
Brad Chamberlain, Cray Inc.

INT Exascale Workshop

June 30th, 2011

• Static finite element analysis

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

1 EF – ~2018: Cray ____; ~10,000,000 Processors

2

• Static finite element analysis

• Fortran77 + Cray autotasking + vectorization

1 GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

• Fortran + MPI (?)

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

• C++/Fortran + MPI + vectorization

1 PF – 2008: Cray XT5; 150,000 Processors

• TBD

• TBD: C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/??? or ???

1 EF – ~2018: Cray ____; ~10,000,000 Processors

3

HPC has traditionally given users…
…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

4

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

Pictorially:

A

B

C

alpha

=

+

*

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + α Ci

Pictorially (in parallel):

A

B

C

alpha

=

+

*

=

+

*

=

+

*

=

+

*

=

+

*

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

MPI
if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP
if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

#define N 2000000

int main() {

float *d_a, *d_b, *d_c;

float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);

cudaMalloc((void**)&d_b, sizeof(float)*N);

cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);

dim3 dimGrid(N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;

STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

cudaThreadSynchronize();

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

#define N 2000000

int main() {

float *d_a, *d_b, *d_c;

float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);

cudaMalloc((void**)&d_b, sizeof(float)*N);

cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);

dim3 dimGrid(N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;

STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

cudaThreadSynchronize();

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

CUDAMPI + OpenMP

config const m = 1000,

alpha = 3.0;

const ProbSpace = [1..m] dmapped …;

var A, B, C: [ProbSpace] real;

B = …;

C = …;

A = B + alpha * C;

Chapel
the special

sauce

HPC has traditionally given users…
…low-level, control-centric programming models

…ones that are closely tied to the underlying hardware

benefits: lots of control; decent generality; easy to implement

downsides: lots of user-managed detail; brittle to changes

one characterization of Chapel’s goals:

 Raise the level of abstraction to insulate parallel algorithms
from underlying hardware when possible/practical

 Yet permit control over such details using appropriate
abstraction and separation of concerns

11

Motivation

Programming Model Survey

 Current Practice

 Prognosis for Exascale

Chapel Overview

Status and Future Directions

Case Study: AMR

Wrap-up

12

e.g., OpenMP, pthreads
+ support dynamic, fine-grain parallelism

+ considered simpler, more like traditional programming
 “if you want to access something, simply name it”

– no support for expressing locality/affinity; limits scalability

– bugs can be subtle, difficult to track down (race conditions)

– tend to require complex memory consistency models

13

e.g., MPI
+ a more constrained model; can only access local data

+ run on most large-scale parallel platforms
 and for many of them, can achieve near-optimal performance

+ are relatively easy to implement

+ can serve as a strong foundation for higher-level models

+ users are able to get real work done with them

14

e.g., MPI
– communication must be used to get copies of remote data

– and tends to reveal too much about how to transfer data, not simply what

– only supports “cooperating executable”-level parallelism

– couples data transfer and synchronization

– has frustrating classes of bugs of its own
– e.g., mismatches between sends/recvs, buffer overflows, etc.

15

e.g., MPI+OpenMP, MPI+pthreads, MPI+CUDA, …
+ support a division of labor: each handles what it does best

+ permit overheads to be amortized across processor cores

– require multiple distinct notations to express a single logical
parallel algorithm, each with its own distinct semantics

16

e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)
+ support a shared namespace, like shared-memory

+ support a strong sense of ownership and locality

• each variable is stored in a particular memory segment

• tasks can access any visible variable, local or remote

• local variables are cheaper to access than remote ones

+ implicit communication eases user burden; permits
compiler use best mechanisms available

17

e.g., Co-Array Fortran (CAF), Unified Parallel C (UPC)
– retain many of the downsides of shared-memory

 error cases, memory consistency models

– restricted to SPMD programming and execution models

– data structures not as flexible/rich as one might like

18

19

PGAS: What’s in a Name?

MPI

OpenMP

P
G

A
S

L
a
n
g
u
a
g
e
s

Chapel

memory

model

CAF

UPC

Titanium

PGAS

distributed

memory

shared

memory

PGAS

programming

model

execution

model

global-view

parallelism

global-view

parallelism

shared memory

multithreaded

distributed

memory

multithreaded

cooperating executables

(often SPMD in practice)

Single Program, Multiple Data

(SPMD)

co-arrays

1D block-cyc arrays/

distributed pointers

class-based arrays/

distributed pointers

co-array refs

implicit

method-based

N/A

implicit

APIs

shared

memory

arrays

manually

fragmented

global-view

distributed

arrays

communication

data

structures

e.g., Global Arrays, Charm++, ParalleX, StarSS, Cilk,
TBB, CnC, parallel Matlabs, Star-P, PLINQ, C++AMP,
Map-Reduce, QLUA, DPJ, Titanium, …

 Each interesting in its own way, but lumped together here
due to lack of time and dominance/prominence in HPC

 Not trivial to categorize, but recurring themes include:

 dynamic task parallelism

 data-driven execution

 advanced data structures

 support for next-generation architectures

 modern language features

(Chapel shares many of these as well)

20

 The preceding evaluations were all w.r.t. petascale

 Exascale is expected to bring new challenges:
 increased hierarchy within the node architecture

 i.e., locality matters within a node, not just between nodes

 increased heterogeneity as well
 multiple processor types

 multiple memory types

 limited memory bandwidth, memory::FLOP ratio

21

Q: Are we ready?

A: In a nutshell, no

Q: Why?

A: We’ve built too many assumptions about our target
architectures into our programming models

 granularity and style of parallelism

 mode of communication

 single level of locality, if any at all

22

MPI:
 “MPI everywhere” zealots are becoming increasingly scarce

 “MPI + X” is the expected evolutionary path (solve for X)

 MPI-3 striving to support and interact with diverse models

OpenMP:
 Wrestling with role of locality, accelerators in OpenMP

 How to preserve traditional strengths while adapting?

Traditional PGAS:
 Considered by some to be well-positioned for intra-node

locality concerns

 Yet, SPMD programming/execution model seems hobbling
 so how to add dynamic execution cleanly and elegantly?

23

CUDA:
 Far less painful than writing nuclear physics in OpenGL

 Dominating due to time-to-market, libraries, strong support

 Reasonably NVIDIA-centric

 Arguably too tied to processor architecture

OpenCL:
 Later to the game, but with broad consortium support

 Designed with portability in mind

 Not ideal for end-users; better suited as a compiler target

directive-based approaches (PGI, CAPS, OpenMP):

 higher-level simpler, less control, more reliance on compiler

 traditionally harder to apply modularly

 for evolutionary approaches, I’d bet on this for X
24

25

26

trees

ivy

unsuspecting

homeowner

27

• low-level

• closely matches underlying structures

• easy to implement

• lots of user-managed detail

• resistant to changes

• somewhat insidious

28

• higher-level

• more elegant, structured

• requires a certain investment of

time and force of will to establish

Early HPCS years:

 “The HPC community tried to plant a tree once. It didn’t
survive. Nobody should ever bother planting one again.”

 “Why plant a tree when you can’t be assured of success?”

 “Why would anyone ever want anything other than ivy?”

 “We’re in the business of building treehouses that last 40 years;
we can’t afford to build one in the branches of your sapling.”

 “This sapling looks promising. I’d like to climb it now!”

More recently:

 “I really hope to see this tree fully grown someday.”

 “What can I do to help the tree grow?”

29

30

If you don’t want only ivy forever, you need to plant trees

and be patient

(though at times the poor homeowner

may wish it did)

Note that supporting one need not preclude the other

Motivation

Programming Model Survey

Chapel Overview

Status and Future Directions

Case Study: AMR

Wrap-up

31

 A new parallel programming language

 Design and development led by Cray Inc.

 Initiated under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

32

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: next-generation node architectures)

33

 To support compiler optimizations

 To support cleaner syntax

 Because parallel computing is lacking a good, general,
modern language

 Because libraries would not help with many of the
features we wanted

 Because we believe the combination of Chapel’s
features is greater than the sum of their parts

34

With a unified set of concepts...

...express any parallelism desired in a user’s program
 Styles: data-parallel, task-parallel, concurrency, nested, …

 Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
 Systems: multicore desktops, clusters, HPC systems, …

 Levels: machines, nodes, cores, instructions

In short, you should never hit a point where you say “Well, that
was fun while it lasted; now back to Fortran/MPI/CUDA…”

37

39

Domains

D

domain: a first-class index set

var m = 4, n = 8;

var D: domain(2) = [1..m, 1..n];

40

Domains

D

Inner

domain: a first-class index set

var m = 4, n = 8;

var D: domain(2) = [1..m, 1..n];

var Inner: subdomain(D) = [2..m-1, 2..n-1];

41

Domain Uses

 Declaring arrays:
var A, B: [D] real;

 Iteration (sequential or parallel):
for ij in Inner { … }

or: forall ij in Inner { … }
or: …

 Array Slicing:
A[Inner] = B[Inner+(1,1)];

 Array reallocation:
D = [1..2*m, 1..2*n];

A
B

B
A

D

AInner BInner

D

1 2 3 4 5 6

7 8 9 10 11 12

42

Domain/Array Types

Chapel supports several types of domains and arrays…

…all of which support a similar set of data parallel operators:
• iteration, slicing, reallocation, promotion of scalar functions, etc.

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured
associative

cobegin {

producer();

consumer();

}

var buff$: [0..#buffersize] sync real;

proc producer() {

var i = 0;

for … {

i = (i+1) % buffersize;

buff$(i) = …; // data-centric synchronization

}

}

proc consumer() {

var i = 0;

while … {

i= (i+1) % buffersize;

…buff$(i)…; // data-centric synchronization

}

}
44

46

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so difficult?”
“Why don’t I have more control?”

“Why don’t my programs port trivially?”

ZPL

HPF

Target Machine

High-Level
Abstractions(“ivy”)

(“trees”)

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for performance, control

 build the higher-level concepts in terms of the lower

 separate concerns appropriately for clean design

47

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

const pi = 3.14, // pi is a real

loc = 1.2 + 3.4i, // loc is a complex

loc2 = pi*loc, // as is loc2

name = “brad”, // name is a real

verbose = false; // verbose is boolean

proc addem(x, y) {

return x + y;

}

var sum = addem(1, pi), // sum is a real

fullname = addem(name, “ford”); // fullname is a string

49

 Iterator: a function that generates values/variables
 Used to drive loops

 Like a function, but yields values back to invocation site

 Control flow logically continues from that point

 Example

51

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

52

Iterators: Motivation

Given a program with a

bunch of similar

loops…

for (i=0; i<m; i++) {

for (j=0; j<n; j++) {

…A[i,j]…

}

}

…

for (i=0; i<m; i++) {

for (j=0; j<n; j++) {

…A[i,j]…

}

}

…

Consider the effort to

convert them from

RMO to CMO…

for (j=0; j<n; j++) {

for (i=0; i<m; i++) {

…A[i,j]…

}

}

…

for (j=0; j<n; j++) {

for (i=0; i<m; i++) {

…A[i,j]…

}

}

…

Or to tile the loops…

for (jj=0; jj<n; jj+=blocksize) {

for (ii=0; ii<m; ii+=blocksize) {

for (j=jj; j<min(m,jj+blocksize-1) {

for (i=ii; i<min(n,ii+blocksize-1) {

…A[i,j]…

}

}

}

}

…

for (jj=0; jj<n; jj+=blocksize) {

for (ii=0; ii<m; ii+=blocksize) {

for (j=jj; j<min(m,jj+blocksize-1) {

for (i=ii; i<min(n,ii+blocksize-1) {

…A[i,j]…

}

}

}

}

…

53

Iterators: Motivation

Given a program with a

bunch of similar

loops…

for (i=0; i<m; i++) {

for (j=0; j<n; j++) {

…A[i,j]…

}

}

…

for (i=0; i<m; i++) {

for (j=0; j<n; j++) {

…A[i,j]…

}

}

…

Consider the effort to

convert them from

RMO to CMO…

for (j=0; j<n; j++) {

for (i=0; i<m; i++) {

…A[i,j]…

}

}

…

for (j=0; j<n; j++) {

for (i=0; i<m; i++) {

…A[i,j]…

}

}

…

Or to tile the loops…

for (jj=0; jj<n; jj+=blocksize) {

for (ii=0; ii<m; ii+=blocksize) {

for (j=jj; j<min(m,jj+blocksize-1) {

for (i=ii; i<min(n,ii+blocksize-1) {

…A[i,j]…

}

}

}

}

…

for (jj=0; jj<n; jj+=blocksize) {

for (ii=0; ii<m; ii+=blocksize) {

for (j=jj; j<min(m,jj+blocksize-1) {

for (i=ii; i<min(n,ii+blocksize-1) {

…A[i,j]…

}

}

}

}

…

Or to change the iteration order over the tiles…

Or to make them into fragmented loops for an MPI program…

Or to change the distribution of the work/arrays in that MPI program…

Or to label them as parallel for OpenMP or a vectorizing compiler…

Or to do anything that we do with loops all the time as a community…

We wouldn’t program straight-line code this way, so why

are we so tolerant of our lack of loop abstractions?

 as with traditional functions…
…one iterator can be redefined to change the behavior of

many loops

…a single invocation can be altered, or its arguments can be

 not necessarily any more expensive than standalone
loops

 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

56

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

 Locales support reasoning about machine resources

 Locales support placement of computations:

57

% a.out --numLocales=8

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% a.out –nl 8

proc locale.physicalMemory(...) { ... }

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

begin bigComputation(A);

on node.left do

begin search(node.left);

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

59

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

60

#define N 2000000

int main() {

float *d_a, *d_b, *d_c;

float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);

cudaMalloc((void**)&d_b, sizeof(float)*N);

cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);

dim3 dimGrid(N/dimBlock.x);

if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);

set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;

STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);

cudaThreadSynchronize();

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,

float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);

MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);

MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;

double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);

b = HPCC_XMALLOC(double, VectorSize);

c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_free(a);

if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);

fclose(outFile);

}

return 1;

}

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;

c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

for (j=0; j<VectorSize; j++)

a[j] = b[j]+scalar*c[j];

HPCC_free(c);

HPCC_free(b);

HPCC_free(a);

return 0;

}

CUDAMPI + OpenMP

config const m = 1000,

alpha = 3.0;

const ProbSpace = [1..m] dmapped …;

var A, B, C: [ProbSpace] real;

B = …;

C = …;

A = B + alpha * C;

Chapel
the special

sauce

const ProblemSpace: domain(1, int(64))

= [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

62

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local resources only

const ProblemSpace: domain(1, int(64))

dmapped Block(boundingBox=[1..m])

= [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

63

=

α·
+

const ProblemSpace: domain(1, int(64))

dmapped Cyclic(startIdx=1)

= [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

64

=

α·
+

startIdx = 1

Domain Maps: “recipes for parallel/distributed arrays

and domains (index sets)”

Domain maps define:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in memory

 Standard operations on domains and arrays
 e.g, random access, iteration, slicing, reindexing, rank change, …

65

Domain maps are written in Chapel using lower-level features:
 classes, iterators, type inference, generic types

 task parallelism

 locales and on-clauses

 other domains and arrays

Standard Chapel domain maps are written using the same
mechanism an end-user would

Domain maps support a separation of roles:
 parallel-savvy domain scientist writes parallel code

 parallel computing expert writes and adds in domain maps

66

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

Interoperability is crucial for any new language to succeed
 nobody can afford to start from scratch

 provides a way of bootstrapping a language

 supports user’s ability to rewrite a portion of a larger application

Interoperability has not been a big part of our focus thus far
 fear of interoperability w/out performance resulting in “so what?”

 belief that we’re on a path that will support interoperability well

Current Status:
 ability to declare and reference external C types, variables, functions

 some work to add a Chapel spoke to Babel by the LLNL team

Next steps (not yet scheduled/resourced):
 ability to make Chapel the callee rather than the caller (don’t own main())

 MPI interoperability (in collaboration with Argonne)

 Python, Fortran interoperability (if not through Babel)

69

 In many respects, Chapel is well-positioned for exascale:
 distinct concepts for parallelism and locality

 not particularly tied to any hardware architecture

 supports arbitrary nestings of data and task parallelism

 In others, it betrays that it was a petascale-era design
 locales currently only support a single level of hierarchy

 lack of fault tolerance/error handling/resilience

(these were both considered “version 2.0” features)

We are addressing these shortcomings as current/future work

70

Motivation

Programming Model Survey

Chapel Overview

Status and Future Directions

Case Study: AMR

Wrap-up

71

The Good

 Most of the features you’ve heard about today are functional

 Interest in the language seems to be growing steadily

 Current doubts focus more on our ability to succeed in our
current configuration rather than on the language design itself

The Bad

 Performance tends to be fairly binary: many planned
improvements and optimizations remain

 Like any research software, there are bugs and dark corners

The Ugly

 HPCS funding only lasts another year

72

Give Chapel a try to see whether it’s on a useful path
for your computational idioms
 if not, help us course correct

 evaluate performance based on potential, not present

 pair programming with us is a good approach

Let others know about your interest in Chapel
 your colleagues and management

 Cray leadership

 the broader parallel community (HPC and mainstream)

Contribute to the project

73

 ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

 UIUC (David Padua, Albert Sidelnik, Maria Garzarán): CPU-GPU computing

 Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading

 BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking

 LTS (Michael Ferguson): Improved I/O and strings

 Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

 CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics

 U. Oregon/Paratools Inc. (Sameer Shende): Performance analysis with Tau

 U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O

 PNNL/CASS-MT (John Feo, Daniel Chavarria): Cray XMT tuning

 (your name here?)

Potential collaboration topics on Chapel webpage
74

 Cray:

 External

Collaborators:

 Interns:

7575

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Srinivas Sridharan

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your

Student/Colleague?

Tom Hildebrandt

Motivation

Programming Model Survey

Chapel Overview

Status and Future Directions

Case Study: AMR

Wrap-up

76

Proposition: Evaluate Chapel productivity by having a
grad student experienced in AMR write a framework
in Chapel from scratch
 student was inexperienced in parallel programming and

had never used Chapel before starting

Result: 4 months later, had a working, dimension-
independent multicore-parallel AMR framework

77

78

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

 Code size compares very favorably to existing AMR frameworks -- but

keep in mind that the Chapel version is a “minimal” implementation!

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

79

Development overview

 Developed working, dimension-independent AMR infrastructure in just

under 4 months, beginning with no Chapel experience

1 source lines of code, 2 AMRClaw, 3 Chombo BoxTools+AMRTools

 Chapel made many challenges of AMR easy with little-to-no additional

infrastructure required, while providing a large head start on the really

hard parts

 Code size compares very favorably to existing AMR frameworks -- but

keep in mind that the Chapel version is a “minimal” implementation!

Language Parallelism SLOC1 Tokens Relative size (tokens)

C++ (D≤6) 3 Dist. mem. 40200 261427 100%

Fortran (2D+3D) 2

2D

3D

Serial 16562

8297

8265

151992

71639

80353

58%

27%

31%

Chapel (any D) Shared mem. 1988 13783 5%

Reflects limitations of developer
time, not Chapel itself

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

80

Levels

 Essentially a union of grids

var grids: domain(Grid);

Associative domain

 List of indices of any type

 Array and iteration syntax are unchanged

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

81

Levels: Sibling overlaps

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Declare associative domain to store

neighbors; initializes to empty.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

82

Levels: Sibling overlaps

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

An array of domains; stores one

domain for each neighbor.

New space allocated as
neighbors grows.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

83

Levels: Sibling overlaps

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Loop over all grids on the

same level, checking for

neighbors.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

84

Levels: Sibling overlaps

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

Computes intersection of the domains extended_cells

and sibling.cells.

Take a moment to appreciate what this calculation would

look like without domains!

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

85

Levels: Sibling overlaps

 Calculating the overlaps between siblings:

var neighbors: domain(Grid);

var overlaps: [neighbors] domain(dimension,stridable=true);

for sibling in parent_level.grids {

var overlap = extended_cells(sibling.cells);

if overlap.numIndices > 0 && sibling != this {

neighbors.add(sibling);

overlaps(sibling) = overlap;

}

}

If overlap is nonempty, and

sibling is distinct from this

grid, then update stored data.

 A grid’s layer of ghost cells will, in general,

overlap some of its siblings. Data will be

copied into these overlapped ghost cells prior

to mathematical operations.

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

86

Class GridCFGhostRegion

 Represents ghost cells of a fine grid that will

receive data from “coarse neighbor” grids

 Fields are:

const grid: Grid;

const coarse_neighbors: domain(Grid);

const multidomains: [coarse_neighbors]

MultiDomain(dimension, stridable=true);

The fine grid in question

 Constructor also needs to know:

• parent_level of grid

• coarse_level

• ref_ratio, the refinement ratio between
coarse_level and parent_level

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

87

Class GridCFGhostRegion

for coarse_grid in coarse_level.grids {

var fine_intersection =

grid.extended_cells(refine(coarse_grid.cells, ref_ratio));

if fine_intersection.numIndices > 0 {

var boundary_multidomain = fine_intersection - grid.cells;

for (_, region) in parent_level.sibling_ghost_regions(grid) do

if fine_intersection(region).numIndices > 0 then

boundary_multidomain.subtract(region);

if boundary_multidomain.length > 0 {

coarse_neighbors.add(coarse_grid);

multidomains(coarse_grid) = boundary_multidomain;

} else

delete boundary_multidomain;

}

}

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

88

Conclusions

 Integer tuples and rectangular sets thereof are native data types
• Drastically simplifies construction of MultiDomains

 Clean, clear iteration syntax
• Ability to define any object as an iterator with these() method

What did Chapel do for us?

Recall Chapel’s main goal:

 Improve programmer productivity

 Dimension-independence
• After defining MultiDomains, spatial dimension only appears in variable

declarations

Slides Courtesy of Jonathan Claridge, from his SIAM CSE 2011 Minisymposium Talks

 Evolve framework to support distributed memory
 apply domain maps to distribute sets of grids across processors

 key component: grid locale hash function to specify mapping

 I’d estimate this to require no more than a few hundred lines of code

 Performance measurements and optimizations

 Add more physics

Motivation

Programming Model Survey

Chapel Overview

Status and Future Directions

Case Study: AMR

Wrap-up

90

Higher-level programming models help science to be
insulated from implementation
 yet, without necessarily abandoning control

 supports 90/10 rule well

 requires appropriate abstractions, separation of concerns

 Chapel does this via its multiresolution design

For exascale, programming models are likely to need:
 Various styles of parallelism: data, task, nested

 data-driven execution

 representations of hierarchical locality distinct from parallel
execution model

Chapel is strong in first two; has a good start on third

91

 Improve performance

 Backfill missing features

 Target exascale node architectures

 Determine next source of funding

92

 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 AMR Framework:
https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/amr/

Jonathan Claridge’s dissertation (UW AMath); SIAM slides on Chapel website

 Upcoming Tutorials:
SC11 (November, Seattle WA): full-day comprehensive tutorial

+ half-day broader engagement version
93

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/amr/

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel_info@cray.com

