
Brad Chamberlain, Cray Inc.

PPME: Productive Programming Models for Exascale

August 14th, 2012

2

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,

http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD Trinity

http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf
http://tilera.com/sites/default/files/productbriefs/Tile-Gx 3036 SB012-01.pdf

 Increased hierarchy and/or sensitivity to locality

 Potentially heterogeneous processor/memory types

3

⇒ Exascale programmers will have a lot more to
think about at the node level than in the past

 intra-node locality and heterogeneity concerns

 limited memory bandwidth, memory::FLOP ratios

 increased resiliency concerns

 increased sensitivity to energy usage

 diversity of abstract machine models (at least initially)

 traditional programming models aren’t a good fit

A time to be afraid? (very afraid?)

Or, an opportunity?

(If we have to switch to something new, we may as well take the
opportunity to adopt something decent while we’re at it)

4

A possible contrarian viewpoint: “I don’t care about
Exascale because…
…it’s too expensive.”

…it won’t serve a broad enough community.”

…it doesn’t suit my application area.”

…I don’t believe it’s possible/practical/worthwhile.”

…anyone who can afford an Exascale machine can afford to
hire an army of programmers to suffer through whatever
terrible notations are required to utilize it effectively.”

But look, these challenges are not Exascale-specific…

5

general parallelism:
data parallelism: to take advantage of SIMD HW units; for simplicity

when applicable

task parallelism: to fire asynchronous computations off to accelerators;
for data-driven algorithms

varying granularities/nestings: for generality across computations &
levels of the machine

locality control: to tune for locality/affinity across the machine
(inter- and intra-node)

resilience-/energy-aware features: to deal with emerging issues
at system scale

user extensibility: to deal with unknowns in next-generation
architectures and algorithms

productivity features: because you know you want them
6

 Has “productivity” run its course, thanks to HPCS?
 Maybe programmatically or politically…

 But look, who wouldn’t want code that’s easier to…
...write

…read

…tune

…maintain

…port

………

The goal remains worthy even if the term has grown stale

7

8

 What was the last parallel notation you used that felt

 productive?

 high-level?

 powerful?

 flexible?

 effective?

 modern?

 fun?

 (…all the things we judge good software by…)?

(Because that’s what we’re competing with)

9

SUPERCOMPUTING CENTER

Fortran C/C++ MPI OpenMP UPC

data parallelism

task parallelism

parallel nesting/granularities

locality control

resilience/energy-awareness

user-extensibility

productivity

10

Fortran C/C++ MPI OpenMP UPC

data parallelism ~ ~ ~

task parallelism ~

parallel nesting/granularities ~

locality control ~ ~

resilience/energy-awareness ~

user-extensibility

productivity ~

11

Fortran C/C++ MPI OpenMP UPC

data parallelism ~ X X ~ ~

task parallelism X X X ~ X

parallel nesting/granularities X X X ~ X

locality control X X ~ X ~

resilience/energy-awareness X X ~ X X

user-extensibility X X X X X

productivity X X X ~ X

12

Q: Are we ready?

A: In a nutshell, no

Q: Why?

A: We’ve built too many assumptions about our target
architectures into our programming models
 granularity and style of parallelism

 mode of communication

 single level of locality, if any at all

 inflexible, non-productive base languages

productive programming models should be focused more on
the user’s application than on the hardware

13

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

In pictures:

14

=

α

+

A

B

C

·

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

In pictures, in parallel (distributed memory multicore):

15

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

16

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

17

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

18

HPC suffers from too many distinct notations for expressing parallelism and locality

Hybrid solutions are our only recourse to program Exascale at all; and while they’re

reasonable as conservative approaches, they’re far from ideal

What an array of gear we have to carry around! This is getting old…

I guess we need a canoe?!

Oops, need my ice axe

OK, let’s upgrade to hiking boots

OK, got my walking shoes on!

19

…Hey, what’s that sound?

20

#define N 2000000

int main() {

 float *d_a, *d_b, *d_c;

 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);

 cudaMalloc((void**)&d_b, sizeof(float)*N);

 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);

 dim3 dimGrid(N/dimBlock.x);

 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;

 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

 cudaThreadSynchronize();

 cudaFree(d_a);

 cudaFree(d_b);

 cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

 float scalar, int len) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

CUDA MPI + OpenMP

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = [1..m] dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

the special

sauce

Chapel

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert each to focus on their strengths.

21

Q: Didn’t we try this before with HPF?

 Q’: Orville, didn’t Percy Pilcher die in his prototype powered
aircraft?

A’: No Wilbur, he died in a glider; and even if it had been in his
prototype, that doesn’t mean we’re doomed to fail.

22

A: Chapel has had the chance to learn from HPF’s mistakes (and
other languages’ successes and failures)

 Why did HPF fail?
 lack of sufficient performance soon enough
 vagueness in execution/implementation model
 only supported a single level of data parallelism, no task/nested
 inability to drop to lower levels of control
 fixed set of limited distributions on dense arrays
 lacked richer data parallel abstractions
 lacked an open source implementation
 too Fortran-based for modern programmers
 …?

 The failure of one language---even a well-funded, US-backed
one---does not dictate the failure of all future languages

(For more on this topic see https://www.ieeetcsc.org/activities/blog/myths_about_scalable_parallel_programming_languages_part2)

23

https://www.ieeetcsc.org/activities/blog/myths_about_scalable_parallel_programming_languages_part2
https://www.ieeetcsc.org/activities/blog/myths_about_scalable_parallel_programming_languages_part2

Chapel: a parallel language that has emerged from DARPA HPCS
 general parallelism:

 data-, task-, and nested parallelism

 highly dynamic multithreading or static SPMD-style

 multiresolution philosophy: high-level features built on low-level

 to provide “manual overrides”

 to support a separation of concerns (application vs. parallel experts)

 locality control:

 explicit or data-driven placement of data and tasks

 locality expressed distinctly from parallelism

 features for productivity: type inference, iterators, rich array types

 portable: designed and implemented to support diverse systems

 open source: developed and distributed under the BSD license

 plausibly adoptable: forward-thinking HPC users want a mature version

24

data parallelism ✓

task parallelism ✓

parallel nesting/granularities ✓

locality control ~

resilience/energy-awareness X

user-extensibility ✓

productivity ✓

25

Chapel limitations for Exascale, today:

 locales only support a single level of hierarchy
 useful for horizontal (inter-node) locality

 less so for describing additional hierarchy within a node

 lack of fault tolerance/error handling features

In Chapel’s original design, these were both considered
“version 2.0” features due to…

…our focus on petascale systems within HPCS

…the knowledge that our plate was already quite full

26

Concept:
 Support locales within locales to describe architectural

sub-structures within a node

 As with traditional locales, on-clauses and domain maps
can be used to map tasks and variables to a sub-locale’s
memory and processors

 Locale structure is defined as Chapel code
 permits implementation policy to be specified in-language

 introduces a new Chapel role: architectural modeler

 27

locale

locale

locale

locale

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

sub-locale A

sub-locale B

C C D E C C D E C C D E C C D E

class locale: AbstractLocale {

 const xt = 6, yt = xTiles;

 const sublocGrid: [0..#xt, 0..#yt] tiledLoc = …;

 const allSublocs: [0..#xt*yt] tiledLoc = …;

 // tasking interface

 // memory interface

}

class tiledLoc: AbstractLocale {

 // tasking interface

 // memory interface

}

28

Tilera Tile-Gx

class locale: AbstractLocale {

 const numCPUs = 2, numGPUs = 2;

 const cpus: [0..#numCPUs] cpuLoc = …;

 const gpus: [0..#numGPUs] gpuLoc = …;

 // tasking interface

 // memory interface

}

class cpuLoc: AbstractLocale { … }

class gpuLoc: AbstractLocale {

 // sublocales for different

 // memory types, thread blocks…?

 // tasking, memory interfaces

}
29

 Evolve from “How will they do it?” to “How will we do it?”

 Let our management (and yours) know what you think about it

 Help find funding to pursue Exascale-/DOE-specific challenges

 Help us tap into the mainstream/open-source community

 Become a collaborator who is truly interested in pitching in
 Computer scientists with mutually beneficial technologies

 Industry partners

 Application experts interested in pair programming studies

30

Apr 2011: LLNL expresses interest in Chapel at Salishan

 made us aware of the LULESH benchmark from DARPA UHPC

Summer 2011: Cray intern ports LULESH to Chapel

 caveat: used structured mesh to represent data arrays

Nov 2011: Chapel team tunes LULESH for single-node performance

Dec 2011: Chapel team visits LLNL (talk, tutorial, 1-on-1 sessions)

Mar 2012: Jeff Keasler (LLNL) visits Cray to pair-program

 in one afternoon, converted from structured to unstructured mesh

 impact on code minimal (mostly in declarations) due to:

 domains/arrays/iterators

 rank-independent features

Apr 2012: LLNL reports on collaboration at Salishan

Apr 2012: Chapel 1.5.0 release includes current version of LULESH

Next steps: distributed sparse domains, improved scalability

31

Q: If, as a community, we/you were to do the audacious
and produce a productive/decent parallel language,
what would that process look like?

32

Productivity continues to be worth striving for
 to improve the lives of existing programmers, especially as

the machines get more complex

 to improve our chances of attracting new users

Current programming models aren’t ideal for Exascale
 and they will be difficult to fix

 however, that’s not to say we should just abandon them

Past failures do not dictate future ones

Exascale represents an opportunity to move to more
ideal programming models

 more productive, higher-level, machine-independent, …

33

34

Chapel project page: http://chapel.cray.com
 overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/

 release downloads, public mailing lists, code repository, …

Blog Series (for more opinions like these):

 Myths About Scalable Programming Languages:

 https://www.ieeetcsc.org/activities/blog/

Upcoming Events:
PGAS/PGAS-X (talks): October 10th-12th
SC12 (tutorial, BoFs?): November 12th-16th

 35

http://chapel.cray.com/
https://sourceforge.net/projects/chapel/
https://www.ieeetcsc.org/activities/blog/

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

