
e a series of articles answering common questions about why we are pursuing
Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.
e a series of technical opinion pieces designed to arque against standard
reasons given for not developing high-level parallel languages
7= COMPUTE | STORE | ANALYZE

@

=/ Copyright 2017 Cray Inc.

Where to.. .« o

Submit bug reports: \
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

/C“\ COMPUTE | STORE | ANALYZE
=/ Copyright 2017 Cray Inc. @

\
. . (el — PL_N
Legal Disclaimer o
S \
y
Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE?2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

(@ ®

CRANY

THE SUPERCOMPUTER COMPANY

