
HIPS 2025 Keynote
June 3, 2025

Brad Chamberlain

Reflections on 30 Years of HPC Programming:

HIPS 2025 Keynote
June 3, 2025

Brad Chamberlain

Reflections on 30 Years of HPC Programming:
So many hardware advances…

HIPS 2025 Keynote
June 3, 2025

Brad Chamberlain

Reflections on 30 Years of HPC Programming:
So many hardware advances…
So little adoption of new languages

4

A Bit About Me

From the workshop overview:

“The 30th HIPS workshop, to be held as a full-day meeting at the IPDPS 2025 conference in Milan, Lombardy,
Italy, focuses on high-level programming of multiprocessors, compute clusters, and massively parallel
machines. Like previous workshops in this series - established in 1996 - this event serves as a forum for research
in the areas of parallel applications, language design, compilers, runtime systems, and programming tools. It
provides a timely forum for scientists and engineers to present the latest ideas and findings in these rapidly
changing fields. In our call for papers, we especially invite papers demonstrating innovative approaches in the
areas of emerging programming models for large-scale parallel systems and many-core architectures. This
year we will add to the list topics programming models and environments for the Edge-Cloud-HPC Continuum as
well as the application of recent AI technologies in high-level programming models.”

5

HIPS is a perfect match for my interests

Lots of personal opinions follow that don’t necessarily reflect anyone’s views other than mine.
(as with any good keynote)

They may also represent something of a US-oriented perspective?
(I’ll be curious if you think so)

6

Disclaimer

HPC: 30 years ago vs. now

• Top 5 systems in the Top500
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Vendors: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

8

Top HPC Systems, June 1995

• Top 5 systems in the Top500 (results from Nov 2024)
• Cores: 2,073,600–11,039,616 cores (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Vendors: HPE/Cray, Microsoft
• Networks: Slingshot-11, InfiniBand NDR

9

Top HPC Systems, June 2025

I’d consider these to be the biggest HPC hardware changes over the past 30 years:
• multicore processors
• multi-socket compute nodes
• NUMA memory architectures within compute nodes
• high-radix, low-diameter network interconnects
• GPU computing
• massive-scale HPC systems
• cloud computing

Most of these changes have been driven by striving for better performance and/or energy efficiency

10

What changes did HPC hardware see over that time?

• Top 5 systems in the Top500
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Vendors: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

11

Top HPC Systems, June 1995

• Top 5 systems in the Top500
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Vendors: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

• HPC Programming Notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• intra-node: vendor-specific pragmas and intrinsics

– OpenMP on the horizon: 1997

12

Adopted HPC Programming Notations, June 1995

• Top 5 systems in the Top500 (results from Nov 2024)
• Cores: 2,073,600–11,039,616 cores (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Vendors: HPE/Cray, Microsoft
• Networks: Slingshot-11, InfiniBand NDR

• HPC Programming Notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM, Fortran 2008 coarrays
• Intra-node: OpenMP
• GPUs: CUDA, HIP, OpenMP, OpenCL, OpenACC, Kokkos, SYCL, …

13

Adopted HPC Programming Notations, June 2025

June 1995:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• intra-node: vendor-specific pragmas and intrinsics

June 2025:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM, Fortran 2008 coarrays
• Intra-node: OpenMP
• GPUs: CUDA, HIP, OpenMP, OpenCL, OpenACC,

Kokkos, SYCL, …

14

Adopted HPC Programming Notations, June 1995 vs. June 2025

Despite 30 years of amazing HPC progress in performance and efficiency,
we have not broadly adopted any new HPC programming languages

HPC programming may have even lost ground due to hardware trends

• Most of the recent hardware changes we’ve made have hurt, rather than helped, HPC programmability
• multicore processors hurt
• multi-socket compute nodes hurt
• NUMA memory architectures within compute nodes hurt
• high-radix, low-diameter network interconnects helped
• GPU computing hurt
• massive-scale HPC systems neutral
• cloud computing neutral

• Our notations haven’t been sufficiently rich and general-purpose for parallelism and locality
• If they had, we wouldn’t write programs that needed C++ and MPI and OpenMP and/or CUDA

15

Losing Ground as HPC Hardware Changes?

• Libraries, directives, and extensions have obviously gotten us quite far
• Virtually all notable HPC computations from the past 30 years have used them

• That said, most HPC programming is still quite low-level and mechanism-oriented
• e.g., “send this message”, “spawn these threads”, “launch this kernel”
• These are important capabilities for control over performance
• Yet they need not be our stopping point

• We’re living in a state similar to Fortran’s introduction—skeptical about higher-level approaches
• Just as Fortran did not remove the ability to write assembly, HPC languages should support manual overrides

16

Do we need HPC languages?

17

Why Consider New Languages at all?

[Source: Kathy Yelick, CHIUW 2018 keynote: Why Languages Matter More Than Ever, used with permission]

Is the lack of newly-adopted
HPC languages due to lack of trying?

Mid-to-late 90’s Classics:
• HPF: High Performance Fortran
• ZPL
• NESL

PGAS founding members:
• CAF: Coarray Fortran
• UPC
• Titanium

C-based approaches:
• Cilk
• SAC: Single-Assignment C

HPCS-era languages:
• Chapel
• Fortress
• X10
• CAF 2.0

Post-HPCS:
• XcalableMP
• Regent

Embedded pseudo-languages (a slippery slope!)
• Charm++, Global Arrays, HPX, UPC++, Legion, …

19

Notable HPC Programming Languages of the past 30 years

I don’t mean to imply that all these languages were worthy of success (nor even most of them)

Let’s look at one that definitely wasn’t…

ZPL

• Masters-level grad student at University of Washington, working on ZPL

 ZPL:

• a data-parallel array language designed for HPC
–parallelism expressed through first-class index sets called regions

• supported a WYSIWYG performance model
–syntax indicated presence, and style, of communication
–published at HIPS 1998

21

Me, 30 years ago

“Programming Language Design
Ceased to be Relevant in the 1980s.”
-Anonymous reviewer on a rejected ZPL paper, circa 1995
 (paraphrased, from memory)

22

[setting: The office of Larry Snyder, my PhD advisor, after we received the review]

Me (demoralized):
• “Why are we even bothering to throw ourselves at this wall, given attitudes like these?”
• “Let’s just use our HPC smarts to go and solve some big, cool science problem!”

Larry:
• “If we solve a cool science problem, then we’ve solved one problem, whereas…”
• “If we create a great language, we magnify our effort by helping others solve their cool problems.”

This conversation is a huge part of why I’ve essentially spent my career devoted to this topic

23

Why this review didn’t derail my career

Consider all the currently relevant languages that emerged, or rose to prominence, during those 30 years:

• Java (~1995)
• Javascript (~1995)
• Python (~1989; v2.0 ~2000)
• C# (~2000)
• Go (~2009)
• Rust (~2012)
• Julia (~2012)
• Swift (~2014)
• …

These languages have become favorite day-to-day languages of many users across multiple disciplines

24

In retrospect, think about how wrong that attitude was

What focus areas distinguished these languages and helped them take hold? In my opinion…

• Java (~1995) safety, portability, OOP, www
• Javascript (~1995) productivity, www
• Python (~1989; v2.0 ~2000) productivity, extensibility
• C# (~2000) safety, productivity, OOP
• Go (~2009) concurrency, productivity
• Rust (~2012) safety, performance
• Julia (~2012) productivity, interoperability, library re-use, performance
• Swift (~2014) productivity, safety
• …

Frequent themes: productivity, safety, portability, performance (things we also value in HPC!)
Parallelism or concurrency? Typically supported, but rarely a primary theme
Support for locality control or scalability? Virtually none

25

What made these languages “stick”?

ZPL could outscale the reference MPI version, using less code (and clear code at that), and less memory

26

Sample ZPL Result circa 2001: NAS MG (ZPL vs. Fortran+MPI)

!"!
#A ##

!A!

%# C'

'((

A

!AA

"AA

(AA

%AA

FAAA

F!AA

*+I-. L-M 12L-M

MP
45
67
89
7:
8;
5

M<4Z><Z5

?8@@>4P?<AP84

;5?B<C<AP846

?8@a>A<AP84

!"#$%C''#$#((#)G)+,-#.'C/G

M1M2 M1M2

M1M2 M1M2

M133

!

"

#

A

%

&'(F'*+II-.LM1*2LP* 4R2LP

/4
/C
5-
6G
'#
+7
#)
G)
+,
-

S7
U
S
V

Cray T3E

NAS MG Line Counts

• ZPL was a great academic language
• Chose the thing we wanted to study, and studied it well

– Specifically, scalable, array-based data parallelism with syntactically visible communication

• Yet, it was not a very practical one
• Supporting only one level of data-parallelism is too restrictive for many real scientific computations

– It also would’ve turned out to be insufficient for GPU computing

• Didn’t support features practical users would want: OOP, generic programming, interoperability, modularity, …

• Like so many other HPC notations, insufficiently rich support for expressing parallelism & locality

27

Why wasn’t ZPL broadly adopted? Why was that appropriate?

• Not at all! It is crucial to learn from failure and improve
• We learned from ZPL, and also from the failures and struggles of others: HPF, NESL, Sisal, Cilk, UPC, CAF, …
• And from that, came the Cascade High Productivity Language, Chapel!

– original Chapel paper published at HIPS 2004

28

So, ZPL failed… Do we give up?

Chapel

Chapel: A modern parallel programming language
• Portable & scalable
• Open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

What is Chapel?

30

Imagine a programming language for parallel computing that is as…
…readable and writeable as Python

…yet also as…
…fast as Fortran / C / C++
…scalable as MPI / SHMEM
…GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC / …
…portable as C
…fun as [your favorite programming language]

This is our motivation for Chapel

Productive Parallel Programming: One Definition

31

Chapel Features for
Parallelism and Locality, Briefly

1. parallelism: What tasks should run simultaneously?
2. locality: Where should the tasks run? Where should data be allocated?

Key Concerns for Scalable Parallel Computing

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

33

Processor Core

Memory

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

34

Locales in Chapel

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as being a locale

35

Locales in Chapel

Processor Core

Memory

Locale 0 Locale 1 Locale 2 Locale 3

• Two key built-in variables for referring to locales in Chapel programs:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

Built-In Locale Variables in Chapel

Locale 0 Locale 1 Locale 2 Locale 3

36

Processor Core

Memory

Localeshere

Basic Features for Locality

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

basics-on.chpl

37

All Chapel programs begin running
as a single task on locale 0

Variables are stored using the
memory local to the current task

on-clauses move tasks
to target locales

remote variables can be
 accessed directlyThis is a distributed, yet serial, computation

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

Mixing Locality with Task Parallelism

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

basics-coforall.chpl

38

The coforall loop creates
a parallel task per iteration

(in this case, a task per locale)

Locale 0 Locale 1 Locale 2 Locale 3

This results in a distributed parallel computation

Low-level:
• begin: fires off an asynchronous task
• cobegin: creates a fixed number of tasks and waits for them to complete

High-level:
• foreach: a way to get vector/SIMD parallelism without using tasks/threads
• forall: a parallel loop that divides iterations to tasks (where typically #iters >> #tasks)

– including zippered loops to iterate over multiple things simultaneously

• whole-array operations / promotion of scalar operations
– equivalent to zippering

39

Chapel also has other ways of expressing parallelism, not covered today

• Chapel’s focus on parallelism and locality has made the language design robust to hardware changes

• Consider the timeline:
• In 2004, multicore CPUs were not yet commonplace or commoditized
• As a result, Chapel’s initial design focused exclusively on:

– single-core CPU compute nodes
– the Cray X1
– the Cray XMT (Tera MTA)

• Chapel’s HIPS 2004 features have largely remained unchanged, despite the introduction of:
• multicore processors
• multi-socket compute nodes
• NUMA memory architectures
• GPUs

40

The Portability of Chapel’s Design over Time

• Modern HPC systems have GPUs
• And those GPUs have their own cores and memory
• In Chapel, we represent them as sub-locales, using the same locality + parallelism features to program them

Representing GPUs in Chapel

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

41

CPU Core

Memory

GPU Core

var A: [1..n, 1..n] real;
coforall l in Locales do on l {
 cobegin {
 coforall g in here.gpus do on g {
 var B: [1..n, 1..n] real;
 B = 2;
 A = B;
 }
 {
 var B: [1..n, 1..n] real;
 B = 2;
 A = B;
 }
 }
}
writeln(A);

42

Parallelism and Locality In The Context Of GPUs

GPU Core MemoryCPU Core

Locale 0

GPU 0

GPU 1

B

B

Locale 1

GPU 0

GPU 1

B

B

outer coforall across Locales

inner
coforall
across
GPUs

parallel statements
with cobegin

B
B

A

Chapel Benchmarks and Applications

44

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)
use BlockDist;

config const n = 1_000_000,
 alpha = 0.01;
const Dom = blockDist.createDomain({1..n});
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

…
forall (_, r) in zip(Updates, RAStream()) do
 T[r & indexMask].xor(r);
…

45

Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

i=0;
while(exstack_proceed(ex, (i==l_num_req))) {
 i0 = i;
 while(i < l_num_req) {
 l_indx = pckindx[i] >> 16;
 pe = pckindx[i] & 0xffff;
 if(!exstack_push(ex, &l_indx, pe))
 break;
 i++;
 }

 exstack_exchange(ex);

 while(exstack_pop(ex, &idx , &fromth)) {
 idx = ltable[idx];
 exstack_push(ex, &idx, fromth);
 }
 lgp_barrier();
 exstack_exchange(ex);

 for(j=i0; j<i; j++) {
 fromth = pckindx[j] & 0xffff;
 exstack_pop_thread(ex, &idx, (uint64_t)fromth);
 tgt[j] = idx;
 }
 lgp_barrier();
}

forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

SHMEM (Conveyors version)SHMEM (Exstack version)

Chapel (Simple / Auto-Aggregated version)

Compute Nodes

i = 0;
while (more = convey_advance(requests, (i == l_num_req)),
 more | convey_advance(replies, !more)) {

 for (; i < l_num_req; i++) {
 pkg.idx = i;
 pkg.val = pckindx[i] >> 16;
 pe = pckindx[i] & 0xffff;
 if (! convey_push(requests, &pkg, pe))
 break;
 }

 while (convey_pull(requests, ptr, &from) == convey_OK) {
 pkg.idx = ptr->idx;
 pkg.val = ltable[ptr->val];
 if (! convey_push(replies, &pkg, from)) {
 convey_unpull(requests);
 break;
 }
 }

 while (convey_pull(replies, ptr, NULL) == convey_OK)
 tgt[ptr->idx] = ptr->val;
}

Applications of Chapel

46[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

47

Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines
Systems: Desktops, HPC systems w/ GPUs

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops, sometimes w/ GPUs

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data
synchronization, managing threads, etc.”

“With the coral reef program, I was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had
the features that allowed me to do it.”

“Chapel worked as intended: the code
maintenance is very much reduced, and
its readability is astonishing. This enables
undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Larry Snyder:

• “…if we create a great language, we magnify our effort by helping others solve their cool problems.”

I’m gratified that we’ve now done some of this with Chapel

That said, to remain viable, we need to expand from 10’s of applications to 100’s or 1000’s

48

Gratifying to Have Reached This Point

Given that Chapel…
• supports such compact, readable code
• has demonstrated performance and scalability
• has been used in such diverse application areas
• has ported across hardware platforms and changes

…why isn’t it more broadly adopted?

49

Why Isn’t Chapel More Successful?

5 Barriers to HPC Language Adoption

• Simplified Chapel timeline:
2003: Design started
2008: First public release, not fully featured
2018: Began encouraging users to try it

• Creating a general-purpose HPC language is strictly harder than creating a traditional language
• In addition to HPC-crucial aspects…

– parallelism and locality
– portability across processors, networks, systems, workload managers, …
– performance

…users also still want all of the traditional features
– object-oriented programming
– error-handling
– modern memory management
– productivity features
– …

51

Barrier 1: Creating a practically useful language is a massive effort

• Practically speaking, most of us are impacted by limited time, short attention spans, and herd mentality
• Some evaluated Chapel years ago, when it was not very good/fast/scalable/mature

– Formed lasting opinions that have never been updated
– A downside of developing long-term efforts as open-source—growing pains are on display

• Many will adopt others’ opinions rather than forming their own
• Many will not adopt a technology until many others have

• Incorrectly assuming “If it hasn’t caught on now, there must be something inherently wrong with it”

52

Barrier 2: Human Nature

• As a team of R&D engineers, we’ve often focused on our work and users rather than outreach
• Chapel’s name-recognition isn’t as good as it could be as a result

• Have been working on improving this in recent years, by creating:
• a new website
• a new blog
• a better social media presence
• new community forums
• …

53

Barrier 3: We haven’t always marketed ourselves very well

• Conservative by nature
• “Not invented here” mentalities
• Who makes decisions?

• Computer scientists or computational scientists?
• Principal Investigators and money handlers or application programmers?

• Hardware-centric attitudes to the detriment of software, programmers?
• Think of ourselves as a small, niche community

• E.g., “We’re not big enough to have a language of our own”

54

Barrier 4: HPC Community Behaviors

Parallel computing has become ubiquitous:

Parallel computing in June 1995:
• supercomputers
• commodity clusters

This gives us an opportunity to leverage the larger community of non-HPC users and use cases

55

Getting HPC Out of its Niche Mentality

Parallel computing in June 2025:
• supercomputers
• commodity clusters
• cloud computing
• multicore processors
• GPUs

HPSF = High Performance Software Foundation
• a Linux Foundation project
• a neutral hub for open-source high-perf. software

• mission: “to constantly improve the quality and
open availability of software for HPC through
open collaboration”, focusing on:
– performance
– portability
– productivity

• goals for member projects:
– increasing adoption
– aiding community growth
– enabling development efforts

56

Introduction to HPSF

Timeline:
• May 2024: HPSF launched at ISC
• September 2024: Began accepting applications for member projects
• January 2025: Chapel accepted to HPSF at the “established” project level
• May 2025: First-ever HPSFcon

Resources:
• Website: https://hpsf.io/
• Blog: https://hpsf.io/blog/
• YouTube channel: https://www.youtube.com/@HPSF-community
• GitHub org: https://github.com/hpsfoundation

57

HPSF Timeline and Resources

https://events.linuxfoundation.org/hpsf-conference/
https://hpsf.io/
https://hpsf.io/blog/
https://www.youtube.com/@HPSF-community
https://github.com/hpsfoundation

Chapel: “We’ve developed a great parallel programming language that scales!”

The world:
• “Where is the vast set of libraries I’m accustomed to in Python, C++, Julia, …?”
• “Where are all the Stack Overflow articles telling me how to do the things I want to do?”
• “Could an AI write my Chapel code so I don’t have to?”

These are very reasonable things to want, but can be difficult to achieve with a small team

Fortunately, it’s also a place where open-source contributors can help out

58

Barrier 5: We’re increasingly living in a post-programming era

Arkouda: An HPC Framework
for the post-programming world(?)

Applications of Chapel

60[images provided by their respective teams and used with permission]

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.

New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Q: “What is Arkouda?”

61

What is Arkouda?

Q: “What is Arkouda?”

A: “A scalable version of NumPy / Pandas for data scientists”

62

What is Arkouda?

0
50
100
150
200
250
300
350
400
450
500

128 256 512 576
G
iB
/s

Nodes

HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

0
200
400
600
800
1000
1200

128 256 512 896
G
iB
/s

Nodes

Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

HPE Cray EX
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Apollo
• HDR-100 InfiniBand network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

Implemented using ~100 lines of Chapel

Performance and Productivity: Arkouda Argsort

63

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

Q: “What is Arkouda?”

A: “A scalable version of NumPy / Pandas for data scientists”
A’: “An extensible framework for arbitrary HPC computations”
A’’: “A way to drive HPC systems interactively from Python on a laptop”

64

What is Arkouda?

Website: https://arkouda-www.github.io/

 GitHub: https://github.com/Bears-R-Us/arkouda

Arkouda Resources

65

https://arkouda-www.github.io/
https://github.com/Bears-R-Us/arkouda

Blog: Interview with founding co-developer, Bill Reus: https://chapel-lang.org/blog/posts/7qs-reus/

Arkouda Interview

66

“I was on the verge of resigning
myself to learning MPI when I first
encountered Chapel. After writing my
first Chapel program, I knew I had
found something much more
appealing.”
…

“Chapel's separation of concerns
immediately felt like the most natural
way to think about large-scale
computing. I would highly encourage
anyone wanting to get into HPC
programming to start with Chapel.”

https://chapel-lang.org/blog/posts/7qs-reus/

Wrap-up

• Embrace the ubiquity of parallelism and the need for it outside of traditional HPC (cloud, desktop)

• Support open-source efforts and communities like HPSF

• Challenge ourselves to not dismiss technologies we haven’t tried firsthand (recently)

• Establish mechanisms for doing trials or comparisons of new HPC software technologies
• forums for interactions between application programmers and HPC software developers

– pair programming workshops?
– co-design sessions?

• establish frameworks for comparisons
– HPC equivalent to the Computer Language Benchmarks Game
– A Top500 equivalent that includes a programming element (HPC Challenge redux?)

• Strive to put HPC software activities on more of an equal footing as hardware

68

What can we do to nurture language adoption in HPC?

HPC has scaled massively over the past 30 years, but HPC programming hasn’t improved much
• this can be attributed to the size of the challenge, the nature of our community, and human nature, in part
• non-HPC programming languages show us this need not be the case

Chapel is unique among programming languages
• built-in features for parallelism and locality

– make it HPC-ready
– have kept it timeless despite hardware changes

• ports and scales from laptops to supercomputers
• supports clean, concise code relative to conventional approaches
• supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at scale
• users are reaping its benefits in practical, cutting-edge applications
• applicable to domains as diverse as physical simulations and data science
• Arkouda is a particularly unique example of driving HPCs from Python

Summary

69

0

5000

10000

15000

20000

25000

512 1024 2048 4096

G
B/
s

Nodes (128 cores / node)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

The Advanced Programming Team at HPE

70

“Live” Virtual Events
• ChapelCon (formerly CHIUW), annually
• Project Meetings, weekly
• Deep Dive / Demo Sessions, weekly timeslot

Community / User Forums
• Discord
• Discourse
• Email Contact Alias chapel+qs@discoursemail.com
• GitHub Issues
• Gitter
• Reddit
• Stack Overflow

Electronic Communications
• Chapel Blog, ~biweekly
• Community Newsletter, quarterly
• Announcement Emails, around big events

Social Media
• Bluesky
• Facebook
• LinkedIn
• Mastodon
• X / Twitter
• YouTube

71

Ways to Engage with the Chapel Community

https://chapel-lang.org/ChapelCon24.html
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://chapel-lang.org/community/
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage

72

Chapel Website

chapel-lang.org

https://chapel-lang.org/

I consider HPC programmers—current and aspiring—to be as worthy of modern languages as the
Python, Swift, Rust, and Julia communities

I believe the number of broadly adopted scalable parallel languages should be ≥1, not the current 0.

73

Closing Statement

Thank you
https://chapel-lang.org
@ChapelLanguage

