S~

Hewlett Packard
Enterprise

Reflections on 30 Years of HPC Programming:

Brad Chamberlain

HIPS 2025 Keynote
June 3, 2025

S~

Hewlett Packard
Enterprise

Reflections on 30 Years of HPC Programming:
So many hardware advances...

Brad Chamberlain

HIPS 2025 Keynote
June 3, 2025

S~

Hewlett Packard
Enterprise

Reflections on 30 Years of HPC Programming:
So many hardware advances...
So little adoption of new languages

Brad Chamberlain

HIPS 2025 Keynote
June 3, 2025

HIPS is a perfect match for my interests

From the workshop overview:

“The 30th HIPS workshop, to be held as a full-day meeting at the IPDPS 2025 conference in Milan, Lombardy,
Italy, focuses on high-level programming of multiprocessors, compute clusters, and massively parallel
machines. Like previous workshops in this series - established in 1996 - this event serves as a forum for research
in the areas of parallel applications, language design, compilers, runtime systems, and programming tools. It
provides a timely forum for scientists and engineers to present the latest ideas and findings in these rapidly
changing fields. In our call for papers, we especially invite papers demonstrating innovative approaches in the
areas of emerging programming models for large-scale parallel systems and many-core architectures. This
year we will add fo the list topics programming models and environments for the Edge-Cloud-HPC Continuum as
well as the application of recent Al technologies in high-level programming models.”

Disclaimer

Lots of personal opinions follow that don’t necessarily reflect anyone’s views other than mine.
(as with any good keynote)

They may also represent something of a US-oriented perspective?
(I'll be curious if you think so)

Top HPC Systems, June 1995

e Top 5 systems in the Top500 TOPS00 L|ST_ - JUNE 199_5 | :
Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

. cores: 80_3 680 CO res Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.
« Rmax: ~98.9-170 GFlop/s

e Vendors: Fujitsu, Intel Paragon XP/S, Cray T3D

& 1-100 101-200 201-300 301-400 401-500 -

Rmax Rpeak Power
°
» Networks: crossbar, mesh, 3D torus Rank System Cores (6Flop/sl (6Flop/s) (kW)
1 Numerical Wind Tunnel, Fujitsu 140 170.00 235.79
National Aerospace Laboratory of Japan
Japan
2 XP/S140, Intel 3,680 143.40 184.00
Sandia National Laboratories
United States
3 XP/S-MP 150, Intel 3,072 127.10 154.00
DOE/SC/Oak Ridge National Laboratory
United States
4 T3D MC1024-8, Cray/HPE 1,024 100.50 153.60
Government
United States
5 VPP500/80, Fujitsu 80 98.90 128.00

National Lab. for High Energy Physics
Japan

Top HPC Systems, June 2025

. TOP500 LIST - NOVEMBER 2024
¢ Top 5 SySTems In The TOpSOO (reSUITS from NOV 2024) Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 description.

cores: 2’07 3’600_ 1 1,03 9’6 1 6 CO res (N 5 6 3X_ 1 3 8’OOOX) Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into

° account the Turbo CPU clock rate where it applies.
e Rmax: ~477.9-1742.0 PF'Op/S ("'2,8 10,000X—17,600,000X) & 14100 101-200 201-300 301-400 401-500 >
L4 vendors: H P E/C ray, M inOSOfT Rmax Rpeak Power
Rank System Cores (PFlop/s) (PFlop/s) (kW)
* NetworkS: SlInQShOT-ll’ IannIBand N DR 1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11,039,616 1,742.00 2,746.38 29,581
1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL

United States

2 Frontier - HPE Cray EX235a, AMD Optimized 3rd 9,066,176 1,353.00 2,055.72 24,607
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE Cray 0S, HPE
DOE/SC/Oak Ridge National Laboratory
United States

3 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States

4 Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

5 HPCé - HPE Cray EX235a, AMD Optimized 3rd Generation 3,143,520 477.90 606.97 8,461
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL
8.9, HPE
Eni S.p.A.
Italy

What changes did HPC hardware see over that time?

I'd consider these to be the biggest HPC hardware changes over the past 30 years:
e multicore processors

multi-socket compute nodes
NUMA memory architectures within compute nodes

high-radix, low-diameter network interconnects
GPU computing

massive-scale HPC systems

cloud computing

Most of these changes have been driven by striving for better performance and/or energy efficiency

10

Top HPC Systems, June 1995

e Top 5 systems in the Top500 TOPS00 L|ST_ - JUNE 199_5 | :
Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

. cores: 80_3 680 CO res Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.
« Rmax: ~98.9-170 GFlop/s

e Vendors: Fujitsu, Intel Paragon XP/S, Cray T3D

& 1-100 101-200 201-300 301-400 401-500 -

Rmax Rpeak Power
°
» Networks: crossbar, mesh, 3D torus Rank System Cores (6Flop/sl (6Flop/s) (kW)
1 Numerical Wind Tunnel, Fujitsu 140 170.00 235.79
National Aerospace Laboratory of Japan
Japan
2 XP/S140, Intel 3,680 143.40 184.00
Sandia National Laboratories
United States
3 XP/S-MP 150, Intel 3,072 127.10 154.00
DOE/SC/Oak Ridge National Laboratory
United States
4 T3D MC1024-8, Cray/HPE 1,024 100.50 153.60
Government
United States
5 VPP500/80, Fujitsu 80 98.90 128.00

National Lab. for High Energy Physics
Japan

Adopted HPC Programming Notations, June 1995

TOP300 LIST - JUNE 1995

Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

& 1-100 101-200 201-300 301-400 401-500 -

Rmax Rpeak Power
Rank System Cores (GFlop/s) (GFlop/s) (kW)

1 Numerical Wind Tunnel, Fujitsu 140 170.00 235.79
National Aerospace Laboratory of Japan

e HPC Programming Notations: Japan
° Languages: C C++ For-l-ran 2 XP/S140, Intel 3,680 143.40 184.00

Sandia National Laboratories

e Inter-node: MPI, SHMEM United States

3 XP/S-MP 150, Intel 3,072 127.10 154.00

o intra-node: vendor-specific pragmas and intrinsics DOE/SC/0ak Ridge National Laboratory
United States
— OpenMP on the horizon: 1997

4 T3D MC1024-8, Cray/HPE 1,024 100.50 153.60
Government
United States

9 VPP500/80, Fujitsu 80 98.90 128.00
National Lab. for High Energy Physics
Japan

: | 12

Adopted HPC Programming Notations, June 2025

e HPC Programming Notations:

Languages: C, C++, Fortran
Inter-node: MPI|, SHMEM, Fortran 2008 coarrays

Intra-node: OpenMP
GPUs: CUDA, HIP, OpenMP, OpenCL, OpenACC, Kokkos, SYCL, ...

TOP500 LIST - NOVEMBER 2024

Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

&

Rank

1-100 101-200 201-300 301-400 401-500 —>

System Cores

El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11,039,616
1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE

DOE/NNSA/LLNL

United States

Frontier - HPE Cray EX235a, AMD Optimized 3rd 9,066,176
Generation EPYC 64C 2GHz, AMD Instinct MI250X,

Slingshot-11, HPE Cray 0S, HPE

DOE/SC/Oak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU

Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure

Microsoft Azure

United States

HPCé - HPE Cray EX235a, AMD Optimized 3rd Generation 3,143,520
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL

8.9, HPE

Eni S.p.A

Italy

Rmax
(PFlop/s)

1,742.00

1,353.00

1,012.00

561.20

477.90

Rpeak
(PFlop/s)

2,746.38

2,055.72

1,980.01

846.84

606.97

Power
(kW)

29,581

24,607

38,698

8,461

13

Adopted HPC Programming Notations, June 1995 vs. June 2025

June 1995: June 2025:
« Languages: C, C++, Fortran « Languages: C, C++, Fortran
e Inter-node: MP|, SHMEM e Inter-node: MPI, SHMEM, Fortran 2008 coarrays
o intra-node: vendor-specific pragmas and intrinsics e Intra-node: OpenMP

o GPUs: CUDA, HIP, OpenMP, OpenCL, OpenACC,
Kokkos, SYCL, ...

Despite 30 years of amazing HPC progress in performance and efficiency,
we have not broadly adopted any new HPC programming languages

HPC programming may have even lost ground due to hardware trends

14

Losing Ground as HPC Hardware Changes?

e Most of the recent hardware changes we’ve made have hurt, rather than helped, HPC programmability

e multicore processors hurt
e multi-socket compute nodes hurt
« NUMA memory architectures within compute nodes hurt
 high-radix, low-diameter network interconnects helped
o GPU computing hurt
e massive-scale HPC systems neutral
e cloud computing neutral

e Our notations haven’t been sufficiently rich and general-purpose for parallelism and locality
o If they had, we wouldn’t write programs that needed C++ and MPIl and OpenMP and/or CUDA

15

Do we need HPC languages?

e Libraries, directives, and extensions have obviously gotten us quite far
« Virtually all notable HPC computations from the past 30 years have used them

e That said, most HPC programming is still quite low-level and mechanism-oriented
e e.g., “send this message”, “spawn these threads”, “launch this kernel”
e These are important capabilities for control over performance

» Yet they need not be our stopping point

e We're living in a state similar to Fortran’s introduction—skeptical about higher-level approaches
« Just as Fortran did not remove the ability to write assembly, HPC languages should support manual overrides

16

Why Consider New Languages at all?

e High level, elegant syntax
e Improve programmer productivity

e Static analysis can help with correctness
e We need a compiler (front-end)

e |f optimizations are needed to get

Performance ST :

* We need a compiler (back-end)

e Language defines what is easy and hard

AIgOrltth e Influences algorithmic thinking

: [Source: Kathy Yelick, CHIUW 2018 keynote: Why Languages Matter More Than Ever, used with permission]

17

Is the lack of newly-adopted
HPC languages due to lack of trying?

Notable HPC Programming Languages of the past 30 years

Mid-to-late 90’s Classics: HPCS-era languages:
« HPF: High Performance Fortfran e Chapel
o« ZPL o Fortress
« NESL e X10
PGAS founding members: « CAF20
o CAF: Coarray Fortran Post-HPCS:
o UPC o XcalableMP
e Titanium » Regent
C-based approaches: Embedded pseudo-languages (a slippery slope!)
e Cilk e Charm++, Global Arrays, HPX, UPC++, Legion, ...

o SAC: Single-Assignment C

| don’t mean to imply that all these languages were worthy of success (nor even most of them)

Let’s look at one that definitely wasn't...

: | 19

Me, 30 years ago

e Masters-level grad student at University of Washington, working on ZPL

ZPL:

 a data-parallel array language designed for HPC
—parallelism expressed through first-class index sets called regions
« supported a WYSIWYG performance model

—-syntax indicated presence, and style, of communication
—published at HIPS 1998

21

“Programming Language Design
Ceased 1o be Relevant in the 1980s.”

-Anonymous reviewer on a rejected ZPL paper, circa 1995
(paraphrased, from memory)

22

Why this review didn’t derail my career

[setting: The office of Larry Snyder, my PhD advisor, after we received the review]

v N LR

| Me (demoralized):
« “Why are we even bothering to throw ourselves at this wall, given attitudes like these?”
o “Let’s just use our HPC smarts to go and solve some big, cool science problem!”

Larry:
» “If we solve a cool science problem, then we’ve solved one problem, whereas...”

This conversation is a huge part of why I've essentially spent my career devoted to this topic

« “If we create a great language, we magnify our effort by helping others solve their cool problems.”

23

In retrospect, think about how wrong that attitude was

Consider all the currently relevant languages that emerged, or rose to prominence, during those 30 years:

Java (~1995)

Javascript (~1995)

Python (~1989; v2.0 ~2000)
C# (~2000)

« Go (~2009)

Rust (~2012)

Julia (~2012)

Swift (~2014)

These languages have become favorite day-to-day languages of many users across multiple disciplines

: | 24

What made these languages “stick’?

What focus areas distinguished these languages and helped them take hold? In my opinion...

e Java (~1995) safety, portability, OOP, www

« Javascript (~1995) productivity, www

e Python (~1989; v2.0 ~2000) productivity, extensibility

o C# (~2000) safety, productivity, OOP

e Go (~2009) concurrency, productivity

e Rust (~2012) safety, performance

e Julia (~2012) productivity, interoperability, library re-use, performance
o Swift (~2014) productivity, safety

Frequent themes: productivity, safety, portability, performance (things we also value in HPC!)
Parallelism or concurrency? Typically supported, but rarely a primary theme
Support for locality control or scalability? Virtually none

—

25

Sample ZPL Result circa 2001: NAS MG (ZPL vs. Fortran+MPI)

ZPL could outscale the reference MPI version, using less code (and clear code at that), and less memory

MG

-
[0}
]

1
\

— — — linear speedup

—e— A-ZPL
ZPL

—a&— F+MPI

—
N
|

(114.607 seconds in A-ZPL)
[o¢]
|

Speedup over best 16-processor time

4] 1200
i 1000
0 T T I |
0 32 o4 128 256 800
Processors § 566
o
Cray T3E 5 600
o
200
242
0
F+MPI

NAS MG Line Counts

procedure rprj3(var S,R:

begin
S :

end;

0.5000 * R +
0.2500 * (RE@~d[1,

0.1250 * (R@AA[1,
R@AA[1,-1,
R@ANA[-1, 1,
R@ANA[-1,-1,
0.0625 * (Re*d[1,
Re~d[1,-1,

ReAd[-1,-1,

O communication
B declarations

@ computation

A-ZPL

0]
0]
0]
0]
0]
0]
1]
1]
1]
1]

+ o+ o+ o+ o+ o+

[,,] double;
[1 of direction);

Re~d[0, 1, 0] + R@~d[0, 0, 1] +
RE~d[0,-1, 0] + R@~d[0, 0,-1] +
Re~d[1, 0, 1] + R@~d[0, 1, 1] +
Re~d[1, 0,-1] + R@~d[0, 1,-1] +
rR@~d[-1, O, 1] + R@~d[0,-1, 1] +
R@~d[-1, 0,-1] + R@~d[0,-1,-1])+
RE@~A[1, 1,-1] +
R@~d[1,-1,-1] +
R@~d[-1, 1,-1] +

R@*d[-1,-1,-11);

MG Class C -- memory usage

4
ORS
ov

gs R |
& 1.00 BU
£

[T

o o |
(7).
9
S
®
-
(=]

0

dense F77+MPI, ZPL A-ZPL

| 26

Why wasn’t ZPL broadly adopted? Why was that appropriate?

e ZPL was a great academic language

e Chose the thing we wanted to study, and studied it well
- Specifically, scalable, array-based data parallelism with syntactically visible communication

e Yet, it was not a very practical one

» Supporting only one level of data-parallelism is too restrictive for many real scientific computations
— It also would’ve turned out to be insufficient for GPU computing

« Didn’t support features practical users would want: OOP, generic programming, interoperability, modularity, ...

e Like so many other HPC notations, insufficiently rich support for expressing parallelism & locality

27

So, ZPL failed... Do we give up?

e Not at all' It is crucial to learn from failure and improve
« We learned from ZPL, and also from the failures and struggles of others: HPF, NESL, Sisal, Cilk, UPC, CAF, ...

o And from that, came the Cascade High Productivity Language, Chapel!
—original Chapel paper published at HIPS 2004

@APEL

The Cascade High Productivity Language

Brad Chamberlain
David Callahan

Hans Zima’
Chapel Team, Cascade Project
Cray Inc., *CalTech/JPL

CCRANY

The Cascade High Productivity Language*

David Callahan', Bradford L. Chamberlain', and Hans P. Zima*
Cray Inc., Seattle WA, USA, {david, bradc}@cray.com
VJPL, Pasadena CA, USA and University of Vienna, Austria, zima@jpl.nasa.gov

Abstract

The strong focus of recent High End Computing efforts
on performance has resulted in a low-level parallel pro-
gramming paradigm characterized by explicit control over
message-passing in the framework of a fragmented pro-
gramming model. In such a model, object code performance
is achieved at the expense of i i and

the 1950s, parallel programming for HEC systems is con-
ducted today using an assembly language-like paradigm, a
consequence of the difficulty of obtaining performance in
any other way.

Numerous projects over the past decade have tried to
improve this situation by proposing higher-level languages
that provide a global view of the computation and enhance

clarity.

This paper describes the design of Chapel, the Cas-
cade High Productivity Language, which is being devel-
oped in the DARPA-funded HPCS project Cascade led by
Cray Inc. Chapel pushes the state-of-the-art in languages
for HEC system programming by focusing on productiv-
ity, in particular by combining the goal of highest possi-
ble object code performance with that of programmabil-
ity offered by a high-level user interface. The design of
Chapel i guided by four key areas of language technology:

dsacaded e e, o
generic ing. The Cascade archi which is

such as High For-
tran (HPF) and its variants. However, these languages were
not accepted by a broad user community, mainly for the fact
that the generated object code could not compete with the
performance of “hand-coded” programs using MPI or other
‘message passing libraries. A major reason for this short-
coming is the inadequate support for scalable and efficient
parallel processing in many conventional architectures com-
bined with a lack of language expressivity and weaknesses
in compilers and runtime systems.
In this paper we discuss the design of a new lan-
guage called Chapel—the Cascade High Productivity
La -

being developed in parallel with the language, provides key
architectural support for its efficient implementation.

1. Introduction

The almost exclusive focus of current High End Com-
puting (HEC) systems on performance has led to a dom-
inating programming paradigm characterized by a local-
ized view of the computation combined with explicit con-
trol over message passing, as exemplified by a combination
of Fortran or C/C++ with MPL. Such a fragmented memory
model provides the programmer with full control over data
distribution and communication, at the expense of produc-
tivity, conciseness, and clarity. Thus, quite in contrast to the
successful emergence of high-level sequential languages in

‘This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Contract No. NBCH3039003. The
research described in this paper was partilly carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administration.

the context of an architecture develop-
ment targeting a Petaflops computing system. Cascade is
a project in the DARPA-funded High Productivity Com-
puting Systems (HPCS) program led by Cray Inc., with
the California Institute of Technology, NASA’s Jet Propul-
sion Laboratory (JPL), and Stanford and Notre Dame
Universities as partners.

Chapel pushes the state-of-the-art in programming
for HEC systems by focusing on productivity. In par-
ticular Chapel combines the goal of highest possible
object code with that of
ity by supporting a high level interface resulting in
shorter time-to-solution and reduced application develop-
ment cost. The design of Chapel is guided by four key
areas of ing language gy: multi
ing, locality-awareness, object-orientation, and generic
programming.

1) Multithreaded parallel programming in the style of Mul-
tilisp, Split-C, or Cilk, supports fine-grain parallelism and
resource virtualization so that cach soft can
express the concurrency that is natural to it. This facilitates
latency tolerance, allows for automatic management of pro-

28

What is Chapel?

Chapel: A modern parallel programming language
« Portable & scalable
e Open-source & collaborative

Goals:
e Support general parallel programming
« Make parallel programming at scale far more productive

\
g CHAPEL
=

30

Productive Parallel Programming: One Definition

Imagine a programming language for parallel computing that is as...
...readable and writeable as Python

..yet also as...
..fast as Fortran / C / C++

...scalable as MP| / SHMEM

...GPU-ready as CUDA / HIP / OpenMP / Kokkos / OpenCL / OpenACC/ ...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel

31

Chapel Features for
Parallelism and Locality, Briefly

Key Concerns for Scalable Parallel Computing

1. parallelism: What tasks should run simultaneously?
2. locality: Where should the tasks run? Where should data be allocated?

Compute Compute Compute Compute
Node O Node 1 Node 2 Node 3
o3k e GO oo oo
o dR e, ‘ \ o X e ‘ \ oo ‘ \ o3k

Processor Core

. Memory

33

Locales in Chapel

e In Chapel, a locale refers to a compute resource with...
e processors, so it can run ftasks

e memory, so it can store variables
e For now, think of each compute node as being a locale

Compute
Node O

_mm

Compute Compute

Node 1

Node 2

b

B

Compute

Node 3

Processor Core

. Memory

34

Locales in Chapel

e In Chapel, a locale refers to a compute resource with...

e processors, so it can run tasks
e memory, so it can store variables

e For now, think of each compute node as being a locale

Locale O

_mm

Locale 1

b

. Memory

Locale 2

B

Locale 3

Processor Core

35

Built-In Locale Variables in Chapel

e Two key built-in variables for referring to locales in Chapel programs:

« Locales: An array of locale values representing the system resources on which the program is running

 here:

The locale on which the current task is executing

Locale O

Locale 1

Locale 2

il

B

Locale 3

/ |

here Locales

. Memory

Processor Core

36

Basic Features for Locality

basics-on.chpl

All Chapel programs begin running
as a single task on locale O

Variables are stored using the

on loc {
var B

var A: [1..

writeln ("Hello from locale
2, 1..2]

for loc in Locales

real;

4

here.id) ;

Locale O

o

memory local to the current task

This loop will serially iterate over
the program’s locales

on-clauses move tasks
to target locales

remote variables can be

accessed directly

Locale 2 Locale 3

aE al;

’

I | ™ |

37

Mixing Locality with Task Parallelism

basics-coforall.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

The coforall loop creates

coforall loc in Locales { a parallel task per iteration
(in this case, a task per locale)

on loc {
var B = A;

Locale 0 Locale 1 Locale 2 Locale 3
= = L !: ol |E o |E
—_—1 L =

Chapel also has other ways of expressing parallelism, not covered today

Low-level:

« begin: fires off an asynchronous task
» cobegin: creates a fixed number of tasks and waits for them to complete

High-level:
» foreach: a way o get vector/SIMD parallelism without using tasks/threads
 forall: a parallel loop that divides iterations to tasks (where typically #iters >> #tasks)
—including zippered loops to iterate over multiple things simultaneously

« whole-array operations / promotion of scalar operations
—equivalent to zippering

39

The Portability of Chapel’s Design over Time

e Chapel’s focus on parallelism and locality has made the language design robust to hardware changes

e Consider the timeline:
e In 2004, multicore CPUs were not yet commonplace or commoditized

 As a result, Chapel’s initial design focused exclusively on:
—single-core CPU compute nodes
—-the Cray X1
—the Cray XMT (Tera MTA)

e Chapel's HIPS 2004 features have largely remained unchanged, despite the introduction of:
e multicore processors
e multi-socket compute nodes
« NUMA memory architectures
e GPUs

—

40

Representing GPUs in Chapel

e Modern HPC systems have GPUs
o And those GPUs have their own cores and memory
« In Chapel, we represent them as sub-locales, using the same locality + parallelism features to program them

Compute Compute Compute Compute
Node O l Node 1 l Node 2 l Node 3 l
= =S = iR
= e = =
CPU Core
.Memory
GPU Core

Parallelism and Locality In The Context Of GPUs

var A: [l1..n, 1..n] real;
coforall 1 in Locales do on 1 {

parallel statements cobeg in {
with cobegin Locale 0 Locale 1 coforall g in here.gpus do on g {

CPU Core GPU Core . Memory

var B: [l1..n, 1..n] real;

oo oo 6 -2
o ke o dR e A = B;
}
GPUO {
) I :::gl var B: [l1..n, 1..n] real;
inner
coforall eelele Q B = 2;
across 7 A = B;
GPUs GPU1 }
Lo AR 2K -2K;
to AR AR AK-; }

writeln (A) ;

: outer coforall across Locales | 4

Chapel Benchmarks and Applications

HPCC Stream Triad and RA in C + MPI + OpenMP vs. Chapel

|
1
TAMTRIAD'“MPHOPENMP use BlockDist; STREAM Performance (GB/s)
config const n = 1 000 000, S0000 e
alpha = 0.01; 25000 f Cha%g?%elggz—_—:—_— 7777777777777777777777777
const Dom = blockDist.createDomain({l..n}); | o el
var A, B, C: [Dom] real; % S e
—SUM, 0, comm) 7 10000 ,,
B=2.0; 5000 - e
e = W5 oceectorstoe peaes, 3, sasa ewlel 0) cC = 1. O; 0
1632 64 128 256
— A =B + alpha * C; Locales (x 36 cores / locale)
]
]
HPCC RA: MPI KERNEL
forall (, r) in zip(Updates, RAStream()) do RA Performance (GUPS)
Tlr & indexMask].xor(r):; 14 - SRR
12
10
2 8
o 6
4
2
O L
16 32 64 128 256
'72 Locales (x 36 cores / locale)

Bale IG in Chapel vs. SHMEM on HPE Cray EX (Slingshot-11)

Chapel (Simple / Auto-Aggregated version)

d = Src([i];

forall (d, 1) in zip(Dst,

Chapel ——
.. SHMEM Exstack —¢— _ _ _ _ _ _ _ _ _ _ _ _ _ __ _—"_ _ _____

SHMEM (Exstack version)

SHMEM Convey - -% -

GB/s

EM (Conveyors version)

i=0;
while (exstack proceed(ex, (i==1_ num req))) {
i0 = 1;

while(i < 1 num_req) {
1 indx = pckindx[i] >> 16;

pe = pckindx[i] & Oxffff;

if (!exstack push(ex, &l_indx, pe))
break;

Aldrarg

}
exstack_exchange (ex) ;

while (exstack pop(ex, &idx , &fromth)) {
idx ltable[idx];
exstack push(ex, &idx, fromth);

}

lgp_barrier();

exstack_exchange (ex) ;

for (j=i0; j<i; j++) {
fromth = pckindx[j] & Oxffff;
(

tgt[j] = idx;
}
lgp barrier();

}

(more = convey advance (requests, (i == 1 num req)),

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

convey advance (replies,

num_req; i++) |

pe = pckindx[i]
! convey push (requests,

(convey pull (requests, == convey_OK)
ltable[ptr->vall;
! convey push(replies,
convey unpull (requests);

(convey pull (replies,

exstack pop_ thread(ex, &idx, (uint64_t)fromth); tgt [ptr->idx]

—

512 1024 2048 4096
Compute Nodes

Applications of Chapel

Python3 Client m™ma Chapel Server
& . Socket
*HE
Code Modules [3
2
t Distributed
ﬁ Object Store
Platform MPP, SMP, Cluster, Laptop, etc. 23] |

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.
U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity
Tom Westerhout Nelson Luis Dias

Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

[images provided by their respective teams and used with permission]

Rebecca Green, Helen Fox, Scott Bachman, et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Productivity Across Diverse Application Scales (code and system size)

Computation: Aircraft simulation / CFD
Code size: 100,000+ lines
Systems: Desktops, HPC systems

Computation: Coral reef image analysis
Code size: ~300 lines

Systems: Desktops, HPC systems w/ GPUs

Low-pass filter with LOWESS (intrinsically parallel)

100

RH (%) at Lake Mead
S

2010 2011 2012 2013 2014 2015

Computation: Atmospheric data analysis
Code size: 5000+ lines
Systems: Desktops, sometimes w/ GPUs

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel

Posted on September 17, 2024.

Tags: Computational Fluid Dynamics == User Experiences Interviews

(i

By: Engin Kayraklioglu, Brad Chamberlain

T

;j “Chapel worked as intended: the code

v maintenance is very much reduced, and

*| its readability is astonishing. This enables
of undergraduate students to contribute,
something almost impossible to think of
when using very complex software.”

%

—

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: Earth Sciences || Image Analysis = GPU Programming

User Experiences = Interviews

By: Brad Chamberlain, Engin Kayraklioglu

In this second installment of our Seven Questions for Chapel Users series, we're looking at a
recent success story in which Scott Bachman used Chapel to unlock new scales of biodiversity
analysis in coral reefs to study ocean health using satellite image processing. This is work that

7 Questions for Nelson Luis Dias:
Atmospheric Turbulence in Chapel
Posted on October 15, 2024.

Tags: User Experiences | Interviews || Data Analysis

Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

In this edition of our Seven Questions for Chapel Users series, we turn to Dr. Nelson Luis Dias from

(ATTO), a project dedicated to long-term, 24/7 monitoring of greenhouse gas fluctuations. Read

1 “With the coral reef program, | was able to
speed it up by a factor of 10,000. Some
of that was algorithmic, but Chapel had

=

on

“Chapel allows me to use the available
CPU and GPU power efficiently without
low-level programming of data

| 1 the features that allowed me to do it.” a

synchronization, managing threads, etc.”

[read this interview series at: https://chapel-lang.org/blog/series/7-questions-for-chapel-users/]

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Gratifying to Have Reached This Point

Larry Snyder:

 “..if we create a great language, we magnify our effort by helping others solve their cool problems.”

I'm gratified that we’ve now done some of this with Chapel

That said, to remain viable, we need to expand from 10’s of applications to 100’s or 1000’s

— |

48

Why Isn’t Chapel More Successful?

Given that Chapel...
e supports such compact, readable code
« has demonstrated performance and scalability
e has been used in such diverse application areas
 has ported across hardware platforms and changes

..why isn’t it more broadly adopted?

49

5 Barriers to HPC Language Adoption

Barrier 1: Creating a practically useful language is a massive effort

e Simplified Chapel timeline:
2003: Design started
2008: First public release, not fully featured
2018: Began encouraging users to try it

e Creating a general-purpose HPC language is strictly harder than creating a traditional language

e In addition to HPC-crucial aspects...
— parallelism and locality
— portability across processors, networks, systems, workload managers, ...
— performance
...users also still want all of the traditional features
—object-oriented programming
—error-handling
—modern memory management
— productivity features

—

51

Barrier 2: Human Nature

 Practically speaking, most of us are impacted by limited time, short attention spans, and herd mentality

« Some evaluated Chapel years ago, when it was not very good/fast/scalable/mature
- Formed lasting opinions that have never been updated
— A downside of developing long-term efforts as open-source—growing pains are on display

e Many will adopt others’ opinions rather than forming their own
e Many will not adopt a technology until many others have
e Incorrectly assuming “If it hasn’t caught on now, there must be something inherently wrong with it”

Barrier 3: We haven’t always marketed ourselves very well

e As a team of R&D engineers, we’ve often focused on our work and users rather than outreach
« Chapel’'s name-recognition isn't as good as it could be as a result -

The Chapel Programming Language

Productive parallel computing at every scale.

M . M M M M | @ Hello World writeln("Hello, world!");
» Have been working on improving this in recent years, by creating: -
Q Distributed Hello World coforall tid in @..<here.maxTaskPar do
writeln("Hello from task ", tid);
M O Parallel File 10 /7 print these 1,000 m n parallel using all cores
[a n eW We b S ITe — O 1D HeatDifusion fnv::::e:n?‘l:ﬂiiiiozeu:n)teratmn .
Q GPU Kernel
. blog =————l
a new blo =
M M (Chapel Language Blog TRY CHAPEL GET CHAPEL LEARN CHAPEL
® a beTTe r SOC I a | m ed Ia p rese n Ce — About Chapel Website Featured Series Tags Authors All Posts
[J n eW C O m m u n iTy fo r u m S Welcome to the Chapel language blog! Chapel is a productive language for parallel computing at
scale. To learn more, see the welcome article.
° PRODUCTIVE PARALLEL FAST
e LateSt pOSts Concise and readable without Built from the ground up to implement Chapel is a compiled language,
compromising speed or expressive parallel algorithms at your desired level of generating efficient machine code that
power. Consistent concepts for parallel abstraction. No need to trade low-level meets or beats the performance of other
10 Myths About Scalable Parallel Programming Languages computing make it easier to learn. control for convenience. languages

(Redux), Part 2: Past Failures and Future Attempts
Posted on May 28, 2025

Another archival post from the IEEE TCSC blog in 2012 with a current reflection on it

Barrier 4: HPC Community Behaviors

e Conservative by nature
» “Not invented here” mentalities
 Who makes decisions?
o Computer scientists or computational scientists?
 Principal Investigators and money handlers or application programmers?
e Hardware-centric attitudes to the detriment of software, programmers?
e Think of ourselves as a small, niche community
« E.g., “We’re not big enough to have a language of our own”

54

Getting HPC Out of its Niche Mentality

Parallel computing has become ubiquitous:

Parallel computing in June 1995: Parallel computing in June 2025:
« supercomputers e supercomputers

commodity clusters

cloud computing

o commodity clusters

multicore processors
GPUs

This gives us an opportunity to leverage the larger community of non-HPC users and use cases

55

Introduction to HPSF

HPSF = High Performance Software Foundation
 a Linux Foundation project
 a neutral hub for open-source high-perf. software

e mission: “to constantly improve the quality and
open availability of software for HPC through
open collaboration”, focusing on:

— performance
— portability
— productivity

« goals for member projects:
—increasing adoption
—aiding community growth
—enabling development efforts

—

CITHELINUX FOUNDATION

Building the Future of
High Performance
Software

The High Performance Software Foundation (HPSF) is a neutral hub
for open source high performance software.

HPSF supports projects that advance portable software for diverse hardware by increasing adoption, aiding community
growth, and enabling development efforts. HPSF is lowering barriers to productive use of today's and future high

performance computing systems. HPSF is part of the nonprofit Linux Foundation.
Community-Driven Solutions for

e Performance
e Portability
e Productivity

56

HPSF Timeline and Resources

Timeline:
o May 2024: HPSF launched at ISC
« September 2024: Began accepting applications for member projects
« January 2025: Chapel accepted to HPSF at the “established” project level

 May 2025: First-ever HPSFcon
Resources: m H PS F
HIGH PERFORMANCE
o Website: hitps://hpsf.io/ m SOFTWARE FOUNDATION

e Blog: hitps://hpsf.io/blog/
e YouTube channel: htfps://www.youtube.com/@HPSF-community

o GitHub org: https://github.com/hpsfoundation

https://events.linuxfoundation.org/hpsf-conference/
https://hpsf.io/
https://hpsf.io/blog/
https://www.youtube.com/@HPSF-community
https://github.com/hpsfoundation

Barrier 5: We’re increasingly living in a post-programming era

Chapel: “We’ve developed a great parallel programming language that scales!”

The world:
o “Where is the vast set of libraries I'm accustomed to in Python, C++, Julia, ...?”
e “Where are all the Stack Overflow articles telling me how to do the things | want to do?”
e “Could an Al write my Chapel code so | don’t have t0?”

These are very reasonable things to want, but can be difficult to achieve with a small team

Fortunately, it’s also a place where open-source contributors can help out

58

Arkouda: An HPC Framework
for the post-programming world(?)

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

apel Server

d
Socket

e E I E

Python3 Client

Arithmetic

Distributed
Object Store

Platform MPP, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 .

60 -

RH (%) at Lake Mead

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias
The Federal University of Parand, Brazil

Arachne Graph Analytics
Bader, Du, Rodriguez, et al.
New Jersey Institute of Technology

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

T

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.
[C]Worthy

[images provided by their respective teams and used with permission]

ChplUltra: Simulating Ultralight Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

[

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client
(written in Python)

big_add_Sum st cizrs 16 e 5 e

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

61

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
(written in Pythoni)‘_ (written in Chapel)

= Jupyter big_add_sum uasowspore 16 mots s> cnanc

Ta (1) mport arkosda as ak

™

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”

— | 2

Performance and Productivity: Arkouda Argsort

HPE Cray EX =g
o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)

HPE Cray EX @@
o Slingshot-11 network (200 Gb/s)
« 896 compute nodes
o 28 TiB of 8-byte values
e ~1200 GiB/s (~24 seconds)

HPE Apollo =3¢
e HDR-100 InfiniBand network (100 Gb/s)
o 576 compute nodes
o 72 TiB of 8-byte values
o ~480 GiB/s (~150 seconds)

GiB/s

9000
8000
/7000
6000
5000
4000
3000
2000
1000

Arkouda Argsort Performance

= Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - - _ _——"_
Slingshot-11 April 2023, 32 GiB/node —eo—
~ HDR-100 IB May 2021, 128 GiB/node —— ~~~_~— ~~ "~~~ 7 °

Implemented using ~100 lines of Chapel

—

What is Arkouda?

Q: “What is Arkouda?”

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)

LT C———————

o (1) inport arkoods as ak

O User writes Python code
ﬂ making familiar NumPy/Pandas calls

A: “A scalable version of NumPy / Pandas for data scientists”
A’: “An extensible framework for arbitrary HPC computations”
A”: “A way to drive HPC systems interactively from Python on a laptop”

—

6L

Arkouda Resources

Website: https://arkouda-www.github.io/

github documentation gitter

Massive-scale data science,
from the comfort of your laptop

Arkouda ‘

° NumPy
Ready for supercomputers Industry standard

inport arkouda as ak

ak. conne

k. random. randint (0, 2##32, 2#k38) # -~
k. random. randint (0, 2432, 2438) #

k.s‘urt(c‘)k
print(clo:10])

Try it Out Tutorial Video [3 Chat on Gitter

Arkouda v2024.12.06 released!

The new release includes a refactored server making it easier to add new features, more Sparse Matrix fucntionality, new pdarray
manipulation functions, and bug fixes.

Read the release notes —+

Arkouda is...

Fast Interactive Extensible
Arkouda is powered by Chapel, a By distributing your data across One can expand on Arkouda’s
programming language buit from the multiple nodes, Arkouda allows you to capabilies, thus enabling arbitrary
ground up to support parallelism and rapidly transform and wrangle datasets scalable computations to be performed
distributed computing. Make the most in real time that are simply intractable from Python.
out of every core and every node in for a laptop or desktop.
your system.

Powered by Chapel

Arkouda’s backend s i in Chapel, an opt parallel

language. Chapel is unique among mainstream languages s it puts parallelism and locality N
in the forefront, while not sacrificing productivity or portability. Chapel enables Arkouda to
perform well and scale on many different architectures, from multicore laptops to cloud @APE L
systems to world's fastest supercomputers. _,

To learn more about Chapel, check out its blog, presentations, tutorials and demos, and the
How Can I Learn Chapel? page.

Arkouda users are saying...

1 . .
...solving problems in a matter of seconds, as opposed to days...

— Tess Hayes, Bytoa

11
[’'m] working with more data than | ever thought possible as a data scientist!

— Jake Trookman, Erias

[0 README [License

apkolda
massive scale
data science

Arkouda (apko0da) 8
Interactive Data Analytics at Supercomputing Scale

Online Documentation
Arkouda docs at Github Pages

Nightly Arkouda Performance Charts

Arkouda nightly performance charts

Gitter channels

Arkouda Gitter channel

Chapel Gitter channel

Talks on Arkouda

Mike Merrill's SIAM PP-22 Talk

Arkouda Hack-a-thon videos

GitHub: hitps://github.com/Bears-R-Us/arkouda

65

https://arkouda-www.github.io/
https://github.com/Bears-R-Us/arkouda

Arkouda Interview

Blog: Interview with founding co-developer, Bill Reus: https://chapel-lang.org/blog/posts/7gs-reus/

Table of Contents

1. Who are you?

2. What do you do? What problems
are you trying to solve?

3. How does Chapel help you with
these problems?

4. What initially drew you to Chapel?

5. What are your biggest successes
that Chapel has helped achieve?

6. If you could improve Chapel with a
finger snap, what would you do?

7. Anything else youd like people to
know?

(., Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Bill Reus: Interactive
Supercomputing with Chapel for Cybersecurity
Posted on February 12, 2025.

Tags: User Experiences | Interviews | Data Analysis || Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

We're very excited to kick off the 2025 edition of our Seven Questions for Chapel Users series wit
the following interview with Bill Reus. Bill is one of the co-creators of Arkouda, which is one of
Chapels flagship applications. To learn more about Arkouda and its support for interactive data
analysis at massive scales, read on!

1. Who are you?

My name is Bill Reus, and | live near Annapolis, MD and the beautiful Chesapeake Bay. | am
currently a data scientist doing statistical modeling and simulation for the United States
government, but | began my career as an experimental chemist. In graduate school, | measured
electron transport through thin films of organic molecules using an apparatus that our group
invented to collect large volumes of noisy data quickly and with low cost. This approach
contrasted with the typical means of studying molecular electronics, which was to spend weeks
or months collecting a small number of exquisite measurements in ultra-high vacuum and at
ultra-low temperature.

“l was on the verge of resigning
myself to learning MPI when | first
encountered Chapel. After writing my
first Chapel program, | knew | had
found something much more
appealing.”

“Chapel's separation of concerns
immediately felt like the most natural
way to think about large-scale
computing. | would highly encourage
anyone wanting to get into HPC
programming to start with Chapel.”

—

66

https://chapel-lang.org/blog/posts/7qs-reus/

What can we do to nurture language adoption in HPC?

e Embrace the ubiquity of parallelism and the need for it outside of fraditional HPC (cloud, desktop)

e Support open-source efforts and communities like HPSF
e Challenge ourselves to not dismiss technologies we haven't tried firsthand (recently)

e Establish mechanisms for doing trials or comparisons of new HPC software technologies

« forums for interactions between application programmers and HPC software developers
— pair programming workshops?
— co-design sessions?
 establish frameworks for comparisons
- HPC equivalent to the Computer Language Benchmarks Game
— A Top500 equivalent that includes a programming element (HPC Challenge redux?)

e Strive to put HPC software activities on more of an equal footing as hardware

—

68

Summary

HPC has scaled massively over the past 30 years, but HPC programming hasn’t improved much
« this can be attributed to the size of the challenge, the nature of our community, and human nature, in part
e non-HPC programming languages show us this need not be the case

use BlockDist;

°] °
Chapel Is unlque among programmlng Ianguages config const n = 10, Bale Indexgather Performance
= . HPE Cray EX (Slingshot-11)
cle - . . oo 25000 B
L4 bUIlT_In feaTU reS for pa ra”ellsm and IocaIITy const SrcInds = blockDist.createDomain(0..<n), 20000 é&iﬁg:\%ﬁxkf ,,,,,,,,,,,,,,,,,,,,,,,,,
DstInds = blockDist.createDomain (0..<m) ; o 15000 y 777777777777777777777777777777
- make iT HPC—ready var Src: [SrcInds] int, g 10000 fr------- -
Inds, Dst: [DstInds] int; 5000 b
—have kept it timeless despite hardware changes forall (4, i) in zip(bst, Inds) do e o

d = Src[i];

» ports and scales from laptops to supercomputers
» supports clean, concise code relative to conventional approaches

e supports GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at scale
e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science
« Arkouda is a particularly unique example of driving HPCs from Python o o

: | 69

~2 seconds

The Advanced Programming Team at HPE

70

Ways to Engage with the Chapel Community

“Live” Virtual Events
e ChapelCon (formerly CHIUW), annually

e Project Meetings, weekly
e Deep Dive / Demo Sessions, weekly tfimeslot

Community / User Forums

e Discord @@ piscord

e Discourse Discourse

e Email Contact Alias chapel+gs@discoursemail.com
e GitHub Issues)

o Gitter |I' cITTER

e Reddit (> reddit

e Stack Overflow =" stackoverflow

—

Electronic Communications

e Chapel Blog, ~biweekly

e Community Newsletter, quarterly
e Announcement Emails, around big events

Social Media

o Bluesky *
e Facebook ﬁ

e Linkedin Linked[fl]
e Mastodon (@astodon

o X/ Twitter X

e YouTube [E3YouTube

71

https://chapel-lang.org/ChapelCon24.html
https://github.com/chapel-lang/chapel/discussions/categories/weekly-meeting-topics?discussions_q=
https://chapel-lang.org/community/
https://discord.com/invite/xu2xg45yqH
https://chapel.discourse.group/
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
https://www.reddit.com/r/chapel/
http://stackoverflow.com/questions/tagged/chapel
https://chapel-lang.org/blog/
https://chapel.discourse.group/c/newsletters/24
https://chapel.discourse.group/c/announcements/8
https://bsky.app/profile/chapellanguage.bsky.social
https://www.facebook.com/ChapelLanguage
https://www.linkedin.com/company/ChapelLanguage/
https://mastodon.social/@chapelprogramminglanguage
https://x.com/ChapelLanguage
https://www.youtube.com/@ChapelLanguage

Chapel Website

The Chapel Programming Language

Productive parallel computing at every scale.

| @ Hello World writeln("Hello, world!");

o // create a parallel task per processor core

Q Distributed Hello World coforall tid in 0..<here.maxTaskPar do
writeln("Hello from task *, tid);

QO Parallel File 10 // print these 1,000 messages in parallel using all cores

forall i in 1..1000 do

=
@AEE\. DOWNLOAD DOCS ~ LEARN RESOURCES ~ COMMUNITY
=

BLOG

WHAT’S NEW?

SC24

Aianta, [npc
GA|creates.

S$C24 from the Chapel Language Perspective
By Engin Kayraklioglu on December 18, 2024

A summary of highlights at SC24 relating to Chapel and Arkouda

CONTINUE READING

O 1D Heat Diffusion writeln("Hello from iteration *, i);
QO GPU Kernel
TRY CHAPEL GET CHAPEL LEARN CHA

PRODUCTIVE PARALLEL FAST

Concise and readable without Built from the ground up to implement Chapel is a compiled |
compromising speed or expressive parallel algorithms at your desired level of generating efficient mach|
power. Consistent concepts for parallel abstraction. No need to trade low-level meets or beats the perfornj
computing make it easier to learn. control for convenience. languages.

SCALABLE GPU-ENABLED OPEN

Chapel enables application performance Chapel supports vendor-neutral GPU Entirely open-source using

at any scale, from laptops to clusters, the programming with the same language license. Built by a great c

cloud, and the largest supercomputers in features used for distributed execution. developers. Join|
the world. No boilerplate. No cryptic APIs.

chapel-lang.org

World-class multiphysics simulation
Written by students and post-docs in Eric Laurendeau’s lab at Polytechnique Montreal.

MPS

USERS LOVE IT

The use of Chapel worked as intended: the code maintenance is very
1t reduced, and its readability is astonishing. This enables undergraduat
students to contribute to its development, something almost impossilf
think of when using very complex software.

- Eric Laurendeau, Professor, Polytd

A lot of the nitty gritty is hidden from you until you need to know it. ...
like the complexity grows as you get more comfortable - rather than
with everything at once.

- Tess Hayes]

CHAPEL IN PRODUCTION

HPC

wire

Interview with HPCWire
on December 16, 2024

If you haven't seen it, check out our recent interview with HPCWire.

CONTINUE READING

Announcing Chapel 2.3!
By Brad Chamberlain, Jade Abraham, Michael Ferguson, John Hartman on December 12, 2024
Highlights from the December 2024 release of Chapel 2.3

CONTINUE READING

Quarterly Newsletter - Fall 2024
on November 15, 2024

Our fall quarter newsletter is now available. Read about the latest Chapel news, events, and more.

CONTINUE READING

its C/OpenMP using far fewer lines of code. Dramatically
accelerated the progress of grad students while also supporting contributions from
undergrads for the first time.

Navier-Stokes in Chapel — Distributed Cavity-Flow Solver
By Jeremiah Corrado on November 14, 2024

Writing a distributed and parallel Navier-Stokes solver in Chapel, with an MPI performance comparison

Attempt This Online
Docker

E4S

GitHub Releases
Homebrew

Spack

FOLLOW US GET IN TOUCH GET STARTED
¢ Bluesky @ Dpiscord ﬂ

0 Facebook D Discourse e

[Linkedin] Email S

@ Mastodon o GitHub Issues O

@ Reddit M oitter ®

X X (Twitter) < stack Overflow 0

D YouTube

https://chapel-lang.org/

Closing Statement

| consider HPC programmers—current and aspiring—to be as worthy of modern languages as the
Python, Swift, Rust, and Julia communities

| believe the number of broadly adopted scalable parallel languages should be 21, not the current O.

73

Thank you

https://chapel-lang.org
@ChapelLanguage

