
Interactive, HPC-scale Exploratory Data Analysis in Arkouda: Past Successes and Future Challenges

Brad Chamberlain, Advanced Programming Team, HPE

Productive, Performant Software for Large-Scale Scientific Data Analysis, SLAC October 21, 2025

What is Arkouda?

Q: "What is Arkouda?"

A1: "A scalable version of NumPy / Pandas for data scientists"

A2: "An extensible framework for using supercomputers interactively from Python"

Key Properties of Arkouda

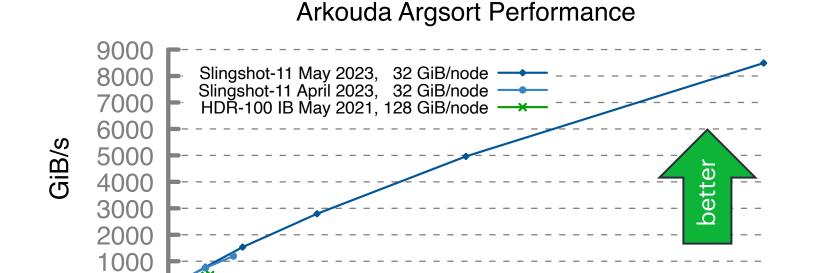
- Columnar: represents dataframes using a distributed array per column
- **Extensible:** new features can be added to the server and/or client
 - e.g., NJIT's Arachne extension for graph analytics
- Open-Source: developed on GitHub, released under the MIT license
- Portable: runs on virtually any system (laptop, cluster, cloud instance, supercomputer)
- **Interactive:** operations are designed to complete in seconds to small numbers of minutes
- **Scalable:** has scaled to hundreds of TB, thousands of computes nodes, and over a million processor cores

Performance and Productivity: Arkouda Argsort

HPE Cray EX

- Slingshot-11 network (200 Gb/s)
- 8192 compute nodes
- 256 TiB of 8-byte values
- ~8500 GiB/s (~31 seconds)

HPE Cray EX



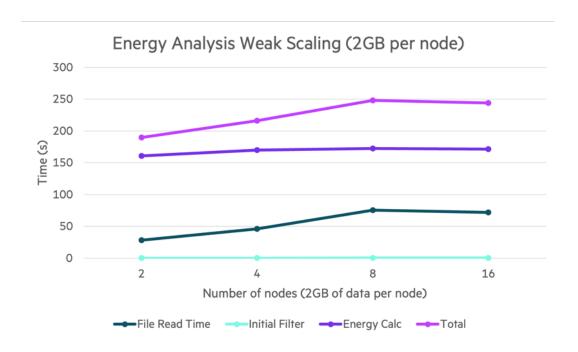
- Slingshot-11 network (200 Gb/s)
- 896 compute nodes
- 28 TiB of 8-byte values
- ~1200 GiB/s (~24 seconds)

HPE Apollo

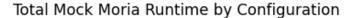
- HDR-100 InfiniBand network (100 Gb/s)
- 576 compute nodes
- 72 TiB of 8-byte values
- ~480 GiB/s (~150 seconds)

4096

Nodes

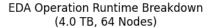

Implemented using ~100 lines of Chapel

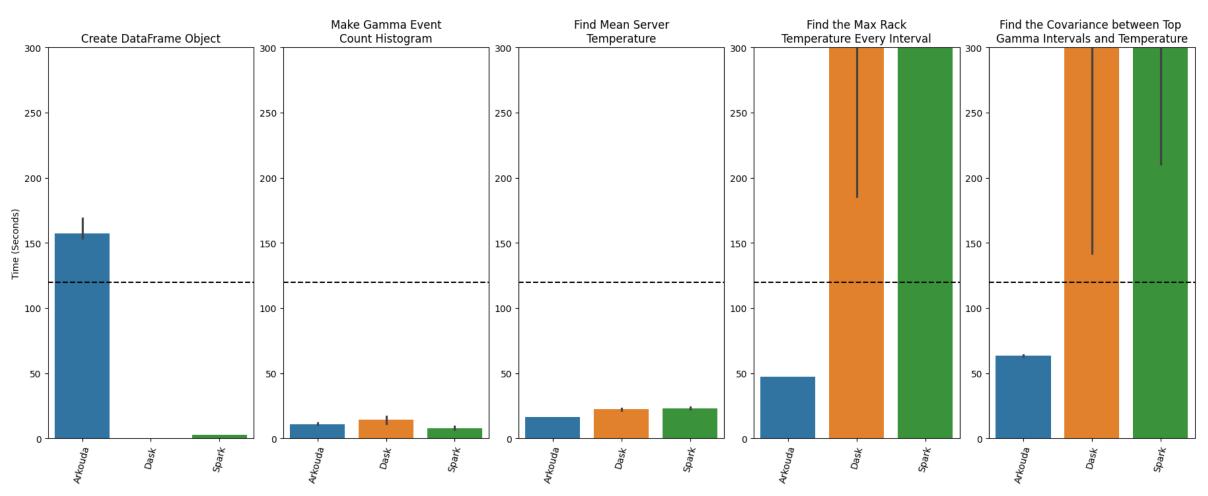
1024 2048

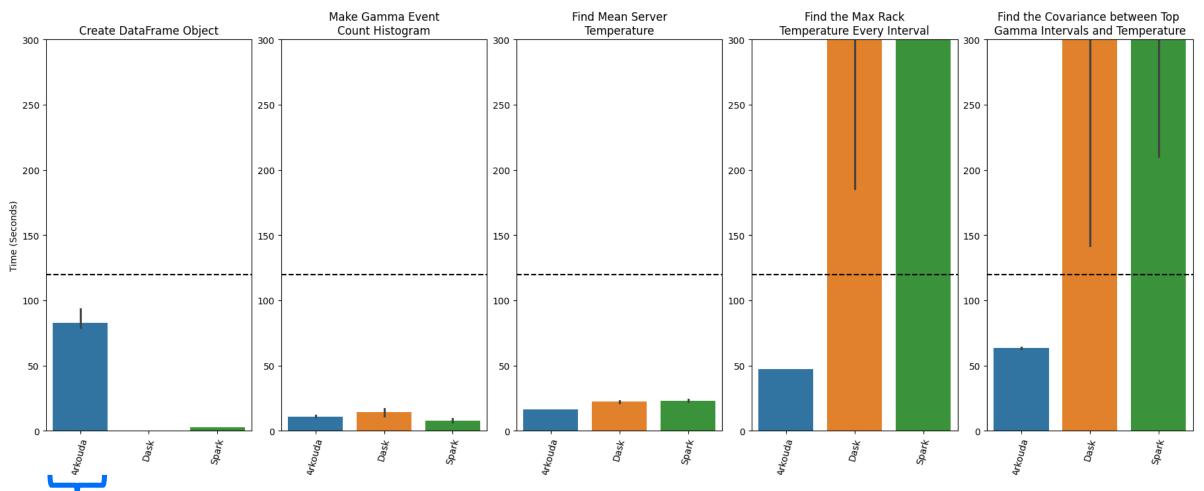

8192

Arkouda/Pandas Comparison

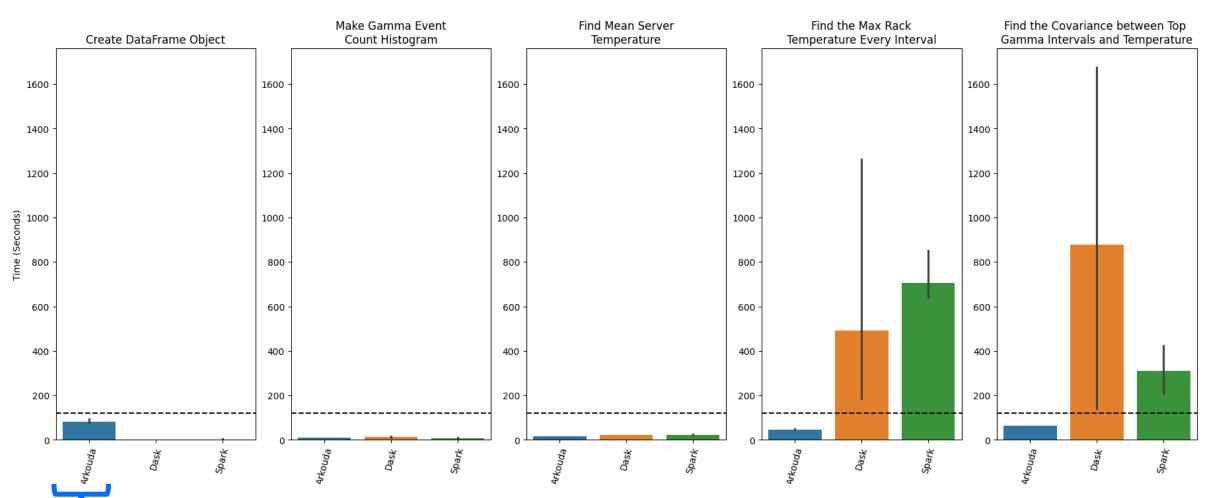
- A collaboration with ORNL to analyze server telemetry data
 - Goal: to understand the impact of energy capping on application performance
- Translated ORNL Pandas script into Arkouda
 - Using the same data on a single node, Arkouda outperformed Pandas by ~3.5x
 - Moreover, the same script shows promising weak scaling enabling much larger data to be analyzed




Arkouda/Dask/Spark Comparison

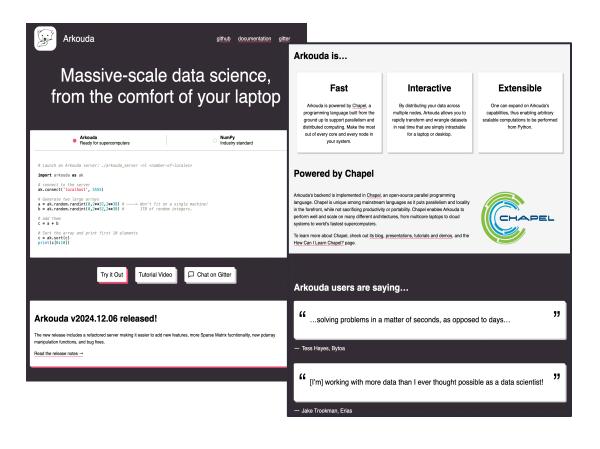

Arkouda/Dask/Spark Comparison: 64 nodes w/ 4 TB

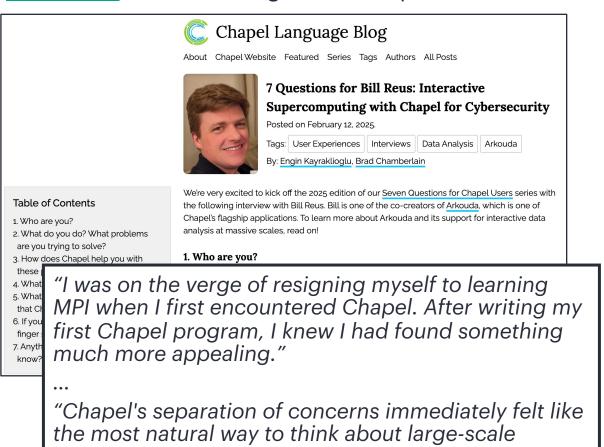
Arkouda/Dask/Spark Comparison: w/ Parquet Improvements


Segmented EDA Operation Runtime Breakdown (4.0 TB, 64 Nodes)

This specific bar has been updated to reflect recent improvements to Arkouda's Parquet IO

Arkouda/Dask/Spark Comparison: Zoomed out


Segmented EDA Operation Runtime Breakdown (4.0 TB, 64 Nodes)


This specific bar has been updated to reflect recent improvements to Arkouda's Parquet IO

For More Information on Arkouda

Arkouda website:

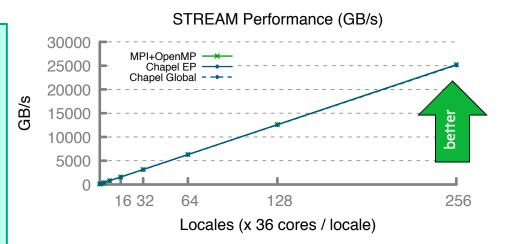
Interview with founding co-developer, Bill Reus:

computing. I would highly encourage anyone wanting to get into HPC programming to start with Chapel."

What is Chapel?

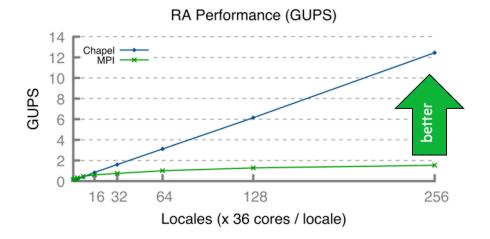
Chapel: A modern parallel programming language

- Portable & scalable
- Open-source & collaborative
- An HPSF / Linux Foundation project



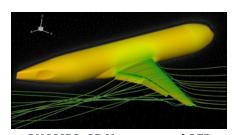
Goals:

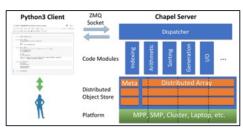
- Support general parallel programming
- Make parallel programming at scale far more productive


HPCC Stream Triad / RA: C+MPI+OpenMP vs. Chapel

STREAM TRIAD: C + MPI + OPENMP use BlockDist; static int VectorSize; static double *a, *b, *c; config const n = 1 000 000, int HPCC_StarStream(HPCC_Params *params) { alpha = 0.01;int rv, errCount; MPI Comm comm = MPI COMM WORLD; const Dom = blockDist.createDomain({1..n}); rv = HPCC Stream(params, 0 == mvRank); MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm); var A, B, C: [Dom] real; int HPCC Stream(HPCC Params *params, int doIO) { register int 1; double scalar; B = 2.0;VectorSize = HPCC LocalVectorSize(params, 3, sizeof(double), 0 a = HPCC XMALLOC(double, VectorSize): C = 1.0;c = HPCC XMALLOC(double, VectorSize); A = B + alpha * C;

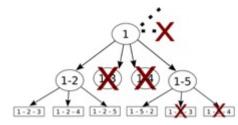
HPCC RA: MPI KERNEL


```
| Section of the content of the cont
```

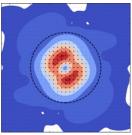


Why was Arkouda written in Chapel?

- productivity, readability, writability
 - Pythonic syntax is attractive to Python users who want to add features
- parallelism and distributed arrays as first-class features
- performance: competitive with conventional approaches
- portability: developed on laptop, deployed on supercomputer
- interoperability: can call to existing libraries

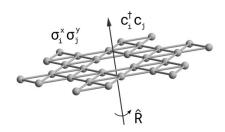
Applications of Chapel



CHAMPS: 3D Unstructured CFDLaurendeau, Bourgault-Côté, Parenteau, Plante, et al.
École Polytechnique Montréal



Arkouda: Interactive Data Science at Massive ScaleMike Merrill, Bill Reus, et al.


U.S. DoD

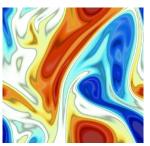
ChOp: Chapel-based OptimizationT. Carneiro, G. Helbecque, N. Melab, et al. *INRIA, IMEC*, et al.

ChplUltra: Simulating Ultralight Dark MatterNikhil Padmanabhan, J. Luna Zagorac, et al. *Yale University et al.*

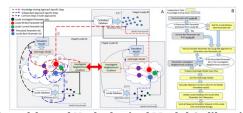
Lattice-Symmetries: a Quantum Many-Body Toolbox

Tom Westerhout

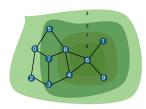
Radboud University



Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias
The Federal University of Paraná, Brazil



RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.


The Coral Reef Alliance

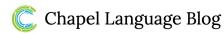
ChapQG: Layered Quasigeostrophic CFD lan Grooms and Scott Bachman University of Colorado, Boulder et al.

Chapel-based Hydrological Model CalibrationMarjan Asgari et al.
University of Guelph

Arachne Graph AnalyticsBader, Du, Rodriguez, et al.
New Jersey Institute of Technology

Modeling Ocean Carbon Dioxide Removal
Scott Bachman Brandon Neth, et al.

[C]Worthy


CrayAl HyperParameter Optimization (HPO)

Ben Albrecht et al.

Cray Inc. / HPE

"7 Questions with Chapel Users" Interviews

Read about users' Chapel experiences in the "7 Questions with Chapel Users" series on our blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Éric Laurendeau: Computing Aircraft Aerodynamics in Chapel

Posted on September 17, 2024.

Tags: Computational Fluid Dynamics | User Experiences | Interviews

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Scott Bachman: Analyzing **Coral Reefs with Chapel**

Posted on October 1, 2024.

Tags: | Earth Sciences | Image Analysis | GPU Programming User Experiences Interviews

By: Brad Chamberlain, Engin Kayraklioglu

7 Questions for Nelson Luís Dias: **Atmospheric Turbulence in Chapel**

Posted on October 15, 2024.

Tags: User Experiences | Interviews | Data Analysis Earth Sciences | Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for David Bader: Graph Analytics at Scale with Arkouda and Chapel

Posted on November 6, 2024.

Tags: User Experiences | Interviews | Graph Analytics | Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Bill Reus: Interactive Supercomputing with Chapel for Cybersecurity

Posted on February 12, 2025.

Tags: User Experiences | Interviews | Data Analysis | Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Tiago Carneiro and Guillaume Helbecque: Combinatorial **Optimization in Chapel**

Posted on July 30, 2025.

Tags: User Experiences | Interviews

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Marjan Asgari: Optimizing **Hydrological Models with Chapel**

Posted on September 15, 2025.

Tags: User Experiences | Interviews | Earth Sciences

By: Engin Kayraklioglu, Brad Chamberlain

Ways to engage with the Chapel Community

Synchronous Community Events

- Project Meetings, weekly
- <u>Deep Dive / Demo Sessions</u>, weekly timeslot
- ChapelCon (formerly CHIUW), annually

Asynchrounous Communications

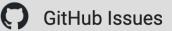
- Chapel Blog, typically ~2 articles per month
- Community Newsletter, quarterly
- Announcement Emails, around big events

Social Media

Discussion Forums

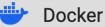
Ways to Use Chapel

BlueSky Facebook LinkedIn


YouTube

GET IN TOUCH





GET STARTED

E4S E4S

GitHub Releases

Homebrew

Spack

(from the footer of chapel-lang.org)

Next Steps: SUF Characterizations / Speed-Dating?

Big Q: With current capabilities, can Arkouda support Scientific User Facility (SUF) workloads?

- correct file formats?
- required operations?
- performance and scalability?

If not, what is lacking, and what would be required to address them?

Next Steps: Research Questions and Challenges

GPUs:

- Would scientific data analysis (SDA) operations benefit from GPU acceleration? Or are other things a bottleneck?
- Would such use cases require new features from Arkouda/Chapel? (e.g., GPU-initiated communication?)

IO subsystems and file formats:

- What new IO systems or file formats might be beneficial, or do we have what we need?
- What changes to system-level software would be necessary to (better) leverage such IO capabilities?

Custom Hardware Accelerators:

- What role might exotic new chips play in the SDA space?
- Will these be generally programmable, or more like library operations in silicon?

Extensibility:

- How can Arkouda's extensibility be streamlined to add new capabilities for rapidly changing requirements?
- What is required to dynamically add new Arkouda modules to a running server?

Community:

- How can HPC break its cycle of failing to broadly adopt new productive software systems?
- How should innovative HPC software be fostered and sustained over time?

Thank You

@ChapelLanguage