A Language Designer's Perspective on
Benchmarking Suites and Competitions

Brad Chamberlain
Chapel Team, Cray Inc.
June 2, 2017

Safe Harbor Statement .

@

N

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ 0 Y,

Copyright 2017 Cray Inc.

My Background .o

Education:

e Earned Ph.D. from University of Washington CSE in 2001
e worked on the ZPL data-parallel array language

e Remain associated with UW CSE as an Affiliate Professor

Industry R&D: Co == A"

e Currently a Principal Engineer at Cray Inc.
e Technical lead and founding member of the Chapel language project

=

e
cCcHAaRPEL
—

=/

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:
e Support general parallel programming
e Make parallel programming at scale far more productive

/é\ COMPUTE | STORE | ANALYZE
—

J Copyright 2017 Cray Inc.

Motivation for Chapel . o

Q: Can a single language be... \
...as programmable as Python?
...as fast as Fortran?
...as portable as C?
...as scalable as MPI?
...as generic and meta- as C++7? (but using simpler notation?)
...as fun as <your favorite language here>?

A: We believe so.

Q: So why don’t we have such languages already?

A: Due to a lack of...
...long-term efforts

...resources Chapel is our attempt
...community will to change this
...developer/user co-design

...patience

A few terminology notes for this talk... SO0

Benchmark = benchmarks, kernels, proxy apps, mini-apps, ... \
e | don’t want to get caught up in that terminological debate

Language = any parallel programming model
e whether a true language, an extension, a library, a pragma notation, ...

(@ ©

“So you’re designing an HPC language... how? ==

e \
\

e Do something modest? \

e challenging to create a sea change
e likely to either result in hybrid programming models (e.g., MPI+X+Y)
e or to not present an enticing cost::benefit ratio for switching (e.g., UPC?)

e Do something big?
e potential for greater impact, but almost certain to take more time

e closed-source or open-source?
e if closed, how to get co-design feedback early and often?
e if open, how to keep audience’s attention during development?

e Chapel took the “go big (in the open) or go home” route
e currently suffers from “l| knew you as an awkward kid” syndrome

\ [— PN
CHARPEL
=
/C“\ COMPUTE | STORE | ANALYZE
=/ Copyright 2017 Cray Inc. @

!
CRAaY |

Chapel Headlines: Which were you aware of? .

L)

Chapel is open-source and freely available
Chapel is portable (recent adds: AWS EC2, Docker, Windows 10, ...)

Chapel has 14 full-time employees working on it at Cray
e and many other collaborators/contributors in the community

Chapel performance can now compete with, or beat, MPl and SHMEM
Chapel has closed all major known compiler-introduced memory leaks
Chapel now supports MPI+X execution

Chapel supports unified access to MCDRAM on Intel Xeon Phi (“KNL")
Chapel has nearly 200 webpages of modern, online documentation
Chapel has a rich, growing library (FFTW, BLAS, LAPACK, Bigint, ...)

CHIUW, Chapel’s 4th annual implementer and user workshop is today

\

\

®
!
CRAaY |
!

EMBRACE’s theme and languages like Chapel .

e \
\

Getting Chapel’s message out is clearly our challenge... \

...but benchmarks play a big role in our ability to do so

\
Chapel Headlines (directly related to benchmarks) SR

e \
\

e Chapel is free i
e Chapel is portable (recent adds: AWS EC2, Docker, Windows 10, ...)

e Chapel has 14 full-time employees working on it at Cray
e and many other collaborators/contributors in the community

e Chapel performance can now compete with, or beat, MPl and SHMEM
e Chapel has closed all major known compiler-introduced memory leaks
e Chapel now supports MPI+X execution

e Chapel supports unified access to MCDRAM on Intel Xeon Phi (“KNL”)
e Chapel has nearly 200 webpages of modern, online documentation

e Chapel has arich, growing library (FFTW, BLAS, LAPACK, Bigint, ...)

e CHIUW, Chapel’s 4th annual implementer and user workshop is today

\
Chapel Headlines (indirectly related to benchmarks‘):':A:Y\ !

e \
\

e Chapelis free i
e Chapel is portable (recent adds: AWS EC2, Docker, Windows 10, ...)

e Chapel has 14 full-time employees working on it at Cray
e and many other collaborators/contributors in the community

e Chapel performance can now compete with, or beat, MPl and SHMEM
e Chapel has closed all major known compiler-introduced memory leaks
e Chapel now supports MPI+X execution

e Chapel supports unified access to MCDRAM on Intel Xeon Phi (“KNL”)
e Chapel has nearly 200 webpages of modern, online documentation

e Chapel has a rich, growing library (FFTW, BLAS, LAPACK, Bigint, ...)

e CHIUW, Chapel’s 4th annual implementer and user workshop is today

/é\ COMPUTE | STORE | ANALYZE
_// Copyright 2017 Cray Inc. @

®
!
CRAaY |
!

EMBRACE’s theme and languages like Chapel .

e \
\

Getting Chapel’s message out is clearly our challenge... \

...but benchmarks play a big role in our ability to do so

Benchmarks permit us (and users) to evaluate our progress
e relative to the status quo
e relative to other competing technologies

If you care about language innovation and adoption,
you should care about benchmarks

And in addition, arenas for benchmark comparisons

What do | mean by an “arena”? o

e Essentially, a place for benchmark comparisons \
e cross-language, cross-implementation, cross-architecture

e Think of the top-500 as a performance-centric arena
e how can we expand this notion to include productivity, other concerns?

e I'll build on this definition as we go...

/C‘\ COMPUTE | STORE | ANALYZE
= Copyright 2017 Cray Inc. @

Outline SO
e \
\
v
v
v
v

» Survey of benchmark suites with which | have experience

e NPB, HPCC, DOE proxy apps, CLBG, PRK
e What they are
e What I've appreciated about them
e Where they could be improved

e Summary: If | had resources to throw at benchmark suites...

/C‘\ COMPUTE | STORE | ANALYZE
—

,/ Copyright 2017 Cray Inc.

Disclaimers

All of the following characterizations are my personal
opinions—yours will likely differ.

Also, my own opinions may be based on incomplete /
incorrect information (for which | apologize).

The NAS Parallel Benchmark Suite (NPB)

(circa mid-to-late 1990’s)

NPB: What it is oo

® 8 C F D -0 ri e nted be nc h ma rks @ NASA Advanced Supercomputing Division

* Ppaper-and-pencil descriptions e ———
HOME ABOUT NAS PROJECTS PUBLICATIONS SUPERCOMPUTI

e MPI, OpenMP implementations

e (and others as well...)
@ Ca ptu re CO m m O n H PC patte rn S The NAS Parallel Benchmarks (NPB) are a s'mall set of program.s design'ed to help evaluate the. pe}
e pleasingly parallel computations kermels and three pseuco-appication i the riginal ‘penci-andepaper” pecification (NP 1. 1
been extended to include new benchmarks for unstructured adaptive mesh, parallel I/0, multi-z
d ata transpose computational grids. Problem sizes in NPB are predefined and indicated as different classes. Ref
. . . NPB are available in commonly-used programming models like MPI and OpenMP (NPB 2 and NPB

sparse mat-vect multiplication

stencils on hierarchical grids

bucket-exchange communication

- NAS Parallel Benchmarks

Benchmark Specifications
The original eight benchmarks specified in NPB 1 mimic the computation and data movement in

« five kernels

o IS - Integer Sort, random memory access
o EP - Embarrassingly Parallel
o CG - Conjugate Gradient, irregular memory access and communication
o MG - Multi-Grid on a sequence of meshes, long- and short-distance communication,
o FT - discrete 3D fast Fourier Transform, all-to-all communication
« three pseudo applications

o BT - Block Tri-diagonal solver
o SP - Scalar Penta-diagonal solver
o LU - Lower-Upper Gauss-Seidel solver

Multi-zone versions of NPB (NPB-MZ) are designed to exploit multiple levels of parallelism in apy

effectiveness of multi-level and hybrid parallelization paradigms and tools. There are three type
derived from single-zone pseudo applications of NPB:

(@ ®

NPB: What it did well .

e Early example of what an HPC benchmark suite should be
e \Well-designed and implemented
e Reasonably well-documented
e The basis for many evaluations of languages, systems, compilers

6 COMPUTE STORE ANALYZE
=

NPB: What it did well .

e Helped me graduate:
e supported comparison between ZPL and MPI for interesting patterns
e sufficiently approachable for a graduate student to be successful with

MG
16 o

— — — |inear speedup

—eo— A-ZPL
ZPL

—8— F+MPI

—
N
1

(114.607 seconds in A-ZPL)
IN o
| |

Speedup over best 16-processor time

0 32 64 128 256

Processors

Rating Benchmark Suites (on a 7-point scale) R

e \
\

e Would HPC Application Developers care about this? \
e key:1=n0;4 =eh...; 7 =yes!

e Does a (clear) paper and pencil description exist?

e key: 1 =no or completely unclear; 7 = yes, and it's crystal clear
e ldeally, a paper and pencil description should not assume the reader can
translate from math equations into HPC code
e rather, it should talk in terms of data structures and access patterns

e Does the suite include a fast reference version?

e Does the suite include a clear reference version?
e key: 1=no,oritsnot; 7 =yesanditis

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.

Rating Benchmark Suites (on a 7-point scale) R

e \
\

e Would HPC Application Developers care about this? \
e key:1=n0;4 =eh...; 7 =yes!
o NPB: 6-7 when written, 5-6 now?

e Does a (clear) paper and pencil description exist?

e key: 1 =no or completely unclear; 7 = yes, and it's crystal clear
e ldeally, a paper and pencil description should not assume the reader can
translate from math equations into HPC code
e rather, it should talk in terms of data structures and access patterns

e NPB: 3 (too many equations, not enough data structures / CS)

e Does the suite include a fast reference version?
e NPB:7

e Does the suite include a clear reference version?
e key: 1=no,oritsnot; 7 =yesanditis
o NPB: 3 (it's not terrible, but also not particularly instructive)

Benchmark Suite Scorecard

N (04
S 0 ¥
>S5S
S 0o
L v P O
s o
& &8 9
d§§g‘§(§’
‘b;}m
L&
NPB
HPCC
DOEPRX
CLBG
PRK

?} COMPUTE | STORE
—

=/ Copyright 2017 Cray Inc.

ANALYZE

Benchmark Suite Scorecard

N O
O W0 D
> &S
S 0o
L v P O
s o
& &5 9
QS”KQ@“K@
T > O
£
NPB |V |~ |/ |~
HPCC
DOEPRX
CLBG
PRK

?} COMPUTE | STORE
—

=/ Copyright 2017 Cray Inc.

ANALYZE

NPB: Where it fell short

e No established competition for comparing performance

e No prescribed basis for comparing elegance / productivity
e neither is a big surprise given its timing and HPC’s performance focus

3 i 1200
comma3: the communication for rprj3 cRae
ST [0 communication
S 1000 B declarations
@ computation
800
[
S 566
o
(&)
G 600
n
o
2 5
rprj3in ZPL ANy
. \
SONN 400 -
procedure rprj3(var S,R: [,,] double; $
d: array [] of direction);
begin
S := 0.5000 * R +
0.2500 * (Re~d[1, 0, 0] + Re~d[O, 1, 0] + R@~d[0, 0, 1] +
Re*d[-1, 0, 0] + Re~d[0,-1, 0] + Re~d[0, 0,-1] + 200
0.1250 * (R@~d[1, 1, 0] + R@~d[1, 0, 1] + R@~d[O, 1, 1] +
Re@~d[1,-1, 0] + Re~d[1, 0,-1] + Re~d[O, 1,-1] +
R@*d[-1, 1, 0] + Re~d[-1, O, 1] + Re~d[O0,-1, 1] +
Re*d[-1,-1, 0] + Re*d[-1, 0,-1] + Re~d[0,-1,-1])+
0.0625 * (R@™d[1, 1, 1] + R@~d[1, 1,-1] + 0 B
R@~d[1,-1, 1] + Re@~d[1,-1,-1] +
R@Ad([-1, 1, 1] + Re"d[-1, 1,-1] + F+MPI ZPL
Re*d[-1,-1, 1] + Re~d[-1,-1,-1]);
end; Language
C COMPUTE | STORE | ANALYZE
=/ N
= Copyright 2017 Cray Inc.

\
\

Benchmark Suite Scorecard

N O
O W0 D
> &S
S 0o
L v P O
s o
& &5 9
QS”KQ@“K@
T > O
£
NPB |V |~ |/ |~
HPCC
DOEPRX
CLBG
PRK

?} COMPUTE | STORE
—

=/ Copyright 2017 Cray Inc.

ANALYZE

Benchmark Suite Scorecard

NPB |/ |~ |V |~
HPCC
DOEPRX

CLBG

PRK

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

NPB |V |~ |/ |~ |X|X

HPCC
DOEPRX

CLBG

PRK

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Other things one might want to rate... .

e Size of codes? (effort to port to new languages) \
e Arbitrarily scalable input sets?
e Self-verification of resuit?

e Was it designed more to measure communication (1) or
computation (7)?

(@ ®

Other things one might want to rate... N

e Size of codes? (effort to port to new languages) \
o NPB: 5-6

e Arbitrarily scalable input sets?
e NPB: 2

e Self-verification of result?
e NPB:7

e Was it designed more to measure communication (1) or
computation (7)?
e NPB:5

(but I’'m not as interested in these, personally, at least today)

The HPC Challenge Competition (HPCC)

HPCC: Whatitis

e A benchmark suite and competition kicked off towards the .

start of the HPCS program

e class 1: perf only (boring!)
e class 2: productivity

e 50% performance

e 50% elegance, judged by panel
e 4 core computations:

e Stream Triad (memory, EP)

e Random Access (GUPS)

e FFT (data transpose)

e HPL (block-cyclic linear algebra)
e over time, entrants could submit

their own computations of
interest as well...

Home

News

FAQ

Links
Committee
Partners

Awards

HPC Challenge Awards Competition at SC16

The HPC Challenge committee is pleased to announce the annual HPC Challenge Awards Competition that will take
place at SC16 on November 15, Tuesday, 12:15pm-1:15pm (room 155-C). The goal of the competition is to focus the
HPC community's attention on developing a broad set of HPC hardware and HPC software capabilities that are

necessary to productively use HPC systems.

The core of the HPC Challenge Award Competition is the HPC Challenge benchmark suite developed at the
University of Tennessee under the DARPA HPCS program with contributions from a wide range of organizations from

around the world (see http://icl.cs.utk.edu/hpccl).
The Competition focuses on four of the most challenging benchmarks in the suite:

1. Global HPL

2. Global RandomAccess

3. EP STREAM (Triad) per system
4. Global FFT

There are two classes of awards.

Class 1: Best Performance (4 awards)

The figure of merit is the best performance on a base or optimized run submitted to the HPC Challenge website. The
particular tests that are judged are: Global HPL, Global RandomAccess, EP STREAM (Triad) per system and Global
FFT.

Class 2: Most Productivity (at least 1 award)

The most "elegant" implementation of at least four and at most five computationally intensive kernels. At least 3 tests

of the Class 1 have to be included (choose from Global HPL, Global RandomAccess, EP STREAM Triad per system

@)

HPCC: What it did well .

e Established an annual competition for benchmarking \

e Focused attention on elegance in addition to performance

(@ ®

Benchmark Suite Scorecard

x|
x|
I I
SIS
1]
AN
m O X O X
A O X m KX
Z O O d QA
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

HPCC: Numerical Scoring .o

e Would HPC Application Developers care about this? \
e HPCC: 4 (comm idioms yes, computations, less so)

e Does a (clear) paper and pencil description exist?
e HPCC: 5 (some—stream, ra—were clearer than others—hpl)

e Does the suite include a fast reference version?
° HPCCZ?

e Does the suite include a clear reference version?
o HPCC: 2 (monolithic, difficult to detangle code; some parts inscrutable)

e Forum for comparison?
e HPCC: 7

e Framework for evaluating productivity?
e HPCC7

/////

HPCC: Where it fell short .

e Many judges seemed to not spend much time on elegance

e in practice, might catch glimpses of code in 5-minute presentations
e Or not...
e even when you did, 5-minutes is not enough time to make that call well

e admittedly, SC is a busy time of year...

¢ In early years, awarded separate perf and elegance awards
e disregarded the tension between those concerns

e Difficult for public to process results after the fact
e code was not made available in a standard way

e Once arbitrary codes added, couldn’t make comparisons

e Lack of continuity from year to year...

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.

\
\

What Trend Do these Awards Suggest? .o

2006: Cilk wins “Best overall productivity” |
Chapel and X10 take honorable mentions
2007: X10 and win “most productive” awards
2008: Chapel, UPC+X10, Parallel Matlab tie for “most productive”
2009: Chapel wins “most productive”
2010: UPC+X10 win “most productive system”
CAF wins “most productive language”
2011: Chapel wins “most elegant language”
2012: Chapel wins “most elegant language”
2013: XcalableMP wins class 2
2014: PCJ wins “most elegant”

(@ ®

Ratings for Suites Supporting Comparisons S

e \
\

e Is the approach prescribed / constrained (7) or not (1)? \
e Why? Want to evaluate technologies over algorithmic cleverness

e Is the competition open to anyone who wants to enter?

e Does the competition maintain continuity?
e Imagine if the top-500 required everyone to re-run every six months...

e Does the competition use apples-to-apples comparisons?

e Can community members surf the results conveniently?
e In order to draw their own conclusions, make their own visualizations

e Does the suite trivially support running it yourself?
e In order to reproduce results or obtain than on different systems

/C‘\ COMPUTE | STORE | ANALYZE
= Copyright 2017 Cray Inc. @

Benchmark Suite Scorecard

x|
x|
I I
SIS
1]
AN
m O X O X
Ao O X mKX
Z O O d QA
T w O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

x
x|
x|
I
SIS
1]l
N
n O X O X
A O X mKX
Z 0O O 4 A
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

x
x
x
x
N
x| !
x|
x|
I
SIS
1]l
N
n O X O X
A O X mKX
Z 0O O 4 A
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Comparison Ratings for HPCC .

e Is the approach prescribed / constrained (7) or not (1)? \
e HPCC: 3

e Is the competition open to anyone who wants to enter?
o HPCC: 7

e Does the competition maintain continuity?
e HPCC: 1

e Does the competition use apples-to-apples comparisons?
o« HPCC: 2

e Can community members surf the results conveniently?
e HPCC: 2

e Does the suite trivially support running it yourself?
e HPCC: 1

(@ ®

®
!
CRAaY |

Thoughts on improving the HPCC competition KSR

e \
\

e Have entries carry over from year-to-year like top-500 \
e Or, run competition continually in real-time like the CLBG

e Have judges devote time offline to evaluating elegance

e Re-unify set of benchmarks to study
e Perhaps introduce a new benchmark each year, retiring an old one?

e Maintain submitted codes and results in a unified manner

(@ ®

DOE Proxy Applications (DOEPRX)

DOE Proxy Apps: What they are

e Benchmarks that are...
...large enough and realistic enough that experts value their results
...yet tractable enough that non-experts can tackle them

e Where’s the screenshot?
e This is not a well-defined benchmark suite per se
e More a style of benchmark that has been in vogue in recent years
e As a result, no central repository (as far as I'm aware of...)

/C“\ COMPUTE | STORE | ANALYZE

=/ Copyright 2017 Cray Inc.

DOE Proxy Apps: What they do weli

e As intended: Create tractable codes that matter

DOE Proxy Apps: Where they fall short

e They present something of a moving target:
e There are lots of them, including apparent redundant instances
e Many seem to go through phases of being more or less fashionable
e Each requires a fair amount of effort to port and tune
e The challenge: How is a modest-sized team to invest its time?

e Aforementioned lack of centralized suite
e Keeping tabs on several / all of them requires lots of effort

e No established forums for comparison

/C‘\ COMPUTE | STORE | ANALYZE
—

,/ Copyright 2017 Cray Inc.

Benchmark Suite Scorecard

x
x
x
x
N
x| !
x|
x|
I
SIS
1]l
N
n O X O X
A O X mKX
Z 0O O 4 A
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

x
x
x
x
N
x|t
XN
XN
1 xX]|?
SISES
SRR
SEUES
n O X O X
A O X mKX
Z 0O O 4 A
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

The Computer Language Benchmarks Game
(CLBG)

CLBG: Whatitis

e A suite of 13 “toy” benchmarks

e single-node

e serial, vectorizable, or multicore parallel

e exercise key features like...
..memory management
..tasking and synchronization
..arbitrary-precision math
..vectorization
..strings and regular expressions

e Imagine a 3D ragged matrix:

e with 13 benchmarks
X ~28 languages

X as many impls as are interesting

e each entry contains:
e source code
e performance information
e “code size”

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write
it!

Which programs are fast?

Which are succinct? Which are efficient?

Ada C Chapel C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest

stories

CLBG: Whatitis

e A suite of 13 “toy” benchmarks
e single-node
e serial, vectorizable, or multicore parallel

e exercise key features like...
..memory management
..tasking and synchronization
..arbitrary-precision math
..vectorization
..strings and regular expressions

e Imagine a 3D ragged matrix:
e with 13 benchmarks

Chapel entries have been

W accepted since ~IPDPS 2016 £
® ec = V CUI Ilc]

e source code

e performance information

e “code size”

C

=/

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write
it!

Which programs are fast?

Which are succinct? Which are efficient?

C# C++ Dart

Fortran Go Hack

Java JavaScript Lisp Lua
OCaml Pascal Perl PHP Python
Racket Ruby JRuby Rust Smalltalk
Swift TypeScript

{ for researchers } fast-faster-fastest

stories

CLBG: Whatitis

e A suite of 13 “toy” benchmarks

e single-node
e serial, vectorizable, or multicore parallel

e exercise key features like...
..memory management
..tasking and synchronization
..arbitrary-precision math
..vectorization
..strings and regular expressions

e Imagine a 3D ragged matrix:

e with 13 benchmarks

X ~28 languages

X as many impls as are interesting
e each entry contains:

e source code

e performance information

e “code size’

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write
it!

Which programs are fast?

Which are succinct? Which are efficient?

Ada C Chapel C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } <::fEEE—faster-fas?EEE::>

stories

O

W
o
o

=
o
o

W U
o O

-
o

W U

-

program time / fastest program time

How many times slower?

5158228 EZE £803
0y8ET e w28 §E823
20 T 29
.
:
o1] L AL
r11d i
T rr=r Lo TITT
e == T — |

benchmarks game 09 Sep 2016 ub4q

CLBG: Fast-faster-fastest graph (May 2017) SO0N

Site summary: relative performance (sorted by geometric mean) .

£
= 300
=
©
o 100
o
S— 50
@ 30
17
S
- 10
)
E 5
c 3
©
S 1
o

C gcc
Rust

=1

“++ g++

I

=%

—_

How many times slower?

-
<

p
O

LN
‘ e)

T

hapel

—~
-

O

Jav

ran Intel

Swift

4J “AF‘L

Go
T Core

GO

NI

]

e Pascal
OCaml

j—

J_.J _J d =

benchmarks game

09 May 2017 ub4q

CLBG: Sorting Results

Can sort results by execution time, code size, memory or CPU use:

X
1.0
1.2
1.7
2.3
3.3
5.6
6.8
8.0
8.5
10
10
11
11
13
13

The Computer Language

Benchmarks Game

chameneos-redux

description

program source code,
measurements

source
C gcc #5

C++ g++ #5
Lisp SBCL #3
Chapel #2
Rust #2

C++ g++ #2
Chapel

Java #4
Haskell GHC
Java

Haskell GHC #4
C# .NET Core
Go

Go #2

Java #3

secs
0.60
0.70
1.01
1.39
2.01
3.40
4.09
4.82
5.15
6.13
6.34
6.59
6.90
7.59
7.94

command-1line and

mem
820
3,356
55,604
76,564
56,936
1,880
66,584
37,132
8,596
53,760
6,908
86,076
832
1,384
53,232

9z
2863
1994
2907
1210
2882
2016
1199
1607
989
1770
989
1400
1167
1408
1267

cpu
2.37
2.65
3.93
5.43
7.81
11.88
16.25
16.73
9.26
8.78
12.67
22.96
24.19
27.65
26.86

cpu load

100% 100% 98% 100%

100% 100% 91% 92%

97% 96% 99% 99%

99% 99% 98% 99%

97% 98% 98% 98%

100% 51% 100% 100%

100% 100% 100% 100%

98% 98% 54% 99%

79% 100% 2% 2%

42% 45% 41% 16%

99% 100% 2% 1%

99% 82% 78% 91%

100% 96% 56% 100%

91% 99% 99% 78%

54% 96% 98% 94%

1.0
1.0
1.1
1.1
1.1
1.2
1.3
1.3
1.3
1.3
1.3
1.6
1.6
1.6
1.6

9
)
The Computer Language
Benchmarks Game

chameneos-redux

description

program source code, command-line and

measurements
source secs mem gz cpu cpu load
Erlang 58.90 28,668 4 131.19 62% 60% 51% 53%
Erlang HiPE 59.39 25,784 34 131.58 60% 56% 56% 54%
Perl #4 5min 14,084 85 7 min 40% 40% 29% 28%
Racket 5min 132,120 791 5 min 1% 0% 0% 100%
Racket #2 175.88 116,488 842 175.78 100% 1% 1% 0%
Python 3 #2 236.84 7,908 866 5 min 24% 48% 27% 45%
Ruby 90.52 9,396 920 137.53 35% 35% 35% 34%
Ruby JRuby 48.78 628,968 928 112.15 65% 60% 49% 58%
Go #5 11.05 832 957 32.48 75% 74% 75% 73%
Haskell GHC #4 6.34 989 12.67 99% 100% 2% 1%
Haskell GHC 5.15 989 9.26 79% 100% 2% 2%
OCaml #3 32% 38% 37% 39%
Go gz == code size metric 00% 96% 56% 100%
Chapel strip comments and extra ZELEIELITRLIA
Chapel #2 Whitespace’ then gz|p 99% 99% 98% 99%

CLBG: Comparing Pairs of Languages

Can also compare languages pair-wise (performance only): .

The Computer Language
Benchmarks Game

Chapel programs versus Go

all other Chapel programs & measurements

by benchmark task performance

regex-redux

source secs
Chapel 10.02
Go 29.51

binary-trees

source secs
Chapel 14.32
Go 34.77

fannkuch-redux
source secs
Chapel 11.38

mem
1,022,052
352,804

mem
324,660
269,068

mem

46.056

gz
477
798

gz
484
654

gz
728

cpu
19.68
61.51

cpu
44.15
132.04

cpu

cpu load

99% 72% 14% 12%

77% 49% 43% 40%

cpu load

100% 58% 78% 75%

95% 97% 95% 95%

cpu load

45.18 100% 99% 99% 100%

But happily, all the data is open source!

Chapel entries: normalized perf & size (Apr 2017) .

. chapel .
: B chapel
[0 smallest
O fastest
[] gmean-smallest

() egmean-fastest

relative execution time

relative source size

Chapel vs. 9 other languages R

e \

chapel-gcc chapel-gpp chapel-ifc \
- chapel - chapel - chapel
- - o e
0 smatlest smallest O smatlest
fastest fastest fastest
[enean-smattest faean-smatlest [enean-smatest
fmean- fastest fmean-fastest fmean-fastest
]
.
. o
g .

: ++ | Fortran

: =
.
. s
LI ° ™ ®
n = a
o L] L] = a
[e | . L] | . L}
] L] i |] ()
. s
) @ 0 a o . - o ° °
*m © P2 e a s ™ L.em s, g P TN ° e
ehapel-go chapel-rust chapel-swift
[agrey - et - e
& -t ire
D smatiest 5 smatiest D smatiest
fastest fastest Tastest
[enean-smallest [nean-smallest [eean-smallest
S et e
o
.
.
§ :
. o ¢ u s ¢ WI I
. ; :
SO * L
Iy, o 1y Iy
[}] L] LA]
.
a s
- e °
m . ® a . & . =, . o B o 3
I) E ® " i r)
] 0 B 5] H L O ° [} °® ° o
" ®° & s o - B i o . ana m® g o =

chapel-java

chapel-scala chapel-python3

- chapel —chapel = chapel

- s - scala python3

O smallest smallest - smallest
fastest fastest

s
gnean-smallest °
gnean- fastest

fastest
gnean-smallest
E

pnean-fastest nean-fastest

.. Java | Scala Python

relative source size

Cross-Language Summary .

zoomed-out
100

B chapel
Il gcc
g0
. gpp
ifc
B java
python3
BN rust
BN scala
swift
[] gmean-smallest
(O gmean-fastest

relative execution time

relative source size

Cross-Language Summary (no Python) .

zoomed-in
12

N chapel
Hl scc

g0
. gpp

]| : i : ifc
§ 0 SRR I B java
: : Il rust
\ B scala
: : ’ swift
[] gmean-smallest
O

gmean-fastest

relative execution time

relative source size

CLBG: Website

Can also browse program source code (but this requires actual thought):

proc main() {
printColorEquations();

const groupl = [i in 1..popSizel] new Chameneos(i, ((i-1)%3):Color);
const group2 = [i in 1..popSize2] new Chameneos(i, colorsl0[i]);

cobegin {
holdMeetings(groupl, n);
holdMeetings(group2, n);
}

print(groupl);
print(group2);

for ¢ in groupl do delete c;
for c in group2 do delete c;

//
// Print the results of getNewColor() for all color pairs.
//
proc printColorEquations() {

for cl in Color do

for c2 in Color do
writeln(ecl, " + ", c2, " > ",
writeln();

getNewColor(cl, c2));

//
// Hold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;
}

excerpt from 1210 gz Chapel #2 entry
C

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

{

cpu_set_t
FILE*
char

char const*
int

int

int

int

int
size_t
size_t

char const*
size_t
char const*
size_t
char const*
size_t
char const*
size_t

CPU_ZERO(&active_cpus);

active_cpus;
£;

buf [2048];
pos;
cpu_idx;
physical_id;
core_id;
cpu_cores;
apic_id;
cpu_count;
i;

processor_str
processor_str_len
physical_id_str
physical_id_str_len
core_id_ str

core_id str_len
cpu_cores_str
cpu_cores_str_len

=" ",
= ‘processor ;

strlen(processor_str);
"physical id";
strlen(physical_id_str);
"core id";
strlen(core_id_str);
"cpu cores";
strlen(cpu_cores_str);

sched_getaffinity(0, sizeof(active_cpus), &active cpus);

cpu_count 0;

for (i = 0; i != CPU_SETSIZE; i += 1)

if (CPU_ISSET(i, &active_cpus))

{
cpu_count += 1;
}
}
if (cpu_count == 1)
{
is_smp[0] = 0;
return;
}

is_smp[0] = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc #5 entry

)

CLBG: What it does well .

e Engages the community, drives interest and chatter \

e Incredibly active in terms of steady stream of submissions

(@ ®

CLBG: Where it falls short (for HPC) .

e Single-node only \

e Only some overlap with HPC computational idioms

Benchmark Suite Scorecard

x
x
x
x
N
x|t
XN
XN
1 xX]|?
SISES
SRR
SEUES
n O X O X
A O X mKX
Z 0O O 4 A
T W O
O
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

b N
b N
b N
b N
N l
XIS
XINIX|S
XINIX|S
LIS
SISIESES
SARERER.
AYRE RN ¢
n O X O X
Ao O X mKX
Z 0O 0O d QA
T W O
@)
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

CLBG: Summary .

e HPC would benefit greatly from something like the CLBG
e a good, engaging challenge to encourage innovation
e online, continual, open, surfable

e This would be far from trivial, though...
what system(s) would be used for the evaluation?
e what benchmarks?

e need a reasonably neutral party to arbitrate questions
e e.g., ‘Does doing xyz violate the prescribed approach?”

level of effort required to keep all the necessary software up-to-date
e ...

e Yet, doing something would beat doing nothing

e top-500 and CLBG as examples of this
e neither is perfect, yet each contributes something of value to the community

If interested in more, see my 4:20pm talk at CHIUW today

/C‘\ COMPUTE | STORE | ANALYZE
—

,/ Copyright 2017 Cray Inc.

The Intel ParRes Kernels (PRK)

PRK: Whatitis oo

O This repository Pull requests Issues Marketplace Gist

e A suite of ~12 parallel kernels e/ owar 5 |
° deSIQned to expose perf bOttleneCkS <> Code Issues 31 Pull requests 4 Projects 0 Wiki Insights ~

This is a set of simple programs that can be used to explore the features of a parallel platform.

[) exa m p I e ke rn e I S : https://groups.google.com/forum/#!for...
. Ste n Ci | {1,651 commits ¥ 16 branches © 5 releases

= S p a rS e m at” X_Ve Cto r Branch: master v New pull request Create new file =~ Upload fil
I pa rti CI e -— i n —Ce | | p atte rn g jeffhammond committed on GitHub Merge pull request #158 from jeffhammond/fix-fortran-warnings -
- B AMPI Removing some cleanup code from the end of AMPI/AMR that is more trou...
...wavefront-style computation . o
++ Fixing minor errors.
tra n S p O S e B Cxx11 use template magic for stencil
B FG_MPI use MPI_UINT64_T with uint64_t data

" dgel I “ I I 8 FORTRAN silence GCC warnings for Fortran

8 GRAPPA Fixing makefile comment about default shape for stencils.

e serial, parallel, and distrib. versions ...
e hOSted on GltHUb 8 LEGION Fixing minor errors.

B MPI1 Removing some cleanup code at end of MPI1/AMR that is more trouble th...
~ Bm MPIOPENMP Fixing makefile comment about default shape for stencils.
e ~18 languages represented
. . B MPIRMA Fixing makefile comment about default shape for stencils.
o u Ses TraVIS to p rese rve q u a | Ity 8 MPISHM Fixing makefile comment about default shape for stencils.
m OCTAVE add type to zeros
8 OPENMP Fixing makefile comment about default shape for stencils.
8 PYTHON specialize star(r=2), rename stencil->grid [ci skip]
I SERIAL Fixing makefile comment about default shape for stencils.
B SHMEM Fixing makefile comment about default shape for stencils.
m UPC remove explicit -O3 and trailing whitespace
B common hand-merge C++ from idiomatic-c++11
C COMPUTE | STORE | ANALYZE
_ | (&)
_7/ Copyright 2017 Cray Inc. .

PRK: What it does well .

e Establishes a set of basis vectors for real applications \

(@) ®

PRK: Where it falls short (at present)

e Not a lot of uptake or interest as of yet
e Not for lack of interest among its curators

e No formal competition or arena
e Yet, framework exists for running codes automatically

/C‘\ COMPUTE | STORE | ANALYZE
—

=/ Copyright 2017 Cray Inc.

Benchmark Suite Scorecard

b N
b N
b N
b N
N l
XIS
XINIX|S
XINIX|S
LIS
SISIESES
SARERER.
AYRE RN ¢
n O X O X
Ao O X mKX
Z 0O 0O d QA
T W O
@)
O

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Benchmark Suite Scorecard

b SIS
x N
x N
x N
N LIS
Xl UISES
P IR JRN D
XINIX|IN]
SR IRE RN
SIESIESIESES
SRERER IS
ST LIS
m O X O X
A O X mKX
Z 0 0o d0
T W O
@
QO

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Wrap-up

COMPUTE

STORE

Copyright 2017 Cray Inc.

ANALYZE

In Summary N

Scoring existing HPC benchmark suites, each has a distinct .
approach and set of characteristics...

A Proposal:

e Create a group to curate a CLBG-style arena for the PRK
e e.g., a DOE lab with access to supercomputer resources
e Or an academic group granted time on DOE resources

e Can we create something as viral and engaging for HPC as the CLBG
is for mainstream programmers?

/C‘\ COMPUTE | STORE | ANALYZE
—

= Copyright 2017 Cray Inc.

Benchmark Suite Scorecard

b SIS
x N
x N
x N
N LIS
Xl UISES
P IR JRN D
XINIX|IN]
SR IRE RN
SIESIESIESES
SRERER IS
ST LIS
m O X O X
A O X mKX
Z 0 0o d0
T W O
@
QO

| ANALYZE

STORE
Copyright 2017 Cray Inc.

COMPUTE

Questions?

\
. . (el — PL_N
Legal Disclaimer o
S \
y
Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE?2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

(@ @

CRANY

THE SUPERCOMPUTER COMPANY

