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Disclaimer

This talk’s contents should be considered my

personal opinions (or at least one facet of them)

and not necessarily those of Cray Inc.

nor my funding sources



Outline

 PGAS Programming Models

 PGAS and communication libraries like ARMCI, MPI-3

 PGAS and Global Arrays
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PGAS Definition

PGAS: Partitioned Global Address Space
(Or perhaps better: partitioned global namespace)

Concept:

 support a strong sense of ownership and locality
• each variable is stored in a particular memory segment

• local variables are cheaper to access than remote ones

• details vary between languages

 support a shared namespace
• permit tasks to access any lexically visible variable, local or remote

var x = 10;

… 

{

… x …       // x is lexically visible

}
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PGAS Languages

charter members: UPC, Co-Array Fortran, Titanium
• extensions to C, Fortran, and Java, respectively

• details vary, but potential for:

 arrays that are decomposed across nodes

 pointers that refer to remote objects

honorary retroactive members: HPF, ZPL, Global Arrays, …

the next generation: Chapel, X10, …
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PGAS: What’s in a Name?
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PGAS: What’s in a Name?
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Evaluation: Traditional PGAS Languages

Strengths:
+ Clean expression of communication through variable namespace

+ Able to reason about locality/affinity to support scalable performance

+ Separation of data transfer from synchronization to reduce overheads

+ Elegant, reasonably minimalist extensions to established languages

Weaknesses:
– Limited to a single-threaded SPMD programming/execution model

 unless you mix in some other model (if you are able to)

– Conflation of parallelism and locality

 MPI has this problem as well: a PE is the unit for both concepts

 fails to support Harrison’s “non-process-centric computing”

– Arrays more restricted than ideal

 no native support for sparse, associative, unstructured arrays

 CAF: no global-view, supports distributed arrays of local arrays

 UPC: as in C, 1D arrays only



A Design Principle HPC should revisit

“Support the general case, optimize for the common case”

Claim: a lot of suffering in HPC is due to programming models 

that focus too much on common cases:
• e.g., only supporting a single mode of parallelism

• e.g., exposing too much about target architecture and implementation

Impacts:
• hybrid models needed to target all modes of parallelism (HW & SW)

• challenges arise when architectures change (e.g., multicore, GPUs)

• presents challenges to adoption (“linguistic dead ends”)

That said, this approach is also pragmatic
• particularly given community size, (relatively) limited resources

• and frankly, we’ve achieved a lot of great science when things fit

But we shouldn’t stop striving for more general approaches 
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How do HPCS PGAS languages differ?

 focus on general parallel programming
• support for task- and data-parallelism, concurrency, nestings of these

• support multiple granularities of software and hardware parallelism

 distinct concepts for parallelism vs. architectural locality
• tasks are units of parallel work

• locales/places are units of architectural locality

• each locale/place can execute multiple tasks

 post-SPMD (APGAS) programming/execution models
• user is not forced to code in an SPMD style (but may)

• ability to run multiple threads within each process/node

 rich support for arrays
• multidimensional, sparse, associative, unstructured

• user-defined distributions and memory layouts
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Implementing PGAS

Single-sided 

communication

Remote

Task

Creation

Thread 

Safety

Portability

Traditional PGAS  -- -- 

HPCS PGAS    
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Single-sided 
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MPI-3 for PGAS

Two key working groups:

 Remote Memory Access (Single-sided Communication)
• Goal: Do 1-sided communication right (fix MPI-2’s support)

• Status: active

• References:

 Investigating High Performance RMA Interfaces for the MPI-3 
Standard, Tipparaju et al., ICPP 2009

 https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/RmaWikiPage

• Challenges: memory consistency model (how strict or weak?)

• Concern: are ARMCI and GASNet teams sufficiently involved?

 Active Messages
• Goal: add support for active messages to MPI

• Status: inactive

• References: http://meetings.mpi-forum.org/mpi3.0_am.php

• Note: Active Messages are a nice fallback for implementing RMA in 
cases that the hardware doesn’t, so this shouldn’t get left behind
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MPI-3 for PGAS: Great Potential

 Would provide a long-overdue standard for 1-sided comm.

 Would result in multiple implementations of the same API

 Would result in vendor-optimized implementations

 Would support standardized single-sided benchmarks

 Could drive hardware designs in favor of global address 

spaces, better support for single-sided communication

 Would greatly help with interoperability between distinct 

programming models

 Would permit the ARMCI/GASNet teams to claim victory and 

work on things other than keeping up with each new network

Failing this, a merge of ARMCI and GASNet would be the next 

best thing for users like us, helping with many of the above
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What about GA and HPCS languages?

 First, let me touch on a few relevant Chapel features…
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Chapel Domains and Arrays

Domains: first-class index sets
• describe size/shape of arrays (potentially distributed)

• describe iteration spaces

• describe index sets for high-level operations

var D: domain(2) = [1..4, 1..8];

var Inner: subdomain(D) = [2..3, 2..7];

Arrays: mappings from domain indices to variables
• multidimensional: arbitrary dimensions and element types

• associative: map from arbitrary values to elements (hash table-like)

• unstructured: support irregular (pointer-based) data structures

• sparse: support sparse subsets of any of the above

var A, B: [D] real;
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Chapel Distributions and Layouts (Domain Maps)

Goal: separate algorithm from implementation for parallel, 

distributed data structures

Approach:

 permit users to author their own distributions & layouts, written in Chapel

 rather than a simple mapping, use a method-based approach
• authors create classes that implement domains and arrays:

 how they’re mapped between locales

 how they’re stored in memory

 how to access them, iterate over them, slice them, etc.

 implement standard domain maps using the identical framework
• to avoid performance cliffs between user cases and “built-in”

 a work-in-progress: operational today, but still evolving and being optimized

 For a general overview, see upcoming HotPAR paper:
User-Defined Distributions and Layouts in Chapel: Philosophy and Framework
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Interoperability in Chapel

 A crucial goal for the adoption of Chapel (or any new 

language) is general interoperability with existing languages
• to preserve legacy application code

• to re-use existing libraries

• to permit existing kernels to be rewritten using new technologies

• to support differing tastes and diverse needs within a single app.

 Our initial focus is primarily on supporting calls from Chapel 

to C to reuse key libraries

 We believe user-defined distributions will play a key role in 

interoperating with existing distributed data structures in situ
• e.g., “I want to view my distributed MPI data structures as a global 

array within Chapel”
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Global Arrays and (HPCS) PGAS languages

At first blush, there are both synergies and mismatches:

 Similarities:
• global-view data structures

• permit users to think in logical terms rather than physical

 Differences:
• SPMD vs. post-SPMD programming/execution models

• moving data only vs. moving data and computation

• varying degrees of richness in data structures

 limitations on rank, element type, flavor, distributions

• different levels of maturity

 GA is here, in-use, and successful

 HPCS languages are still emerging and proving themselves

 In spite of differences, let me propose four possible 

interaction models
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1) Support GA-based distributions

Concept: Use Chapel’s interoperability features to create a 

distribution that wraps Global Arrays 
• benefit from effort invested in GA and preserve it

• provide language-based support for GA-style computations

var D: domain(2) dmapped GA(…) = [1..4, 1..8];
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2) Support GA-HPCS Interoperability

Concept: Investigate what it would take to support Chapel/X10 

and GA within a single program
• in terms of mechanics like runtime software layers

• in terms of language semantics

 at what granularity could languages execute within an app.?

 could they share data structures?

 what types of control flow exchanges could occur?

Note: Tom Epperly and Jim McGraw from LLNL (Babel team) 

are working on organizing an interoperability workshop this 

summer/fall to look at questions like this across today’s 

major parallel models (MPI, OpenMP, PGAS, HPCS, etc.)  

Please contact them if interested in participating.
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3) Implement Global Arrays over HPCS Language

 Fast-forward ten years into the future and imagine that 

Chapel and X10 are unmitigated successes (!)

 Yet, legacy GA code still exists

Concept: Implement GA in terms of Chapel/X10
• removes need to duplicate lower-level layers of software

• preserves familiar interface for existing codes and users

A General Challenge: How do we reduce our need to 

maintain every programming model going forward?
• What is the right way to retire a programming model?

• As indicated before, I don’t think the answer is “cease to make new 
ones”…
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4) Exchange of Information

 Many of GA’s emerging directions mesh with themes being 

pursued in the HPCS languages
• task queuing for dynamic load balancing/work stealing

• sparsity

• user-defined data structures

• next-generation applications

• petascale and exascale architectures

Concept: Exchange information in these common areas

Better: architect code so that it can be shared

Also: Perform cross-language comparisons of flexibility, 

readability, maintainability in application codes and idioms
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Summary

GA and PGAS languages have similar needs
• single-sided communication

• active messages (in GA, for future idioms and architectures)

• in my opinion, support for both these things in MPI-3 would represent 
a huge step forward for HPC

Yet, there are also differences
• GA is more evolutionary: what works well and what can we add next?

• HPCS strives for revolution: what might an ideal parallel language be 
like?

We have many common challenges to work on
• more advanced computational idioms

• dynamic load balancing

• resiliency

• exascale’s increasingly heterogeneous/hierarchical nodes

 DOE workshops have identified desire for evolutionary and 
revolutionary, yet existing, programming models
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For more information on HPCS languages

Chapel:
chapel_info@cray.com

http://chapel.cray.com

https://sourceforge.net/projects/chapel/

X10:
http://x10.codehaus.org/

http://www.research.ibm.com/x10/
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