Programming Models and Chapel:
Landscaping for Exascale Computing

Brad Chamberlain, Cray Inc.
INT Exascale Workshop
June 30th, 2011

EEEEEEEEEEEEEEEEEEEEEEE

. . N — Y
Sustained Performance Milestones R

1 GF-1988: Cray Y-MP; 8 Processors

e Static finite element analysis

mamal 1 TF—1998: Cray T3E; 1,024 Processors

e Modeling of metallic magnet atoms

mmmml 1 PF—2008: Cray XT5; 150,000 Processors

e Superconductive materials

e TBD

Sustained Performance Milestones T

1 GF-1988: Cray Y-MP; 8 Processors

e Static finite element analysis
e Fortran77 + Cray autotasking + vectorization

mamal 1 TF—1998: Cray T3E; 1,024 Processors

e Modeling of metallic magnet atoms
e Fortran + MPI (?)

mmmml 1 PF—2008: Cray XT5; 150,000 Processors

e Superconductive materials ST ejuaumm—mm,

e C++/Fortran + MPI + vectorization U“W‘R@ﬂwﬁlﬁiﬁi

e TBD
e TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/??? or ???

T

CRANY

THE SUPERCOMPUTER COMPANY

Why Do HPC Programming Models Change?

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Introduction to STREAM Triad

Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, = B; + a-C;
Pictorially:

EEEEEEEEEEEEEEEEEEEEEEE

Introduction to STREAM Triad

Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, = B; + a-C;
Pictorially (in parallel):

EEEEEEEEEEEEEEEEEEEEEEE

||
7’

A Few Versions of STREAM Triad

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);

MPI Comm rank(comm, &myRank);
rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM,

0, comm);

return errCount;

}

int HPCC Stream (HPCC Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC XMALLOC(double, VectorSize);
HPCC XMALLOC (double, VectorSize);
¢ = HPCC XMALLOC (double, VectorSize);

o
Il

if (lta || !'b | te) |
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a);

if (doIO) {
fprintf (outFile,

(%d) .\n", VectorSize);
fclose(outFile);

}

return 1;

for (j=0; j<VectorSize; j++)
b[j] = 2.0;
clSHS=A0R0

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj] = bl[jl+scalar*c[]j];

BICC tree (€) ¢
HPCC free (b);
HECC Eree (&) ¢

return O;

CRANY

THE SUPERCOMPUTER COMPANY

"Failed to allocate memory

{

A Few Versions of STREAM Triad

#include <hpcc.h>
#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;
int HPCC StarStream (HPCC Params *params) {
int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM,
0, comm);

return errCount;

}

int HPCC Stream (HPCC Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC XMALLOC(double, VectorSize);
b = HPCC XMALLOC(double, VectorSize);
¢ = HPCC XMALLOC (double, VectorSize);

MPI + OpenMP

if (lta || !'b | te) |
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a);

if (doIO) {
fprintf (outFile,

(%d) .\n", VectorSize);
fclose(outFile);

}

return 1;

}

#ifdef OPENMP
fpragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
b[j] = 2.0;
clSHS=A0R0

}

scalar = 3.0;

#ifdef OPENMP
#pragma omp parallel for
fendif
for (j=0;
LIS

j<VectorSize; j++)
b[jl+scalar*c[]j];

BICC tree (€) ¢
HPCC free (b);
HECC Eree (&) ¢

return O;

CRRANY

THE SUPERCOMPUTER COMPANY

"Failed to allocate memory

{

A Few Versions of STREAM Triad

#include <hpcc.h> MPI + OpenMP
#ifdef _OPENMP

#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI COMM WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof (double), 0);

a
b
©

HPCC_XMALLOC (double, VectorSize);
HPCC_XMALLOC (double, VectorSize);
HPCC_XMALLOC (double, VectorSize);

RIS [te) {
) HPCC_free(c);
) HPCC_free (b);
) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize
fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[jl;

E2CC e (@)
HPCC_free(b);
HPCC_free(a);

return 0;

)i

CRRANY

THE SUPERCOMPUTER COMPANY

CUDA
#define N 2000000

int main() {
float *d a, *d b, *d c;
float scalar;

cudaMalloc ((void**) &d a, sizeof (float) *N)
cudaMalloc ((void**) &d b, sizeof (float) *N);
cudaMalloc ((void**) &d c, sizeof (float) *N)

~e

~e

dim3 dimBlock (128) ;
dim3 dimGrid (N/dimBlock.x) ;
if(N % dimBlock.x != 0) dimGrid.x+=1;

set array<<<dimGrid,dimBlock>>>(d b, .5f, N);
set array<<<dimGrid,dimBlock>>>(d ¢, .5f, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d _a, scalar, N);
cudaThreadSynchronize () ;

cudaFree(d a);

cudaFree(d b);

cudaFree(d c);

}
__global void set array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) al[idx] = value;
}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

'HPC suffers from too many distinct notations for expressing parallelism and locality

CRRANY

THE SUPERCOMPUTER COMPANY

A Few Versions of STREAM Triad
g e) - i

#include <omp.h>

#endif

static int VectorSize; Lmit GEELE () {

static double *a, *b, *c; float *d ay, el b, “el @g
int HPCC_StarStream (HPCC_Params *params) { float Scalar,’

int myRank, commSize;
int rv, errCount;

MPI_Comm comm = MPI COMM WORLD; o
MPI_Comm_size(comm, &commSize); Ch apel ;
MPI_Comm_rank(comm, &myRank); . A
 the special
sauce

rv = HPCC_Stream(params, 0 == myRa
MPI_Reduce(&rv, &errCount, 1, MPI_

return errCount; config conSt m = 1 O O O 14
} alpha = 3.0;

int HPCC_Stream (HPCC_Params *params,
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize (j const Probspace =] [l . . m]

HPCC_XMALLOC (double, VectorSizq

a

b = HPCC_XMALLOC (double, VectorSizd

c = HPCC_XMALLOC(double, VectorSizd

oo R var A, B, C: [ProbSpace] real;
D ; ' c, d a,iscatikain N) ;
if (c) HPCC_free(c); 4 ety 4 r
if (b) HPCC_free(b);
if (a) HPCC_free(a);

if (doIO) { B = .
fprintf(outFile, "Failed to all
fclose(outFile); C — .

} ces J

return 1;

}

#ifdef O
#;ra;maio:\im;zrallel for A — B -I_ a lpha * C ;

#endif g
for (3=0; j<VectorSize; j++) { — o = Vajl‘ue’ int len) {
b[j] = 2.0; int idx = threadIdx.x + blockIdx.x * blockDim.x;
31 = 0.0; . . .
P if (idx < len) a[idx] = value;
scalar = 3.0; }
#ifdef _OPENMP
#pragma omp parallel for global void STREAM Triad(float *a, float *b, float *c,
#endif FE—y — w .
for (j=0; j<VectorSize; j++) float scalar, int len) {
alyl = bl3l+scalarrc(il; int idx = threadIdx.x + blockIdx.x * blockDim.x;
E2CC e (@) . : : . : * 4 .
T e (dekx <€ llem) @[iLtebk] alidx]+scalar*b[idx];
HPCC_free(a); }

return 0;

CRANY

THE SUPERCOMPUTER COMPANY

Why Do HPC Programming Models Change?

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

one characterization of Chapel’s goals:

e Raise the level of abstraction to insulate parallel algorithms
from underlying hardware when possible/practical

e Yet permit control over such details using appropriate
abstraction and separation of concerns

Outline

v

» Programming Model Survey
e Current Practice
e Prognosis for Exascale

dChapel Overview

Status and Future Directions
Case Study: AMR

dWrap-up

CRANY

THE SUPERCOMPUTER COMPANY

Shared Memory Programming Models

e.g., OpenMP, pthreads
+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
e “if you want to access something, simply name it”

— no support for expressing locality/affinity; limits scalability
— bugs can be subtle, difficult to track down (race conditions)
— tend to require complex memory consistency models

X

2]

MEM

CRANY

THE SUPERCOMPUTER COMPANY

Distributed Memory Programming Models

e.g., MPI
+ a more constrained model; can only access local data

+ run on most large-scale parallel platforms
e and for many of them, can achieve near-optimal performance

+ are relatively easy to implement
+ can serve as a strong foundation for higher-level models
+ users are able to get real work done with them

— = __---"'\-\. e
____.4-' -\-.-\"'\-\.__ -_/_-"--
o e ar o o ~
M & 4 &

=

MEM MEM MEM MEM

Distributed Memory Programming Models

e.g., MPI

communication must be used to get copies of remote data
— and tends to reveal too much about how to transfer data, not simply what

only supports “cooperating executable”-level parallelism

couples data transfer and synchronization

has frustrating classes of bugs of its own
- e.g., mismatches between sends/recvs, buffer overflows, etc.

MEM

N4

-\-'"‘H-\._ __/__.-"

s

MEM

i

MEM

CRANY

THE SUPERCOMPUTER COMPANY

Hybrid Programming Models

e.g., MPI+OpenMP, MPIl+pthreads, MPI+CUDA, ...
+ support a division of labor: each handles what it does best
+ permit overheads to be amortized across processor cores

— require multiple distinct notations to express a single logical
parallel algorithm, each with its own distinct semantics

MEM MEM

CRANY

THE SUPERCOMPUTER COMPANY

PGAS (Partitioned Global Address Space) Models

e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)

+ support a shared namespace, like shared-memory

+ support a strong sense of ownership and locality
- each variable is stored in a particular memory segment
- tasks can access any visible variable, local or remote
- local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler use best mechanisms available

CRANY

THE SUPERCOMPUTER COMPANY

PGAS (Partitioned Global Address Space) Models

e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)

— retain many of the downsides of shared-memory

® error cases, memory consistency models
— restricted to SPMD programming and execution models
— data structures not as flexible/rich as one might like

MEN

PGAS: What’s in a Name?

multithreaded

memory programming execution data
model model model structures communication
VP distributed cooperating|executables manually APIs
memory (often SPMD in practice) fragmented
hared lobal-vi hared shared
share global-view shared memory
OpenMP : : memory N/A
memory parallelism multithreaded arrays
% CAF co-arrays co-array refs
0 P Single Program, Multiple Data
< © ' 1D block-cyc arrays/ o
g_) §; UPC PGAS (SPMD) distributed pointers implicit
S L lass-based /
—1 Titanium ‘;gfjbu‘;‘jj pgir;?g; method-based
global-view distributed global-view
Chapel PGAS parallelism memor distributed implicit
y arrays

19

T wpes

CRANY

THE SUPERCOMPUTER COMPANY

And many others...

e.g., Global Arrays, Charm++, ParalleX, StarSS, Cilk,
TBB, CnC, parallel Matlabs, Star-P, PLINQ, C++AMP,
Map-Reduce, QLUA, DPJ, Titanium, ...

e Each interesting in its own way, but lumped together here
due to lack of time and dominance/prominence in HPC

e Not trivial to categorize, but recurring themes include:
e dynamic task parallelism
e data-driven execution
e advanced data structures
e support for next-generation architectures

e modern language features

(Chapel shares many of these as well)

CRANY

THE SUPERCOMPUTER COMPANY

Exascale Architectures

e The preceding evaluations were all w.r.t. petascale

e Exascale is expected to bring new challenges:
* increased hierarchy within the node architecture
e j.e., locality matters within a node, not just between nodes

* increased heterogeneity as well
e multiple processor types
e multiple memory types

* |imited memory bandwidth, memory::FLOP ratio

Programming Exascale Architectures

Q: Are we ready?
A: In a nutshell, no

Q: Why?
A: We’ve built too many assumptions about our target
architectures into our programming models
e granularity and style of parallelism
* mode of communication
* single level of locality, if any at all

CRANY

THE SUPERCOMPUTER COMPANY

Programming Models’ Reaction to Exascale

MPI:

* “MPI everywhere” zealots are becoming increasingly scarce
o “MPI + X" is the expected evolutionary path (solve for X)
e MPI-3 striving to support and interact with diverse models

OpenMP:

e Wrestling with role of locality, accelerators in OpenMP
* How to preserve traditional strengths while adapting?

Traditional PGAS:

e Considered by some to be well-positioned for intra-node
locality concerns

* Yet, SPMD programming/execution model seems hobbling
* so how to add dynamic execution cleanly and elegantly?

Accelerator Programming Models (X?)

CUDA:

e Far less painful than writing nuclear physics in OpenGL

* Dominating due to time-to-market, libraries, strong support
e Reasonably NVIDIA-centric

e Arguably too tied to processor architecture

OpenCL:
e Later to the game, but with broad consortium support
* Designed with portability in mind
* Not ideal for end-users; better suited as a compiler target

directive-based approaches (PGl, CAPS, OpenMP):

* higher-level = simpler, less control, more reliance on compiler
* traditionally harder to apply modularly
» for evolutionary approaches, I'd bet on this for X

And now, a sidebar on landscaping...

25

C=RA0Y

THE SUPERCOMPUTER COMPANY

A Seattle Corner

5l

© 2011 Google

CRRANY

THE SUPERCOMPUTER COMPANY

* * Jlots.of user-managed detail
‘ e resistant to. changes
' somewhat.insidious

C=RA0Y

THE SUPERCOMPUTER COMPANY

@2011 Google

Landscaping Quotes from the HPC community

Early HPCS years:

e “The HPC community tried to plant a tree once. It didn’t
survive. Nobody should ever bother planting one again.”

e “Why plant a tree when you can’t be assured of success?”
e “Why would anyone ever want anything other than ivy?”

e “We’re in the business of building treehouses that last 40 years;
we can’t afford to build one in the branches of your sapling.”

e “This sapling looks promising. I'd like to climb it now!”
More recently:

e “| really hope to see this tree fully grown someday.”
* “What can | do to help the tree grow?”

C=RA0Y

THE SUPERCOMPUTER COMPANY

A Corner in Seattle: Takeaways

“s

ik
5l

2011 Google. Repo

owtine sEa
Outline " -

v"Motivation
v'Programming Model Survey
» Chapel Overview

JStatus and Future Directions
dCase Study: AMR
dWrap-up

CRANY
What is Cha pe |? e ST TR

* A new parallel programming language
e Design and development led by Cray Inc.
e |nitiated under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress

CRANY

THE SUPERCOMPUTER COMPANY

Chapel's Implementation

e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e multicore desktops and laptops
e commodity clusters
e Cray architectures
e systems from other vendors
* (in-progress: next-generation node architectures)

Why a language rather than a library?

e To support compiler optimizations
e To support cleaner syntax

e Because parallel computing is lacking a good, general,
modern language

e Because libraries would not help with many of the
features we wanted

e Because we believe the combination of Chapel’s
features is greater than the sum of their parts

CRANY

THE SUPERCOMPUTER COMPANY

Q: What features did you want from a language?

CRANY

THE SUPERCOMPUTER COMPANY

Al: We wanted a general parallel language:
any algorithm, any hardware, any granularity

CRANY

THE SUPERCOMPUTER COMPANY

General Parallel Programming in Chapel

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
e Systems: multicore desktops, clusters, HPC systems, ...
e Levels: machines, nodes, cores, instructions

In short, you should never hit a point where you say “Well, that
was fun while it lasted; now back to Fortran/MPI/CUDA...”

CRANY

THE SUPERCOMPUTER COMPANY

A2: We wanted excellent support for arrays:
multidimensional, sparse, associative, unstructured

.

Domains

domain: a first-class index set

var m = 4, n = §8;

var D: domain(2) = [1..m, 1..n];

39 T wpes

Domains

domain: a first-class index set

var m = 4, n = §8;
var D: domain(2) = [1..m, 1..n];
var Inner: subdomain(D) = [2..m-1, 2..n-1];

—1= Inner

0 T wpes

CRANY

Domain Uses

= Declaring arrays:

var A, B: [D] real; A
B
= |teration (sequential or parallel): Nannnmn
for 1jJ in Inner { .. }
or: forall ij in Inner { .. } slelele]ele
or: - D
= Array Slicing: -
A[Inner] = Bl[Inner+(1,1)]; A BI
nner

Inner

= Array reallocation:
D= [1..2"m, 1..2*n];

p B T upet

Domain/Array Types

Chapel supports several types of domains and arrays...

o o o oo HHH
0 O O O O 0O 1] 1]
0 O O O O 0O - -
0 O O O O 0O
0 O O O O 0O _|_|_|_|:|:|:|:|:|_|_|_|_I_F|:|:|_I_n
dense strided sparse
“steve”
“Iee”
unstructured . “sung”
associative “david”
“JaCOb”
“albert”
“brad”

...all of which support a similar set of data parallel operators:
iteration, slicing, reallocation, promotion of scalar functions, etc.

2 T wpes

CRANY

THE SUPERCOMPUTER COMPANY

A3: We wanted a rich task-parallel language:
parallel and concurrent tasks, data-driven synchronization

.

Bounded Buffer

CRANY

THE SUPERCOMPUTER COMPANY

Producer/Consumer Example

cobegin {
producer () ;
consumer () ;

}

var buffs: [0

proc producer ()
var 1 0,
for .. {
i (1+1)
buffs (i)
}

o

=

¢}

}

proc consumer ()
var i 0;
while .. {
i= (1+1)
LDouffs (i) .

}

o

=

[¢]

#buffersize]

{

sync real;

buffersize;
// data-centric synchronization

eees J

{

buffersize;
// data-centric synchronization

Bakan R L

CRANY

THE SUPERCOMPUTER COMPANY

A4d: We wanted a multiresolution language

CRRANY

THE SUPERCOMPUTER COMPANY

Multiresolution Language Design: Motivation

(‘treeen;
| | HPF [High-Level
(ivy’) | zeL [l Abstractions

Implementation OpenMP
Concepts

Target Machine Target Machine

“‘Why is everything so difficult?”

Low-Level

“‘Why don’t | have more control?”
“‘Why don’t my programs port trivially?”

C=RA0Y

THE SUPERCOMPUTER COMPANY

Multiresolution Language Design

Multiresolution Design: Support multiple tiers of features
nigher levels for programmability, productivity

ower levels for performance, control

ouild the higher-level concepts in terms of the lower

Chapel language concepts

C Y

Domain Maps

Base Language
Locality Control

Target Machine

separate concerns appropriately for clean design

CRANY

THE SUPERCOMPUTER COMPANY

A5: We wanted compile-time type inference
and generic programming

CRANY

Static Type Inference Examples
const pi = 3.14, // pl 1s a real ‘\\\
loc = 1.2 + 3.41, // loc is a complex
loc2 = pi*loc, // as 1s loc?2
name = “brad”, // name 1s a real
verbose = false; // verbose 1s boolean

proc addem(x, vy) {
return x + y;

}

var sum = addem(l, pi), // sum 1s a real
fullname = addem(name, “ford”),; // fullname is a string

CRANY

THE SUPERCOMPUTER COMPANY

A6: We wanted CLU-style iterators

Ilterators

C=RA0Y

THE SUPERCOMPUTER COMPANY

e Jterator: a function that generates values/variables

e Used to drive loops

e Like a function, but yields values back to invocation site
e Control flow logically continues from that point

e Example

var current =
next = 1;
for 1..n {
yield current;
current += next;
current <=> next;

}

iter fibonacci(n) { \\\
0

for £ in fibonacci(7)
writeln () ;

~N

do

oo Ul widNDHFHHE O

<

lterators: Motivation

Given a program with a
bunch of similar

Consider the effort to
convert them from

Or to tile the loops...

loops... RMO to CMO...
for (33=0; jj<n; jj+=blocksize) {
.) .) .) for (ii=0; ii<m; ii+=blocksize) {
for (i=0; i<m; i++) { for (3=0; j<n; j++) { for (3=33; Jj<min(m,jj+blocksize-1) {
for (7=0; j<n; Jj++) | for (i=0; i<m; 1i++) { for (i=ii; i<min(n,ii+blocksize-1) {
.. . AL,]
LJALL, T JALL, T }
} } }
) } }
}
for (jj=0; jj<n; jj+=blocksize) {
for (1=0; i<m; 1i++) { for (3=0; j<n; j++) { for (ii=0; ii<m; ii+=blocksize) f{
for (3=0; j<n; J++) { for (i=0; i<m; i++) { for (3=33; J<min(m,Jj+blocksize-1) {
i))) for (i=ii; i<min(n,ii+blocksize-1) {
JATL,] JATL, T ALL, .
} } }
}
} } }
}
52 TD et

CRANY

lterators: Motivation

Given a program with a
bunch of similar

loops...
for (1i=0; i<m; 1i++) {
for (3=0; j<n; Jj++)

JALL, 5]
}

Consider the effort to
convert them from
RMO to CMO...

for (3=0; j<n; Jj++) {

{ for (i=0; 1++)
JALL, T

}

i<m;

Or to change the iteration order over the tiles...

{

Or to tile the loops...

for (j3=0; jj<n; jj+=blocksize) {
for (1ii=0; ii<m; ii+=blocksize) {
for (j=7j3j; j<min(m, Jjj+blocksize-1) {
for (i=ii; i<min(n,ii+blocksize-1)
AT, T

}
}

Or to make them into fragmented loops for an MPI program...

for

for = =

Or to change the distribution of the work/arrays in that MPI program...

_ /1 Tor U= S, T r0locksize-1) |

ize)

W8l Or to label them as parallel for OpenMP or a vectorizing compiler...

We wouldn’t program straight-line code this way, so why
are we so tolerant of our lack of loop abstractions?

53

{

ksize) {

cksize-1)

Or to do anything that we do with loops all the time as a community...

{

{

T wpes

CRANY

THE SUPERCOMPUTER COMPANY

Ilterators

e as with traditional functions...

...one iterator can be redefined to change the behavior of
many loops
...a single invocation can be altered, or its arguments can be

* not necessarily any more expensive than standalone
loops

CRANY

THE SUPERCOMPUTER COMPANY

A7: We wanted to control and reason about locality
distinctly from parallelism

CRANY

THE SUPERCOMPUTER COMPANY

The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
* j.e., has processors and memory

e Supports reasoning about locality

* Properties
* a locale’s tasks have ~uniform access to local vars
* Other locale’s vars are accessible, but at a price

* Locale Examples
* A multi-core processor
* An SMP node

Coding with Locales

C=RA0Y

THE SUPERCOMPUTER COMPANY

e Specify # of locales when running Chapel programs

[o]

$ a.out ——numLocales=8]

% a.out —nl 8]

e Chapel provides built-in locale variables

const lLocales: [LocaleSpace] locale;]

e Locales support reasoning about machine resources

proc locale.physicalMemory (.

N

e Locales support placement of computations:

writeln (Yon locale 07);
on Locales[1l] do

writeln (“‘now on locale 17);
writeln (Y“on locale 0 again”);

Vlon A[i,5] do)

begin bigComputation (A) ;

on node.left do

begin search (node.left);

CRANY

THE SUPERCOMPUTER COMPANY

A8: We wanted to control array implementations:
memory layout, distributions, parallelization strategies

.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

—— = - = = | A IEI I EIIES
o s | Zp [2p |2 1113113 S
) o s o =z lpl=> =d | B |3 B2 ..o
. P re L‘» re L‘» < = [<>

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be.tw_eer] the tasks?

dynamiecglly ?

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?

e Completely local to one locale? Or distributed?

o If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
e What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

CRRANY

THE SUPERCOMPUTER COMPANY

A Few Versions of STREAM Triad
g e) - i

#include <omp.h>

#endif

static int VectorSize; Lmit GEELE () {

static double *a, *b, *c; float *d ay, el b, “el @g
int HPCC_StarStream (HPCC_Params *params) { float Scalar,’

int myRank, commSize;
int rv, errCount;

MPI_Comm comm = MPI COMM WORLD; o
MPI_Comm_size(comm, &commSize); Ch apel ;
MPI_Comm_rank(comm, &myRank); . A
 the special
sauce

rv = HPCC_Stream(params, 0 == myRa
MPI_Reduce(&rv, &errCount, 1, MPI_

return errCount; config conSt m = 1 O O O 14
} alpha = 3.0;

int HPCC_Stream (HPCC_Params *params,
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize (j const Probspace =] [l . . m]

HPCC_XMALLOC (double, VectorSizq

a

b = HPCC_XMALLOC (double, VectorSizd

c = HPCC_XMALLOC(double, VectorSizd

oo R var A, B, C: [ProbSpace] real;
D ; ' c, d a,iscatikain N) ;
if (c) HPCC_free(c); 4 ety 4 r
if (b) HPCC_free(b);
if (a) HPCC_free(a);

if (doIO) { B = .
fprintf(outFile, "Failed to all
fclose(outFile); C — .

} ces J

return 1;

}

#ifdef O
#;ra;maio:\im;zrallel for A — B -I_ a lpha * C ;

#endif g
for (3=0; j<VectorSize; j++) { — o = Vajl‘ue’ int len) {
b[j] = 2.0; int idx = threadIdx.x + blockIdx.x * blockDim.x;
31 = 0.0; . . .
P if (idx < len) a[idx] = value;
scalar = 3.0; }
#ifdef _OPENMP
#pragma omp parallel for global void STREAM Triad(float *a, float *b, float *c,
#endif FE—y — w .
for (j=0; j<VectorSize; j++) float scalar, int len) {
alyl = bl3l+scalarrc(il; int idx = threadIdx.x + blockIdx.x * blockDim.x;
E2CC e (@) . : : . : * 4 .
T e (dekx <€ llem) @[iLtebk] alidx]+scalar*b[idx];
HPCC_free(a); }

return 0;

Global STREAM Triad in Chapel

const ProblemSpace: domain(l, int(64))

var A, B, CAf [ProblemSpace] real;
| | |

I
LTI Ty PPT TP TPTTIRYPTITTIT]=
+

o I IT T TTTT T T T T TTT1T1]
: : :
sRealoha * C;

C=RA0Y

THE SUPERCOMPUTER COMPANY

No domain map specified => use default layout

e current locale owns all indices and values
e computation will execute using local resources only

Global STREAM Triad in Chapel "

¢JIIIII||||||||||;|||||g|||||;|||||||||||||IIE>

const ProblemSpace: domain(l, int(64))

dmapped Block (boundingBox=[1..m])

= [1..m];
| | |
| | |
T T I T T T T T T T T T 111
I I I

var A, B, C: [ProblemSpace] real;
1 1 1

+ |l

a.

BB + alpha * C;

Global STREAM Triad in Chapel e

H ﬂ::: H

- EIEEIEEEEEEIEEIDIIEEEE[EDDIZIEIEED 0

const ProblemSpace: domain(l, int(64))
dmapped Cyclic (startIdx=1)

= [1..m];

u#m@mmtmj

var A, B, C: [ProblemSpace] real;

a.

EEE + alpha * C;

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain Maps: “recipes for parallel/distributed arrays
and domains (index sets)”

Domain maps define:
e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in memory

e Standard operations on domains and arrays
e e.g, random access, iteration, slicing, reindexing, rank change, ...

C=RA0Y

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are written in Chapel using lower-level features:

* classes, iterators, type inference, generic types Domain Maps D
e e) Tascpadeion
Locality Control

* locales and on-clauses
e other domains and arrays

Standard Chapel domain maps are written using the same
mechanism an end-user would

Domain maps support a separation of roles:
» parallel-savvy domain scientist writes parallel code
» parallel computing expert writes and adds in domain maps

CRANY

THE SUPERCOMPUTER COMPANY

A9: We wanted a bunch of other stuff too...

* OOP, but optionally, not everywhere

e default arguments

* name-based argument passing

* namespace management

e ability to declare skyline arrays holistically
* a rich compile-time meta language

* operator/function overloading

* tuple types

* range types

e command-line settable values

.

CRANY

THE SUPERCOMPUTER COMPANY

A10: As well as several features that remain open issues...
* exceptions/fault tolerance

e garbage collection

* parallel I/O

e visualization capabilities

* an interpreted environment

e transactional memory concepts

*interoperability

b

CRANY

THE SUPERCOMPUTER COMPANY

Tony’s Interoperability Slide

Interoperability is crucial for any new language to succeed
* nobody can afford to start from scratch
e provides a way of bootstrapping a language
e supports user’s ability to rewrite a portion of a larger application

Interoperability has not been a big part of our focus thus far
» fear of interoperability w/out performance resulting in “so what?”
e belief that we’re on a path that will support interoperability well

Current Status:

* ability to declare and reference external C types, variables, functions
* some work to add a Chapel spoke to Babel by the LLNL team

Next steps (not yet scheduled/resourced):
» ability to make Chapel the callee rather than the caller (don’t own main())
* MPI interoperability (in collaboration with Argonne)
» Python, Fortran interoperability (if not through Babel)

CRANY

THE SUPERCOMPUTER COMPANY

Chapel and Exascale

* In many respects, Chapel is well-positioned for exascale:
e distinct concepts for parallelism and locality
e not particularly tied to any hardware architecture
e supports arbitrary nestings of data and task parallelism

e |n others, it betrays that it was a petascale-era design
* |ocales currently only support a single level of hierarchy
* lack of fault tolerance/error handling/resilience
(these were both considered “version 2.0” features)

We are addressing these shortcomings as current/future work

Outline

v"Motivation
v'Programming Model Survey
v'Chapel Overview

» Status and Future Directions
dCase Study: AMR
dWrap-up

Chapel Status

The Good

e Most of the features you’ve heard about today are functional
e Interest in the language seems to be growing steadily

e Current doubts focus more on our ability to succeed in our
current configuration rather than on the language design itself

The Bad

e Performance tends to be fairly binary: many planned
improvements and optimizations remain

e Like any research software, there are bugs and dark corners
The Ugly
* HPCS funding only lasts another year

How can | help the tree grow?

Give Chapel a try to see whether it’s on a useful path
for your computational idioms
e if not, help us course correct
e evaluate performance based on potential, not present
e pair programming with us is a good approach

Let others know about your interest in Chapel
e your colleagues and management
e Cray leadership
* the broader parallel community (HPC and mainstream)

Contribute to the project

CRANY

THE SUPERCOMPUTER COMPANY

Featured Collaborations

* ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

e UIUC (David Padua, Albert Sidelnik, Maria Garzaran): CPU-GPU computing
e Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading
e BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking

e LTS (Michael Ferguson): Improved |I/O and strings

e Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

e CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics
* U. Oregon/Paratools Inc. (Sameer Shende): Performance analysis with Tau
» U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O
* PNNL/CASS-MT (John Feo, Daniel Chavarria): Cray XMT tuning

* (your name here?)

Potential collaboration topics on Chapel webpage

C=RA0Y

THE SUPERCOMPUTER COMPANY

Our Team

e Cray:

Brad Chamberlain ~ Sung-Eun Choi Greg Titus

e External

000 «———
Collaborators:

_ , ; '/ You? Your
Albert Sidelnik Jonathan Turner Srinivas Sridharan Student/CoIIeague?

e |nterns:

¢ ’ N ' 7
Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner
000

Outline

v'Motivation
v'Programming Model Survey
v'Chapel Overview

v Status and Future Directions
» Case Study: AMR
dWrap-up

AMR Framework in Chapel S

Proposition: Evaluate Chapel productivity by having a
grad student experienced in AMR write a framework
in Chapel from scratch

e student was inexperienced in parallel programming and
had never used Chapel before starting

Result: 4 months later, had a working, dimension-
independent multicore-parallel AMR framework

APPLIED MATHEMA

Development overview

= Developed working, dimension-independent AMR infrastructure in just
under 4 months, beginning with no Chapel experience

Chapel made many challenges of AMR easy with little-to-no additional

Infrastructure required, while providing a large head start on the really
hard parts

Code size compares very favorably to existing AMR frameworks -- but
keep in mind that the Chapel version is a “minimal” implementation!

Language Parallelism SLOC! Tokens Relative size (tokens)
C++ (D<6)3 Dist. mem. 40200 261427 100%
Fortran (2D+3D) 2 Serial 16562 151992 58%
2D 8297 71639 27%
3D 8265 80353 31%
Chapel (any D) Shared mem. 1988 13783 5%

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

78

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMA

Development overview

= Developed working, dimension-independent AMR infrastructure in just
under 4 months, beginning with no Chapel experience

= Chapel made many challenges of AMR easy with little-to-no additional

Infrastructure required, while providing a large head start on the really
hard parts

Code size compares very favorably to existing AMR frameworks -- but
keep in mind that the Chapel version is a “minimal” implementation!

Language Parallelism SLOC! Tokens Relative size (tokens)
C++ (D<6)3 Dist. mem. 40200 261427 100%
Fortran (2D+3D) 2 Serial 16562 151992 58%
2D 8297 71639 27%
3D 8265 80353 31%
Chapel (any D) Shared mem. 1988 13783 5%

.. . A
Reflects limitations of developer ! source lines of code, 2AMRClaw, 3 Chombo BoxTools+AMRTools
time, not Chapel itself

%9 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMATI

| evels

= Essentially a union of grids

var grids: domain (Grid) ;

Associative domain
= List of indices of any type
= Array and iteration syntax are unchanged

80 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks M

APPLIED MATHEMA

UNIVERSITY of WASHIN ::A Y

Levels: Sibling overlaps

= Agrid’s layer of ghost cells will, in general,
overlap some of its siblings. Data will be
copied into these overlapped ghost cells prior
to mathematical operations.

= Calculating the overlaps between siblings:

var neighbors: domain (Grid) ;

Declare associative domain to store
neighbors; initializes to empty.

81 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMA
UNIVERSITY of WASHIN ::AY

Levels: Sibling overlaps

= Agrid’s layer of ghost cells will, in general,
overlap some of its siblings. Data will be
copied into these overlapped ghost cells prior
to mathematical operations.

= Calculating the overlaps between siblings:

var neighbors: domain (Grid) ;
var overlaps: [neighbors] domain (dimension,stridable=true);

/An array of domains; stores one A

domain for each neighbor.
New space allocated as
\neighbors grows.)

82 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMA
UNIVERSITY of WASHIN

CRANY

Levels: Sibling overlaps

= Agrid’s layer of ghost cells will, in general,
overlap some of its siblings. Data will be
copied into these overlapped ghost cells prior
to mathematical operations.

= Calculating the overlaps between siblings:

var neighbors: domain (Grid) ;
var overlaps: [neighbors] domain (dimension,stridable=true);

for sibling in parent level.grids {

Loop over all grids on the
same level, checking for
neighbors.

83 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMA

UNIVERSITY of WASHING ==A Y

Levels: Sibling overlaps

= Agrid’s layer of ghost cells will, in general,
overlap some of its siblings. Data will be
copied into these overlapped ghost cells prior
to mathematical operations.

= Calculating the overlaps between siblings:

var neighbors: domain (Grid) ;
var overlaps: [neighbors] domain (dimension,stridable=true);

for sibling in parent level.grids {
var overlap = extended cells(sibling.cells);

Computes intersection of the domains extended cells
and sibling.cells.

Take a moment to appreciate what this calculation would
b1 look like without domains!

84 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

APPLIED MATHEMA
UNIVERSITY of WASHIN

CRANY

Levels: Sibling overlaps

= Agrid’s layer of ghost cells will, in general,
overlap some of its siblings. Data will be
copied into these overlapped ghost cells prior
to mathematical operations.

= Calculating the overlaps between siblings:

var neighbors: domain (Grid) ;
var overlaps: [neighbors] domain (dimension,stridable=true);

for sibling in parent level.grids {

var overlap = extended cells(sibling.cells);
if overlap.numIndices > 0 && sibling != this {
neighbors.add (sibling) ;

If overlap is nonempty, and
sibling is distinct from this
grid, then update stored data.

overlaps (sibling) = overlap;

85 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

g CRAvY
Class GridCFGhostRegion

= Represents ghost cells of a fine grid that will
receive data from “coarse neighbor” grids

= Fields are:

const grid: Grid; [Theﬁnegmjmcweﬁmn]

const coarse neighbors: domain (Grid) ;

const multidomains: [coarse neighbors]
MultiDomain (dimension, stridable=true);

= Constructor also needs to know:

parent level of grid

coarse level ,

ref ratio, the refinement ratio between
coarse level and parent level

86 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks M

W
Class GridCFGhostRegion

for coarse grid in coarse level.grids {

var fine intersection =

grid.extended cells(refine(coarse grid.cells, ref ratio));

if fine_intersection.numIndices > 0 {

var boundary multidomain = fine intersection - grid.cells;

for (, region) in parent level.sibling ghost regions(grid) do

if fine intersection(region) .numlIndices > 0 then

boundary multidomain.subtract (region);

if boundary multidomain.length > 0 {
coarse neighbors.add(coarse grid);

multidomains (coarse grid) = boundary multidomailn;

} else

delete boundary multidomain;

87 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

e ANy
Conclusions

What did Chapel do for us?

" |nteger tuples and rectangular sets thereof are native data types
Drastically simplifies construction of MultiDomains

= Dimension-independence

After defining MultiDomains, spatial dimension only appears in variable
declarations

= (Clean, clear iteration syntax
Ability to define any object as an iterator with these () method

Recall Chapel’s main goal:

" I[mprove programmer productivity

88 Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks @ M

CRANY

THE SUPERCOMPUTER COMPANY

Next Steps for AMR code

e Evolve framework to support distributed memory

* apply domain maps to distribute sets of grids across processors
* key component: grid—locale hash function to specify mapping
* |'d estimate this to require no more than a few hundred lines of code

e Performance measurements and optimizations

e Add more physics

Outline

v"Motivation
v Programming Model Survey
v'Chapel Overview

v Status and Future Directions
v Case Study: AMR
» Wrap-up

Summary

Higher-level programming models help science to be
insulated from implementation

e yet, without necessarily abandoning control
e supports 90/10 rule well

® requires appropriate abstractions, separation of concerns
e Chapel does this via its multiresolution design

For exascale, programming models are likely to need:

e Various styles of parallelism: data, task, nested
* data-driven execution

* representations of hierarchical locality distinct from parallel
execution model

Chapel is strong in first two,; has a good start on third

What’s Next?

* Improve performance

e Backfill missing features

e Target exascale node architectures
e Determine next source of funding

CRANY

THE SUPERCOMPUTER COMPANY

For More Information

e Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

e Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

e General Questions/Info:
chapel info@cray.com (or SourceForge chapel-users list)

e AMR Framework:

https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/amr/
Jonathan Claridge’s dissertation (UW AMath); SIAM slides on Chapel website

e Upcoming Tutorials:

SC11 (November, Seattle WA): full-day comprehensive tutorial
+ half-day broader engagement version

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/amr/

