
Striving for
Productivity and Performance Portability

Brad Chamberlain, Chapel Team, Cray Inc.
Performance Portability in Extreme Scale Computing:

Metrics Challenges, Solutions (Dagstuhl 17431)
October 26, 2017

If the HPC Community
were to create a truly productive language…

Brad Chamberlain, Chapel Team, Cray Inc.
Performance Portability in Extreme Scale Computing:

Metrics Challenges, Solutions (Dagstuhl 17431)
October 26, 2017

…would we ever know?

If the HPC Community
were to create a truly productive language…

…how would we ever know?
Brad Chamberlain, Chapel Team, Cray Inc.

Performance Portability in Extreme Scale Computing:
Metrics Challenges, Solutions (Dagstuhl 17431)

October 26, 2017

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
4

My Background

Copyright 2017 Cray Inc.
5

Education:
● Earned Ph.D. from University of Washington CSE in 2001

● focused on the ZPL data-parallel array language
● Remain associated with UW CSE as an Affiliate Professor

Industry R&D:
● Currently a Principal Engineer at Cray Inc.
● Technical lead / founding member of the Chapel project

Disclaimers

Copyright 2017 Cray Inc.

● This talk focuses a lot on languages, due to my biases
● That said, many points likely apply to other HPC software…

● I tend to use the term “language” in a very loose sense
● “A way of communicating your intent to the computer”
● Think “programming model” or “programming notation” if you prefer

6

Do we have productive HPC languages?

Copyright 2017 Cray Inc.
7

Scenario 1: Brad leaves his HPC bubble to ask a colleague:
● ”I need to write a desktop program. You’re young and hip, what

productive language should I use?”
● what does it say that I didn’t simply use my HPC language for this…?

● likely responses: Python, Swift, Go, R, Matlab, …

Scenario 2: Colleague asks Brad:
● ”I need to write some general-purpose distributed memory code.

You’ve worked in HPC for decades, what should I use?”
● my response: … [awkward embarrassment for our community]

HPC Language Characterizations

Copyright 2017 Cray Inc.

Productive languages
● idealistic
● top-down design

● driven by end-user needs
● intent-oriented

● something more coherent
● tricked-out BMW i8
● classical symphony
● worth striving for

Current languages
● pragmatic
● bottom-up design

● driven by system capabilities
● mechanism-oriented

●alphabet soup
●NASCAR
●punk rock
●worthy of respect

8

Productivity: Played Out?

Copyright 2017 Cray Inc.
9

● There’s some sense that productivity isn’t “hot” anymore
● “Haven’t we [solved | given up on] that by now?”

● Arguably analogous to “peace”
● not particularly “new” or “hip” as a concept
● reasonable reasons for skepticism about our ability to achieve it

● for productivity, these are more social than technical, in my opinion
● yet, clearly something to desire / strive for over the alternative

● Personally, I prefer not to throw in the towel (in either case)

Productivity and HPCS

(a brief history, from my perspective)

Copyright 2017 Cray Inc.
10

DARPA HPCS: High Productivity Computing Systems
● Goal: improve productivity by a factor of 10x
● Timeframe: Summer 2002 – Fall 2012
● Three phases, five competitors: Cray, HP, IBM, SGI, Sun
● Cray developed a new system architecture, network, software stack

● (this became the very successful Cray® XC30™ Supercomputer Series)
…and a new programming language: Chapel

Chapel’s Origins: HPCS

Copyright 2016 Cray Inc.
11

Productivity, as defined by HPCS

Copyright 2017 Cray Inc.
12

Productivity =
performance

+ programmability (readability, writability, maintainability, modifiability, tunability, …)

+ portability
+ robustness

A reasonable starting point… but how to measure 10x?
● particularly since most of these are hard to measure individually?

In phase 2, an independent team was created to define this

My “Zany Metrics” (an early brainstorming exercise)

Copyright 2017 Cray Inc.
13

(source: HPCS Phase II Metrics
Kickoff: 2003-8-5)

“Language Bingo”

Copyright 2017 Cray Inc.
14

(source: an early HPCS
productivity meeting)

Sterling’s Model of Productivity

Copyright 2017 Cray Inc.
15

(source: HPCS Phase II Metrics
Kickoff: 2003-8-5)

Sterling’s Model of Productivity

Copyright 2017 Cray Inc.
16

(source: HPCS Phase II Metrics
Kickoff: 2003-8-5)Coincidence?!? I think not…

Various Teams’ Models of Productivity

Copyright 2017 Cray Inc.
17

http://journals.sagepub.com/toc/hpcc/18/4

IJHPCA special issue
on HPC productivity

The Application Kernel Matrix

Copyright 2017 Cray Inc.
18

(source: Marina del Mar SW Productivity Workshop, 2005?)

HPCS Workflows

Copyright 2017 Cray Inc.
19

(source: Cray government review)

Timed Markov Models

Copyright 2017 Cray Inc.
20

(source: Cray government review)

User Studies: Quantitative Evaluation

Copyright 2017 Cray Inc.
21

(source: Cray government review)

User Studies: Qualitative Evaluation

Copyright 2017 Cray Inc.
22

“I loved not having to think as hard about offsets and counts for the
parallel version of the code in Chapel, as opposed to the MPI version,
where I almost always had to chase down two or three indexing errors.”

“The biggest feature from a broad perspective for me was domains.
Especially for scientific codes, it is invaluable to be able to define
the couple problem domains you're working with. It makes it trivial
to change the size or layout or distribution if you decide you need to,
it helps guarantee that all of your different arrays match up. A 3D
rectangular grid is infinitely more clear in Chapel with domains than in C,
where you have to figure out how they laid it out (is it one giant array?
what is the major dimension? x? z? y?).”

“Lastly, I'm a huge huge fan of the type inference used in Chapel.
I like that I don't have to specify types everywhere--they can just
be inferred from how I'm using them, but if I mess something up,
the compiler catches it.”

Summary: Many Useful Concepts/Techniques…

BUT…

Copyright 2017 Cray Inc.
23

Which is more productive?

Copyright 2017 Cray Inc.
24

Which is more productive? (tipping my hand)

Copyright 2017 Cray Inc.
25

If I published a study showing that one
was 3.6x more productive than the other…

…would you switch?
…would you believe it?

Which is more productive?

Copyright 2017 Cray Inc.
26

Productivity: Your Mileage May Vary

Copyright 2017 Cray Inc.

● Productivity is a highly personal, social phenomenon
● “I’ll know it when I see it”

● To that end, our evaluations should be social, not analytic
● Support personal weighing of tradeoffs
● Allocate time and spaces for evaluating potential solutions

27

Poll: How many are familiar with the
Computer Language Benchmarks Game?

28
Copyright 2017 Cray Inc.

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Website supporting cross-
language comparisons
● 13 toy benchmark programs x

~28 languages x several entries
● exercise key computational idioms
● specific approach prescribed

29

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Website supporting cross-
language comparisons
● 13 toy benchmark programs x

~28 languages x many implementations
● exercise key computational idioms
● specific approach prescribed

Take results with a gra

30

Like the Application Kernel Matrix in several respects…

The Application Kernel Matrix

Copyright 2017 Cray Inc.
12
8

(source: Marina del Mar SW Productivity Workshop, 2005?)

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Website supporting cross-
language comparisons
● 13 toy benchmark programs x

~28 languages x many implementations
● exercise key computational idioms
● specific approach prescribed

Take results with a grain of salt
● your mileage may vary

That said, it is one of the only
such games in town…

31

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Chapel’s approach to the CLBG:
● striving for elegance over heroism

● ideally: “Want to learn how program xyz
works? Read the Chapel version.”

32

CLBG: Fast-faster-fastest graph (Sep 2016)

Copyright 2017 Cray Inc.
33

Relative performance, sorted by geometric mean

faster

CLBG: Fast-faster-fastest graph (May 2017)

Copyright 2017 Cray Inc.
34

Relative performance, sorted by geometric mean

faster

CLBG: Fast-faster-fastest graph (Sept 2017)

Copyright 2017 Cray Inc.
35

Relative performance, sorted by geometric mean

faster

CLBG: Website

Copyright 2017 Cray Inc.

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric
strip comments and extra

whitespace, then gzip

36

CLBG: Website

Copyright 2017 Cray Inc.

Can also compare languages pair-wise:
● but only

sorted by
execution
speed…

37

Scatter plots of CLBG code size x speed

Copyright 2017 Cray Inc.
38

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Language Cross-Language Summary
(Oct 2017 standings)

Copyright 2017 Cray Inc.
39

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Language Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2017 Cray Inc.
40

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Language Cross-Language Summary
(Oct 2017 standings, zoomed in)

Copyright 2017 Cray Inc.
41

smaller

fa
st

er

F#Haskell

OCaml

Pascal

Typescript

C#

Swift
Java

Fortran
C++
C

Rust

Scala

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG Language Cross-Language Summary
(Oct 2017 standings)

Copyright 2017 Cray Inc.
42

smaller

fa
st

er

JRuby

Ruby

Lua

Perl

Erlang

PHP Hack

Dart
Typescript

Racket

Smalltalk

OCaml

Compressed Code Size (normalized to smallest entry)

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t e
nt

ry
)

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

43

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

44

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought!):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Comparisons

45

Benchmark Suite Scorecard (EMBRACE 2017)

Copyright 2017 Cray Inc.
46

✘✘✓✓✓✓ ~✓ ✓✓✓✓

NPB
HPCC

DOE PROXY APPS
CLBG

PRK

Benchmark Suite Scorecard (EMBRACE 2017)

Copyright 2017 Cray Inc.
47

✓ ~ ✘✓ ~ ✘

~ ~ ✓✘✓✓ ✓~ ✘✘✘✘

✓ ✓ ~~ ✘✘

✘

~
✘✘✓✓✓✓ ~✓ ✓✓✓✓

~ ✓✓ ? ~ ✘ ✓✓ ✓

NPB
HPCC

DOE PROXY APPS
CLBG

PRK

My Vision for Advancing Productive Alternatives

Copyright 2017 Cray Inc.

1. Establish an ongoing, online language bake-off
● The “HPC Computer Language Benchmarks Game”
● Support personal comparisons between technologies
● Challenges:

● Finding someone to be the enthusiastic host and benevolent dictator
● What systems to run on? and whose?
● What benchmarks?
● How to manage entries? What rules? How reviewed?
● Website design and implementation

48

Intel PRK suite?

Scalable Parallel Programming Concerns

Copyright 2017 Cray Inc.

Q: What should parallel programmers focus on?
A: Serial Code: Software engineering and performance

Parallelism: What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?

For portable performance?
Separation of Concerns: (drink!)

49

Inspiration from Kathy Yelick (UC Berkeley, LBNL)

Copyright 2017 Cray Inc.

Why Consider New Languages at all?

● Do we need a language? And a compiler?
● If higher-level syntax is needed for productivity

● We need a language
● If static analysis is needed to help with correctness

● We need a compiler (front-end)
● If static optimizations are needed to get performance

● We need a compiler (back-end)

50

(Source: HPCS productivity workshop panel, ~2004?)

Poll: Familiar with Chapel?
Have opinions about Chapel?

Have downloaded Chapel?
Within the past 12–18 months?

51
Copyright 2017 Cray Inc.

Poll: Familiar with Chapel?
Have opinions about Chapel?

Have downloaded Chapel?
Within the past 12–18 months?

52
Copyright 2017 Cray Inc.

Poll: Familiar with Chapel?
Have opinions about Chapel?

Have downloaded / tried Chapel?
Within the past 12–18 months?

53
Copyright 2017 Cray Inc.

Poll: Familiar with Chapel?
Have opinions about Chapel?

Have downloaded / tried Chapel?
Within the past 12–18 months?

54
Copyright 2017 Cray Inc.

What is Chapel?

Chapel: A productive parallel programming language
● portable
● open-source
● a collaborative effort

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming at scale far more productive

Copyright 2017 Cray Inc.
55

What does “Productivity” mean to you?

Copyright 2017 Cray Inc.

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control to ensure performance”

56

Chapel and Productivity

Copyright 2017 Cray Inc.
57

Chapel strives to be…
…as programmable as Python
…as fast as Fortran
…as scalable as MPI (or SHMEM or UPC)
…as portable as C
…as flexible as C++
…as fun as [your favorite programming language]

The Chapel Team at Cray (May 2017)

Copyright 2017 Cray Inc.
58

14 full-time employees + 2 summer interns

Chapel Community R&D Efforts

Copyright 2017 Cray Inc.

http://chapel.cray.com/collaborations.html
(and several others…)

59

The Challenge

Copyright 2017 Cray Inc.

Q: So why don’t we already have such a language already?
A: Technical challenges?

● while they exist, we don’t think this is the main issue…
A: Due to a lack of…

…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to reverse this trend

60

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Chapel language feature areas

61

Base Language

Copyright 2017 Cray Inc.

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Lower-level Chapel

62

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2017 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

63

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

CLU-style iteratorsCLU-style iteratorsModern iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

64

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –-n=1000000

0
1
1
2
3
5
8
…

65

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

66

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

67

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

68

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

69

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

70

Task Parallelism and Locality Control

Copyright 2017 Cray Inc.

Task Parallelism
Base Language

Target
Machine

Locality Control

Domain Maps
Data Parallelism

71

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

72

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

73

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

74

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

75

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

76

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

77

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	vars

78

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs() do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

79

Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Higher-Level Features

Higher-level
Chapel

Domain Maps
Data Parallelism

80

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

81

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

82

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

83

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

84

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data	Parallelism	to	the	System)

85

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

86

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

87

magic?

descriptive?

HPF-like?

Not in the slightest…

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

88

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl
forall (i,j) in D do…

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

default domain map
• create task per local core
• block indices across tasks

Chapel’s prescriptive approach:

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

89

forall (i,j) in D do…

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create task per core
• block local indices across

tasks

Chapel’s prescriptive approach:

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.
90

forall (i,j) in D do…
Chapel’s prescriptive approach:

⇒ invoke and inline D’s
default parallel iterator
• defined by D’s type /

domain map

What if I don’t like D’s
iteration strategy?

default domain map
• create task per local core
• block indices across tasks

cyclic domain map
on each target locale…
• create task per core
• block local indices across

tasks

● Write and call your own parallel iterator:

● Or, use a different domain map:

● Or, write and use your own domain map:

forall (i,j) in myParIter(D) do…

var D = {1..n, 1..n} dmapped Block(…);

var D = {1..n, 1..n} dmapped MyDomMap(…);

Domain Maps specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…core operations on arrays / domains

Chapel and Performance Portability

Copyright 2017 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout?
● Sparse storage format?
● Parallel loop policies?
● Abstract node architecture?

91

Chapel and Performance Portability

Copyright 2017 Cray Inc.

● Avoid locking key policy decisions into the language
● Array memory layout? not defined by Chapel
● Sparse storage format? not defined by Chapel
● Parallel loop policies? not defined by Chapel
● Abstract node architecture? not defined by Chapel

● Instead, permit users to specify these in Chapel itself
● support performance portability through…

…a separation of concerns (drink!)
…abstractions—known to the compiler, and therefore optimizable

● goal: to make Chapel a future-proof language

92

Chapel Performance: Increasingly Competitive
(novel for Chapel; new within the past 12–18 months)

Copyright 2017 Cray Inc.
93

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
14
0

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

be
tte

r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

14
1

be
tte

r

Isx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
14
2

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

be
tte

r

LCALS

STREAM
Triad

HPCC RA

PRK
StencilISx

Nightly performance tickers online at:
http://chapel.sourceforge.net/perf/

Stencil PRK Scalability

Copyright 2017 Cray Inc.
14
8

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 128 256

G
Fl

op
/s

Nodes

Stencil PRK (weak scaling)

MPI-OpenMP

Chapel

Crossing the Rapids

Copyright 2017 Cray Inc.
94source: http://feelgrafix.com/813578-free-stream-wallpaper.html

Research Prototype Adopted in Production

Chris’s next MET Office model

Anshu’s next DOE app

CLBG

Stream

RA

PRK Stencil

ISx CoMD

MiniMD

LCALS

LULESH

[your production
app here]What are the next

stepping stones?

Time-to-science
academic codes

Codes from
startups Who’s interested in

meeting us partway?

My Vision for Advancing Productive Alternatives

Copyright 2017 Cray Inc.

1. Establish an ongoing online bake-off
2. Create forums for apps-languages pair-programming

● e.g., host a “speed-dating” Dagstuhl Seminar
● n productive language groups
● n apps groups looking for alternatives

● where n = 3–5?
● session 0: everyone gives lightning summaries of their language / app
● sessions 1–n: rotate apps x language groups

meanwhile, we’re interested in doing this anytime
(so, send open-minded apps groups our way)

95

excerpt from CHIUW 2017 keynote

Copyright 2017 Cray Inc.
96

“My opinion as an outsider…is that Chapel is important,
Chapel is mature, and Chapel is just getting started.
“If the scientific community is going to have frameworks for
solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.
“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”

–Jonathan Dursi
Chapel’s Home in the New Landscape of Scientific Frameworks

(and what it can learn from the neighbours)
CHIUW 2017 keynote

http://chapel.cray.com/presentations.html / https://www.youtube.com/watch?v=xj0rwdLOR4U

Chapel Resources

97
Copyright 2017 Cray Inc.

Chapel Central: http://chapel-lang.org

Copyright 2017 Cray Inc.
98

How to Stalk Chapel

Copyright 2017 Cray Inc.

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/
chapel-announce@lists.sourceforge.net

99

Suggested Reading (healthy attention spans)

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● published by MIT Press, November 2015
● edited by Pavan Balaji (Argonne)
● chapter is now also available online

Other Chapel papers/publications available at http://chapel-lang.org/papers.html

Copyright 2017 Cray Inc.
10
0

Suggested Reading (short attention spans)

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
● a run-down of recent events

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing Chapel in

spite of the inherent challenges
[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2017 Cray Inc.
10
1

Chapel StackOverflow and GitHub Issues

Copyright 2017 Cray Inc.
10
2

Where to..

Copyright 2017 Cray Inc.
10
3

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel_bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

Questions?

10
4Copyright 2017 Cray Inc.

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

10
5

