Striving for \
Productivity and Performance Portability

Brad Chamberlain, Chapel Team, Cray Inc.

Performance Portability in Extreme Scale Computing:
Metrics Challenges, Solutions (Dagstuhl 17431)

October 26, 2017
7N B
@}::e: il .

= 8

If the HPC Community
were to create a truly productive language...

...would we ever know?

Brad Chamberlain, Chapel Team, Cray Inc.

Performance Portability in Extreme Scale Computing:
Metrics Challenges, Solutions (Dagstuhl 17431)

October 26, 2017
7 .\'

1
cRAY |=.
CcCHAPEL o] -1-.

=y i

If the HPC Community
were to create a truly productive language...

...how would we ever know?

Brad Chamberlain, Chapel Team, Cray Inc.

Performance Portability in Extreme Scale Computing:
Metrics Challenges, Solutions (Dagstuhl 17431)

October 26, 2017
7 .\'

cRaN i
CHAaAPEL S =11

=y i

7~
C

Safe Harbor Statement

~

Ghis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
\ ? Y,

Copyright 2017 Cray Inc.

My Background cRas |

‘‘‘‘‘‘‘‘‘‘‘‘ f OF WASHINGTON

Education: Computer Science & Engineering o

e Earned Ph.D. from University of Washington CSE in 2001 B
e focused on the ZPL data-parallel array language

e Remain associated with UW CSE as an Affiliate Professor u

=

cRasr
CcCHAaPRPEL
—

=/

Industry R&D: CCRRANY”
e Currently a Principal Engineer at Cray Inc.
e Technical lead / founding member of the Chapel project

=/ Copyright 2017 Cray Inc.

\
Disclaimers CRANY |

(Y \
S \
\

e This talk focuses a lot on languages, due to my biases
e That said, many points likely apply to other HPC software... \

e | tend to use the term “language” in a very loose sense
e “Away of communicating your intent to the computer”
e Think “programming model” or “programming notation” if you prefer

=/ Copyright 2017 Cray Inc.

Do we have productive HPC languages? — Y

Scenario 1: Brad leaves his HPC bubble to ask a colleague:

e ’| need to write a desktop program. You're young and hip, what
productive language should | use?”

e what does it say that | didn’t simply use my HPC language for this...?
e likely responses: Python, Swift, Go, R, Matlab, ...

Scenario 2: Colleague asks Brad:

e ’| need to write some general-purpose distributed memory code.
You've worked in HPC for decades, what should | use?”

e my response: ... [awkward embarrassment for our community]

=/ Copyright 2017 Cray Inc.

)

\

\

\

HPC Language Characterizations ¢=|=A:Yj’ '

Current languages Productive lanquages
e pragmatic e idealistic \
e bottom-up design e top-down design
e driven by system capabilities e driven by end-user needs
e mechanism-oriented e intent-oriented
e alphabet soup e something more coherent
e NASCAR e tricked-out BMW i8
e punk rock e classical symphony
e worthy of respect e worth striving for

=)
” Copyright 2017 Cray Inc.

Productivity: Played Out? o

(Y \
S \
\

e There’s some sense that productivity isn’t “hot” anymore
e “Haven’t we [solved | given up on] that by now?” \

e Arguably analogous to “peace”
e not particularly “new” or “hip” as a concept

e reasonable reasons for skepticism about our ability to achieve it
e for productivity, these are more social than technical, in my opinion
e Vet, clearly something to desire / strive for over the alternative

e Personally, | prefer not to throw in the towel (in either case)

D
C// (9)

=/ Copyright 2017 Cray Inc.

Productivity and HPCS

(a brief history, from my perspective)

Chapel’s Origins: HPCS <=|=A:Yj’ '

DARPA HPCS: High Productivity Computing Systems
e Goal: improve productivity by a factor of 10x \
o Timeframe: Summer 2002 — Fall 2012
o Three phases, five competitors: Cray, HP, IBM, SGI, Sun

e Cray developed a new system architecture, network, software stack
e (this became the very successful Cray® XC30™ Supercomputer Series)

...and a new programming language: Chapel

=

ey
CHAPEL
—

=/

(~
C; ,
=/ Copyright 2016 Cray Inc.

p<ciso

V| | 1
e

Productivity, as defined by HPCS cRas
) { \
Productivity =
performance \
+ programmability (readability, writability, maintainability, modifiability, tunability, ...)
+ portability

+ robustness

A reasonable starting point... but how to measure 10x?
e particularly since most of these are hard to measure individually?

In phase 2, an independent team was created to define this

Copyright 2017 Cray Inc.

My “Zany Metrics” (an early brainstorming exercise)

<D

“Zany” Metrics M

4 Abstractness of Code
- how much code must change if we...

change number of processors, shape of processor set?
change problem size?

make processors not divide problem size evenly?
make processor dimensions, problem size non-2¢?
switch dense arrays to sparse?

change an array’ s rank?

4 Portability of Code
- how much code must change...

to run on another vendor’ s machine?
to get performance satisfactory to that vendor?

CRANY

(source: HPCS Phase Il Metrics
Kickoff: 2003-8-5)

“Language Bingo”

<D

Language Comparison

4pEE

Fortran/
MPI | SHMEM | Java uPC CAF HPF | OpenMP | C
Perfons| O o ? ? (0 ? ?
Portable| ? (o) ? ? X
Peformance| | O | O | O | O | X | X | X
Global View | X X X X X 0O 0O 0O
Post-scalar | ~/X /X (o) X X IX
Abstractions | X X (o) X X X
Succinct| X X X X X
General | O o O X X X o
(--=no comment O = good =s0-s0 X =poor ?=unproven)

CRRANY

\
CR=RANY |
[\
S \
\

(source: an early HPCS
productivity meeting)

Sterling’s Model of Productivity

@ Productivity Factors M
(Sterling Model) Version 2.1

Peak Performance (S;, Cy)

Performance «——— Efficiency (E)

Productivity Application Portability
Construction
S /— Maintainability
Availability «——— Reliability
(A) \
Accessibility

ANy

\
CR=RANY |
[\
S \
\

(source: HPCS Phase Il Metrics
Kickoff: 2003-8-5)

Sterling’s Model of Productivity

@D General Model of Productivity M

. NR
Ri= z."' result product Te = E T
Ti= time to compute result R: -

T = total lifetime of machine T.=Tr+Tr+To
Ty = total overhead time of machine e

To = quiescent time of machine RL = 2 Ri

Tr = working time of machine .

Nr = total number of result products during 7z Cr=Cis+Cu +Cro

C: = all costs associated with machine during 7z

Cis = application software costs during 7% Cis = § Csi

Cro = costs of ownership during 7% 7

Cu = cost of procurement and initial installation Rz

Cs: = cost of application software for result R: = Cix T
productivity

CCRRANY

Eﬂ Coincidence?!? | think not...

\
CR=RANY |
[\
S \
\

(source: HPCS Phase Il Metrics
Kickoff: 2003-8-5)

arious Teams’ Models of Productivity

IJHPCA special issue

on HPC productivity

—— " —

- — —

PAL P onmre
[
- ——

http://journals.sagepub.com/toc/hpcc/18/4

®SAGE jOUI’ﬂa|S Browse ~ Resources My Tools Search: keywords, title,au Q| Signin

Home Browse Submit Paper About Subscribe

Table of Contents
Volume 18, Issue 4, Winter 2004

Articles

6 HPC Productivity: An Overarching View
Jeremy Kepner
First Published Nov 1, 2004; pp. 393-397

Abstract
> Preview

o Software Project Management and Quality Engineering Practices
for Complex, Coupled Multiphysics, Massively Parallel
Computational Simulations: Lessons Learned From ASCI
D. E. Post R. P. Kendall
First Published Nov 1, 2004; pp. 399-416

Abstract
> Preview

e A Framework for Measuring Supercomputer Productivity
Marc Snir David A. Bader
First Published Nov 1, 2004; pp. 417432

Abstract

Schioss
Dagstuhl
Leibniz

Advanced

2.097 impect Factor

more »

HIGHTBERFORMANCE
COMPUTING APPLCATIONS

L

Contents

Articles

The Application Kernel Matrix

AKM Dimension

S

Kernel Matri: licrosoft Internet Exple

Fle Edt View Favorites Tooks Help

Qiak - © - [&) G| P search

Address | @] http://akm. matri

'z Favorites @ Media € -9 B3

Google -~ |

L

system ~
pd

language

architecture-neutral implementatic

ns

—

ANEANEANEAN
AN NI N NN
NEANEANEANEAN

kernel ——MMMM—

code listing
line/token count
performance

programmer information

Ay

(source: Marina del Mar SW Productivity Workshop, 20057?)

Cascade: Application Kernel Matrix

info thekemek the matrx progmmmer'slog kernel submission form discussion forum

Kernel Specs &
Solutions:

NASPB Conjugate Gradient

O Sweep3D

O NASPB Unstructured Adaptive
Connected Components

O Chip Floorplan Design

O NASPB Fourier Transform

O NASPB Muttigrid Benchmark
Protein Sequence Matching

Sparse Matrix Triangular
Backsolve

O Vector Max and Prefix Sums

Links:
O Cray, Inc.
O The Cascade Project
O HPCS: High Productivity
Computing Systems program
DARPA: Defense Advance
Research Projects Agency

Contacts:

O David Mizel

O John Feo

John Lewis

Brad Chamberlain
Justin Garcia

Kernel Matrix:

The matrix s a graphical representation of all the submissions that we have received and
confirmed. Programmers can submit 2 “generic” solution, or one that s tuned for high
performance on 3 specific computer system. If you submit aykemel solution in a language
that hasn't been used in the matrix before, a new row gets-added to the matrix. Hover
over a row, column, or cel for more information about already-submitted solutions.

Select a target system: | Generic Implementation v
CG S3D UA CCG CFD NFT_NMG PSM SMB_VMP)
1

Fortran
Unified Parallel C|

Chapel
ZPL|

1
Most recent ission: January 7 2005 @ 19:27:39

Submitted August 17 2004 @ 15:34:39
Submitted by: Justin Garcia of Rice University
Kernel: Connected Components
Language: Fortran
Line count: 100
Token count: 1000
Execution time: 1.2 seconds

Compiled with gcc —03 on a Powerbook G4 running Mac 0S 10.3.

Download the source code

Back to top

Last Modified: October 27 2004 03:51:26 PM

HPCS Workflows

@D Level 1 Functional Workflows ,#Peﬁ

‘ormulate
guestion:

(1) Writing Large Multi-Module Codes (3) Running Codes
roduction

Develop ' Develop \\ Vav m ide;
Approach Code / Qu_ny/ Results lypothesizg

Analyze Decide;

Chapel

% Writing Small Codes =

(4) Porting Code

Identify Change
Qifferences Code

((Probiem)

(5) Administration

@ @ HWISW
Upgr‘ade

<r

<r

¢ Workflows comprise

4 ltem in red represent areas with highest HPC specific interest

many steps; many overlapping

Workflow Coverage (2)

C ANy

(source: Cray government review)

Timed Markov Models

@ Our Workflow Analysis Approach Mg

Timed Markov
Models

1.0, 268s Program

Compile

.002,

LO,M 713, 55

%/

Compile

Workflow Coverage (4)

AN

(source: Cray government review)

User Studies: Quantitative Evaluation

Workflow 2 — Productivity Improvement Summary

Time Usage by Process Step, by Method, by Coding Order

Process Step

Hours Used

Process e

Overall Relative Productivity
Improvement 2.3 to 2.6 X

Debug Parallel Code

Programmers created less bugs when programming in Chapel
" Global view of data simplifies programming
Program Parallel

® Fewer changes needed when going from serial to parallel

" Multi-resolution of parallelism makes it easier to go from serial to parallel
Designing Parallel Algorithm

MPI programs frequently require restructuring of the serial C code, finding right MPI lib routine

G et

(source: Cray government review)

User Studies: Qualitative Evaluation

“The biggest feature from a broad perspective for me was domains.

Especially for scientific codes, it is invaluable to be able to define

the couple problem domains you're working with. It makes it trivial

to change the size or layout or distribution if you decide you need to,

it helps guarantee that all of your different arrays match up. A 3D

rectangular grid is infinitely more clear in Chapel with domains than in C,
where you have to figure out how they laid it out (is it one giant array?

what is the major dimension? x? z? y?).”

‘I loved not having to think as hard about offsets and counts for the
parallel version of the code in Chapel, as opposed to the MPI version,
where | almost always had to chase down two or three indexing errors.”

“Lastly, I'm a huge huge fan of the type inference used in Chapel.
| like that | don't have to specify types everywhere--they can just

be inferred from how I'm using them, but if | mess something up,

the compiler catches it.”

Summary: Many Useful Concepts/Techniques...

BUT...

Which is more productive?

File Edit Options Buffers Tools chpl Help
// Simple hello world
writeln("Hello, world!"); // print 'Hello, world!' to the console

-UU-:-—--F1 hello.chpl All L3 Git-master (Chapel/l Abbrev)

® [) bradc — vim chapel/test/release/examples/hello.chpl — bash

// Simple hello world
firiteln("Hello, world!"); // print 'Hello, world!' to the console

02 2 222222222

chapel/test/release/examples/hello.chpl" 2L, 91C

Which is more productive? (tipping my hand) CnA:Y:“‘ '

S \
\

® @ bradc — vim chapel/test/release/examples/hello.chpl — bash
f/ simple hello world

File Edit Options Buffers Tools chpl Help

// Simple hello world
writeln("Hello, world!"); // print 'Hello, world!' to the console ~G"G™ XN Z
q
writeln("Hello, world!"); // print 'Hello, world!' to the console

~

If | published a study showing that one
was 3.6x more productive than the other...

...would you switch?
...would you believe it?

Git-master (Chapel/l Abbrev) —=————=—————

=UU-:=--=F1 hello.chpl ALl L3

@

Which is more productive?

bradc — ssh

.cray.com — bash

ALPINE 2.00

ZOOMED MESSAGE INDEX
Oct 16 Dubey, Anshu
Oct 17 Vetter, Jeffrey S.
Oct 17 Vetter, Jeffrey S.
Wednesday Michelle Strout
Sunday Brad Chamberlain
Yesterday Luiz DeRose
Yesterday Vetter, Jeffrey S.
0:26 Petra Meyer
PHE} Luiz DeRose
1:07 Vetter, Jeffrey S.
A 372 10:56 Richard Membarth

XX X X X X X X X X

H Help § FldrList
] OTHER CMDS g [ViewMsg]

l§ PrevMsg
NextMsg

@

Folder: INBOX Message 372 of 377 ANS 4

(74K)
(.1M)
(71K)
(94K)
(19M)
(51K)
(80K)

(5M)

Re: Keynote at Dagstuhl
[seminar-17431] flash introduction t
RE: Keynote at Dagstuhl

Re: dagstuhl planning

Fwd: Airplane draft

RE: Can you call me today or tomorro
[seminar-17431] reminder to post you
Encyclopedia of Parallel Computing
(39K) Re: Can you call me today or tomorro
(93K) [semina 7431] links for our shared
(66K) Region Vectorizer (RV)

[No more messages in Zoomed Index]

Reply

PrevPage ¥ Delete R
§ Forward

SJe NextPage [I] Undelete

New New Delete Archive
Email Items
All Accounts
Inbox 69
Drafts 2
Sent
U] Trash 88
Cray
) Inbox 69
Drafts 2
=] Archive
Sent
1] Trash 88
Junk
Clutter

Online Archive
Conversation History
LiveMeetings
quarantine

RSS Subscriptions

=) Sync Issues
Smart Folders

On My Computer

Items: 10

)] | [GZ Meeting

€ €l

Reply Reply Forward (U7 Attachment
All

By: Date Received v 4
Today

Luiz DeRose
Re: Can you call me today or tomorrow
i Brad, Yes, it is 7 hours differe

11:03 AM

about 8:

ce. hi

Vetter, Jeffrey S. (sent by seminar-17431)
® [seminar-17431] links for our share... 10:08 AM
All: here are links for our shared documents: 1. Ho...

Petra Meyer
Encyclopedia of Parallel Computing
Dear Brad, you can find the Encyclopedia of Para

9:28 AM

Yesterday

Luiz DeRose
RE: Can you call me today or tomorrow Yesterday

What time works for you? I might be able to skype.

Vetter, Jeffrey S. (sent by seminar-17431)
[seminar-17431] reminder to post you..

Attendees: This is a reminder to post you

Sunday

Brad Chamberlain
Fwd: Airplane draft

—————————— Forwarded messa

10/22/17
From: B

Wednesday

Michelle Strout
Re: dagstuhl planning
Brad, You are awesome! | like the direct

10/18/17

train to St

Last Week

Vetter, Jeffrey S.
RE: Keynote at Dagstuhl
could not

d anything wrt

Vatbar Inffra € (rant e,

[[K. v
(] y A
Rules Read/Unread Categorize Follow Filter L5 Address Book Se]
Up Email Re

[seminar-17431] links for our shared docs | 24 Oct 2017

O Vetter, Jeffrey S. <vetter@ornl.gov>
O seminar-17431 17431

O dagstuhl-seminar-17431

Tuesday, October 24, 2017 at 10:08 AM

Show Details

sent by

.dagsty

All: here are links for our shared documents:

1. Home http://www.dagstuhl.de/en/program/calendar/semhp/?sem
2. Materials

3. Agenda

4. Shared Notes htty p/dagstuhl17431notes - feel free to captur]
5. Rideshare htty p/dagstuhl17431rides - please update you

Best regards,

- Bernd, Paul, Anshu, Jeff

Jeffrey S. Vetter | http://ft.ornl.gov/~vetter | +1-865-356-1649

Productivity: Your Mileage May Vary o

(Y \
S \
\

e Productivity is a highly personal, social phenomenon
e “I'll know it when | see it” \

e To that end, our evaluations should be social, not analytic
e Support personal weighing of tradeoffs
e Allocate time and spaces for evaluating potential solutions

=/ Copyright 2017 Cray Inc.

Poll: How many are familiar with the
Computer Language Benchmarks Game?

Computer Language Benchmarks Game (cLBG) ==A:Yf '

S \
The Computer Language . . \
Website supporting cross-

64-bit quad core data set Ianguage Com pariSOnS

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

e 13 toy benchmark programs x
W s s i et ~28 languages x several entries
Ada C Chapel ~C# Cr+ Dart e exercise key computational idioms

Erlang F# Fortran Go Hack

e specific approach prescribed

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest

stories

Computer Language Benchmarks Game (cLBG) SRt

The Computer Language
Benchmarks Game

64-bit quad
Will your toy benc

it!

Which programs
Which are succing!

a2 €

Erlang

Haskell

OCaml

Racket

system

III)
Like the Application Kernel Matrix in several respects...
a different progra The Application Kernel Matrix X
[Danpa) AKM Dimensions M antations
lioms

language

(source: Marina del Mar SW Productivity Workshop, 20057?)

\

Computer Language Benchmarks Game (cLBG) <=I=A:Yf '

S \
The Computer Language . . \
Website supporting cross-

64-bit quad core data set Ianguage Com pariSOnS

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

e 13 toy benchmark programs x
~28 languages x many implementations
Ada C Chapel ~C# Cr+ Dart e exercise key computational idioms

Erlang F# Fortran Go Hack

e specific approach prescribed

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python Take reSUIts With a grain Of salt
WS R e Re e e your mileage may vary

Swift TypeScript

(for researchers) fast-faster-fastest That said, it is one of the only
such games in town...

Copyright 2017 Cray Inc.

Computer Language Benchmarks Game (cLBG) ==A:Yf '

it!

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

Which programs are fast?
Which are succinct? Which are efficient?

Ada C Chapel Cc# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest >

stories

S \
\

Chapel’s approach to the CLBG:

e striving for elegance over heroism

e ideally: “Want to learn how program xyz
works? Read the Chapel version.”

CRANY
)

\

\

CLBG: Fast-faster-fastest graph (Sep 2016)

\

O
L
S ums ums wmwd T F—ilg
@ |eosed 9oy [eosed | e o
& WATIouowW #4 ALt { &
O WATT oUW #D kil | &
S o 10asdsn ST =
[} m_@.u_msu odeyy ke] ©
& 3launfopy alnlc = [
O w
muu 0 |wedo | juie- =—{ [H
> m DHO [[SEH w—{ [k
Q 100 1IN [#D 246D |={1H
w C e|pos e|eds — [}
+ E
QO 209 09 09 ook o [H
D Ojpyur ueniog | prir uess{ T H £
nm, PAR[BAPE[I S
Q ispy FseH L
@ | LVYND 500 ef =—{1H g
& +46+4D S
(- N o
o 206) D26 O 2
o o O O o nm —
T
Q. swi wesboud 1s93se) / SwWwiy weboud
)
P
hd
L
)
14

CLBG: Fast-faster-fastest graph (May 2017) <Ry

\
e |

\

S \
\

Relative performance, sorted by geometric mean

How many times slower? \
O £ 4 = o © o & O o = & 4 O o
300| 0 9 7 < 3 >3t 0% o EO I 5

-

@) —
100 .t L9 .5 6L $°9a3h
3 35 4 S _ > 5 & Z 0 — 2 ¥ z
50| & o N850, LET®
30 | © c g &L VOH 8 -

-
o
4
S
g
4
_Pascal
4
=54
o
b=

program time / fastest program time

5
> 1 | T T] 1 1
1 A =
1 ;i'l' — 1 > I —I- — ¥ _.l 1
benchmarks game 09 May 2017 ub4q

CLBG: Fast-faster-fastest graph (Sept 2017) <=|=A:Y®' '

\

S \
\

Relative performance, sorted by geometric mean

2 How many times slower? \

= O 4+ F o o ©® & O O = = 4 0O o

S 3: TEEESS50 BERES

£ O X o S8 nf O 28 B 00

100 . t o, SO o 58 TO9aF 0

2 8030 854 3£z o — 5 % 2

@ 30 v

7 T .

& v T X T

;10 T T P

£ + 1 I

c 3 | TITT

o I 1 =
= A

gléé'l' e el | iT‘ 1 J_ 1

o

benchmarks game 22 Sep 2017 ub4q

CLBG: Website

Can sort results by execution time, code size, memory or CPU use:

The Computer Language

Benchmarks Game

pidigits

description

program source code, command-line and

measurements

X source secs
1.0 Chapel #2 1.62
1.0 Chapel 1.62
1.1 Pascal Free Pascal #3 1.73
1.1 Cgec 1.73
1.1 Ada 2005 GNAT #2 1.74
1.1 Rust #2 1.74
1.1 Rust 1.74
1.1 Swift #2 1.75
1.1 Lisp SBCL #4 1.79
1.2 C++g++ #4 1.89
1.2 Lua #5 1.94
1.2 Go #3 2.02
1.3 PHP #5 2.15
1.3 PHP #4 2.16
1.3 Racket #2 2.17

m
34,024
33,652

2,284
2,116
3,776
7,876
7,892
8,532
25,164
3,868
3,248
10,744
9,884
9,856
27,660

423
501
482
448

1065

1306

1420
601
940
508
479
603
394
384

1122

ﬂ
1.64
1.64
1.72
1.73
1.73
1.74
1.74
1.75
1.79
1.89
1.93
2.02
2.15
2.16
2.17

cpu load
99% 3% 1% 4%

100% 0% 1% 1%
1% 100% 1% 1%

1% 99% 1% 0%
1% 0% 100% 0%
1% 100% 1% 1%
100% 1% 2% 1%
100% 1% 1% 0%
3% 2% 1% 100%
100% 1% 2% 1%

1% 1% 1% 99%

2% 0% 5% 96%
1% 0% 100% 1%
100% 0% 0% 2%

100% 0% 1% 0%

1.0
1.5
1.5
1.5
1.5
1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.9
1.9

The Computer Language

Benchmarks Game

pidigits
description

program source code, command-line and

measurements

source secs
Perl #4 3.53
Python 3 #2 3.51
PHP #4 2.16
Perl #2 3.92
PHP #5 2.15
Chapel #2 1.62
Cgcc 1.73
Perl 15.87
Racket 25.63
Lua #7 3.76
Ruby #5 3.14
Lua #5

Pascal Free Padii® F ol code size metric
e el sStrip comments and extra

mem

6,836
10,344
9,856
6,784
9,884
34,024
2,116
9,032
130,528
3,192
477,09

394
423
448
452
453
477
478

cpu

3.52
3.50
2.16
3.92
2.15
1.64
1.73
15.86
25.58
3.75
3.12

PHP #3 whitespace, then gzip

cpu load
0% 0% 1% 100%

0% 2% 1% 100%
100% 0% 0% 2%
1% 0% 33% 68%
1% 0% 100% 1%

99% 3% 1% 4%

1% 99% 1% 0%
1% 100% 1% 1%
100% 0% 1% 1%
1% 100% 0% 2%
0% 100% 2% 1%
% 1% 1% 99%

b 100% 1% 1%

o 1% 100% 1%

0% 0% 0% 1%

CLBG: Website

e butonly
sorted by
execution
speed...

k-nucleotide
source

Chapel

Fortran Intel

fasta
source

Chapel

Fortran Intel

Can also compare languages pair-wise:

The Computer Language
Benchmarks Game

Chapel programs versus Fortran Intel

all other Chapel programs & measurements

by benchmark task performance

secs
16.69
87.62

secs
1.71
2.53

mem
350,432
203,604

mem

52,184

gz
1063
2238

gz
1392
1327

cpu
62.96
87.57

cpu
5.90
2.53

cpu load
100% 92% 93% 93%

1% 0% 100% 0%

cpu load
99% 82% 83% 82%

0% 1% 0% 100%

\
Scatter plots of CLBG code size x speed S S
i chapel e) \
[J smallest \
D e

P
e
C
o
2 %
£
= o
c
9O o
qs-o—a
o3
x =
W e
= %
g | a1
a 5]
F|])
L)
m B a

Compressed Code Size (normalized to smallest entry)

CLBG Language Cross-Language Summary — AY .
(Oct 2017 standings)

100 _ i T \

I csharpcore
B dart
Il erlang
I fpascal
B fsharp \
S gec
N ghc
I gnat
g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
OO O
S~ : python3

\\‘\; Il racket
Sma"talk\\\.- rust
N g shcl

@ B scala

| PHP | e e
R OCamI m Racket -~ S B - ::p pt
® i N yarv

Dart m- ,“\ ® A :
AL PR S B el
Typescrlpt g@. -1 0 SEEe— .

1.0 1.5 2.0 2.5 3.0 3.5

Compressed Code Size (normalized to smallest entry)

Execution Time
(normalized to fastest entry)

Erlang

CLBG Language Cross-Language Summary — AY .

(Oct 2017 standings, zoomed in)

\\\ -

Typescrlpt mgH \
J@v@@@np{t O _
ccfonseo . \\ \\ |j\ . . ,.,\\ \

Scala
Haskell @ F#

o

Execution Time
(normalized to fastest entry)

\‘Q*\‘Rust
i i ! 0.
. . _ CO

1.0 1.5 2.0 2.5 3.0

Compressed Code Size (normalized to smallest entry)

Il csharpcore
B dart
H erlang
B fpascal
Bl fsharp
H gcc
I chc
N gnat
g0
. gpp
hack
ifc
B java
HEN jruby
H lua
node
B ocaml
HEE perl

\\\ s php

python3
EE racket
.
sbhcl
B scala
swift
Il typescript
L7
S yarv
(D gmean-smallest =

(O gmean-fastest

)

CLBG Language Cross-Language Summary — AY .

(Oct 2017 standings, zoomed in)

\\\ -

Typescrlpt mgH \
J@v@@@np{t O _
ccfonseo . \\ \\ |j\ . . ,.,\\ \

Scala
Haskell @ F#

o

Execution Time
(normalized to fastest entry)

Chapel oO Rust
. . | S

1.0 1.5 2.0 2.5 3.0

Compressed Code Size (normalized to smallest entry)

B chapel
Il csharpcore
B dart
H erlang
B fpascal
Bl fsharp
H gcc
I chc
N gnat
g0
. gpp
hack
ifc
B java
HEN jruby
H lua
node
B ocaml
HEE perl

\\\ s php

python3
EE racket
. st
sbhcl
B scala
swift
Il typescript
L7
S yarv
(D gmean-smallest =

(O gmean-fastest

)

CLBG Language Cross-Language Summary — AY .
(Oct 2017 standings)

100 . . : \
3 8 8 g B chapel
; ; ; I csharpcore
B dart
Il erlang
I fpascal
B fsharp \
S gec
N ghc
I gnat
g0
. egpp
hack
ifc
UMM java
N jruby
E lua
node
e ocaml
; I perl
OO O
S~ : python3

Smalltalk - g mm e
‘\‘ : sbcl

§ Bl scala
PHP i swift)
OCamI m Racket -~ e R L — = ::pescrwt

‘\\\) ® § . yarv
J@v@@@rﬂpﬂ: Dart m- m ﬁ» e :

el P - Haree
Typescrlpt " ﬂ EFQ. Moo ‘\- 5 O e
Chapel ™ . -

2.0 2.5 3.0 3.5

Execution Time
(normalized to fastest entry)

Erlang

Compressed Code Size (normalized to smallest entry)

-
]
CRAY

[\
S \

CLBG: Qualitative Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

printColorEquations(); {
L X) . cpu_set_t active_cpus;
const groupl = [i in 1..popSizel] new Chameneos(i, ((i-1)%3):Color); FILE* ;
const group2 = [i in 1..popSize2] new Chameneos(i, colorsl0[i]); char buf [2048]; \
. char const* pos;
cobegin { . int cpu_idx;
holdMeetings(groupl, n); int physical_id;
holdMeetings(group2, n); int core_id;_
} int cpu_cores;
. int apic_id;
print(groupl); size_t cpu_count;
print(group2); size_t i;

for c in groupl do delete c; char const*
for c in group2 do delete c; size_t processor_str_len strlen(processor_str);
} char const* physical_id str "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str "core id";
/7 size_t core_id str len strlen(core id str);
// Print the results of getNewColor() for all color pairs. char const* cpu cores str "cpu cores";
/7 . . size_t cpu_cores-str len = strlen(cpu_cores_str);
proc printColorEquations() { - - - - -
for cl in Color do
for c2 in Color do
writeln(cl, " + ", c2,

processor_str "processor";

CPU_ZERO(&active_cpus);
sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
cpu_count = 0;

-> ", getNewColor(cl, c2));

writeln(); for (i = 0; i != CPU_SETSIZE; i += 1)
{
if (CPU_ISSET(i, &active_cpus))
{
/" cpu_count += 1;
// Hold meetings among the population by creating a shared meeting } -

// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;

}

excerpt from 1210 gz Chapel entry

}

if (cpu_count 1)

is_smp[0] = 0;
return;

}

is_smp[0] = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

o

Copyright 2017 Cray Inc. __/

CLBG: Qualitative Comparisons e

[\
Q

Can also browse program source code (buft this requ:res actual thought!):

proc main() { i int* , cpu_set_t* affinityl, cpu_set t* affinity2)
printColorEquations(); __ ,.aee
.
----------- » active_cpus;
const groupl = [i 1n JLeepopsSi¥el] new Chameneos(i, cobegln { £;
const ‘g_r-qluai = 11 1n 1..popSize2] new Chameneos(i, ¢ buf [2048];

cobegin { holdMeetings(groupl, n); Son. tax;

holdMeetings(groupl, n); physical_id;

j horanestings(roup2, m; holdMeetings(group2, n); Sore.id;

cpu_cores;

™ apic_id;

prifttymoupl);, } cpu_count;

print(group2); Tttrresaa.,, i

for ¢ -:“‘ groupl do delete c; tTTeesaa.,.. processor_str = "processor";

for c in group2 do delete c; size_t pr _str_len = strlen(processor_str);
} char const* physical_id str = "physical id";

size_t physical_id str_len = strlen(physical_id_str);
// char const* core_id_str = "core id";
id_str);
// Print the results of getNewColor() for all colqs‘ﬁc . . . :;((;;::?71 _str);
7 - proc holdMeetings(population, numMeetings) { o eme. cores_str):
proc printColorEquations() { ot ! (epu_ -)i
o* - . .
for c1 in Color do const place = new MeetingPlace(numMeetings);
for c2 in Color do o*
writeln(ecl, " + ", c2, " “’ ", getNewColor(cl, ¢
writeln(); “‘; . .
coforall c in population do // creaf
“" . .

/7 c.haveMeetings(place, population);
// Hold ;néetlngs among the population by creating a sH
// pL&ée and then creating per-chameneos tasks to ha

o

g 1ng:]
const place = new MeetingPlace(numMeetings); delete place 4
coforall c in population do // creatp a tg }
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

e

CLBG: Qualitative Comparisons <=|=A:Yj’ '

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

. . {
char const* core_id_str = "core id"}L cpu_set_t active_cpus;
: .4 K FILE* £;
size_t core_id_str_ len = strlen(coj: char buf [2048]; \
char const* cpu_cores_str = "cpu core{ 3 ;‘;:2‘ constr opa. daxy
size_t cpu_cores_str_len = strlen(cpy * i Pyl
“_ int cpu_zores ;
. int apic_id;
CPU_ZERO(&active_cpus); El size t cpu_count;
- . P Size | 17
sched getaffinity(0, sizeof(active cpus), &active cpus); B
Cpu Csunt - 0 . - - " cl.:ar const* processor_str N = "griceisor"; r)
L - r . size_t processor_str_len = strlen(processor_str);
s o ne s _ W 3 oa— * ch tx hysical id_st = "physical id";
for (l = 0 HE 8 l"‘ CPU_SETSIZE, 1 += 1) "' zi::_:ons ghzziz:l_;d_:ti_len = sEr{:xll‘(::hy;ical_id_str);
{ size_t core:id:str_len ; strlen(o;'e_id_str);
3 1 1 h t* t =" "
1f (CPU—ISSET(1, &aCtlve—cpus)) si::_‘tmns zg::z?;::::t:_len = s:l;‘llefl?q;\sx_cores_str);
{ CPU_ZERO(&active_cpus);
Cpu Count += 1; sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)
{
} if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
if (cpu_count == 1)) }
{ . if (cpu_count == 1)
is smp[0] = 0;
- is_smp[0] = 0;
teturn ; return;
} }
es Lae is_smp[0] = 1;
[CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

k \
—
=/ Copyright 2017 Cray Inc.

Y’
.

Benchmark Suite Scorecard (EMBRACE 2017) =R

(46)

Copyright 2017 Cray Inc.

NPB
HPCC

DOE PROXY APPS

CLBG [X|X|/|/|/IV|IVI=|VIVIV]V

PRK

Y’
.

Benchmark Suite Scorecard (EMBRACE 2017) =R

(47)

x SIS
x N
x N
x N
N LS
FIREREAY AN
RINIXIN X
XISIXIN]
LI LN
SISIESISES
ARERERIRN
SIS x| !
883>
Z 0o 0O 4d QA
T— << O
V|
pad
@)
nd
o
L
@)
|

Copyright 2017 Cray Inc.

\
My Vision for Advancing Productive Alternatives c/)RAaNyY |

1. Establish an ongoing, online language bake-off
e The “HPC Computer Language Benchmarks Game” \
e Support personal comparisons between technologies
o Challenges:
e Finding someone to be the enthusiastic host and benevolent dictator
e What systems to run on? and whose?
What benchmarks? Intel PRK suite?
e How to manage entries? What rules? How reviewed?
Website design and implementation

//77\\
=) (48)
=/ Copyright 2017 Cray Inc. _/

\
Scalable Parallel Programming Concerns SR '

Q: What should parallel programmers focus on?
A: Software engineering and performance
What should execute simultaneously?
Locality: Where should those tasks execute?
Mapping: How to map the program to the system?

For portable performance?
Separation of Concerns: (drink!)

Copyright 2017 Cray Inc.

\

\
Inspiration from Kathy Yelick (UC Berkeley, LBNL) &R

S \
\

Why Consider New Languages at all?

e Do we need a language? And a compiler?
e If higher-level syntax is needed for productivity
e We need a language

e If static analysis is needed to help with correctness
e \We need a compiler (front-end)

e |f static optimizations are needed to get performance
e We need a compiler (back-end)

(Source: HPCS productivity workshop panel, ~20047?)

=/ Copyright 2017 Cray Inc.

Poll: Familiar with Chapel?

Poll: Familiar with Chapel?
Have opinions about Chapel?

Poll: Familiar with Chapel?
Have opinions about Chapel?
Have downloaded / tried Chapel?

Poll: Familiar with Chapel?
Have opinions about Chapel?
Have downloaded / tried Chapel?
Within the past 12-18 months?

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

=/ Copyright 2017 Cray Inc.

(@)
N

What does “Productivity” mean to you? o

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’t need because | -wasborato-suffer”
want full control to ensure performance”

Computational Scientists:

“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

C/ (56)

=/ Copyright 2017 Cray Inc.

Chapel and Productivity

Chapel strives to be...
...as programmable as Python
...as fast as Fortran
...as scalable as MPI (or SHMEM or UPC)
...as portable as C
...as flexible as C++
...as fun as [your favorite programming language]

=/ Copyright 2017 Cray Inc.

//777\\\
(57)
N

The Chapel Team at Cray (May 2017)

I OO
1 KORRARRKXXXXXKXERR X
R BT ""“”““""’

KK KRX RN
- BRORORBLAOSNS

Pt

VAN
2o, "

14 full-time employees + 2 summer interns

Chapel Community R&D Efforts cRAY

HERIOT 1 [Zmags £
DWALT amp Wi ses™ WESTERN

WASHINGTON UNIVERSITY

o RERL %%a?" ORICE s

University

f}l ﬂ LLg Lawrence Livermore
National Laboratory

BERKELEY LAB

Lawrence Berkeley Sandia National Laboratories
National Laboratory

(and several others...)

http://chapel.cray.com/collaborations.html

The Challenge ==AYf '

)
S \

\
Q: So why don’t we already have such a language already?
A: Fechmical-challenges? \
e while they exist, we don’t think this is the main issue...
A: Due to a lack of...
...long-term efforts
...resources

...community will
...co-design between developers and users

...patience

Chapel is our attempft to reverse this trend

=/ Copyright 2017 Cray Inc.

Chapel language feature areas

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Base Language

C Domain Maps
Data Parallelism
Task Parallelism

b1 Base Language
Locality Control

Lower-level Chapel

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

N
@

Base Language Features, by example

Modern iterators

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

@

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Configuration declarations
(to avoid command-line argument parsing)

./a.out —-n=1000000

canig const n = 10;

for £ in fib(n) do
writeln (£f) ;

Base Language Features, by example

Static type inference for:

» variables

iter fib(n)!
var current = 0,
next = 1;

~

for i in 1..n {
yield current;
current += next;
current <=> next;

e arguments
* return types

confii/?éhst n'
for £%in fib (n)

writeln (£f) ;

do

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Zippered iteration

config const n =

for (i,f) in zip (0

writeln("fib #",

..#n, fib(n)) do

i, " 4ig n’ f),

Base Language Features, by example

Range types and

operators

iter fib(n) {
var current =
next = 1;

of)

for i in 1..n {
yield current;
current += next;
current <=> next;

config const n =\10;

for (i,f) in zip(0..#n,

writeln("fib #", 1,

"

Base Language Features, by example

iter fib(n) { configfconst n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

N
C

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

=~
C

Task Parallelism and Locality Control

«
—)

——)

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs () do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks = here.maxTaskPar;

coforall tid in 1..numPUs() do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

-coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs () do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2

Hello from task 1 of 2 running on nl033

Hello from task 2 of

running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs () do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;

coforall tid in 1..numPUs () do
itef ("Hello from task %n of %Sn "+

on %$s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

High-Level

Task Parallelism

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
\\\\'coforall tid in 1..numPUs () do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Not seen here:

Data-centric task coordination
via atomic and full/empty vars

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs () do
writef ("Hello from task %$n of %n "+
"running on %s\n",
tid,

numTasks, here.name);

promp
promp
Hello
Hello
Hello
Hello

t> chpl taskParallel.chpl -o taskParallel
t> ./taskParallel —--numLocales=2
from task 1 of 2
from task 2 of 2
from task 2 of 2
from task 1 of 2

running on nl033
running on nl032

running on nl033

running on nl032

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numPUs () do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Higher-Level Features AN

Chapel language concepts

C Domain Maps
D Higher-level
 Task Parallelism Chapel

Base Language
Locality Control

Data Parallelism, by example

7~
C

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,j] = 1+ (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel

prompt>

1.1 1.

2
3.
4
5

1

1
1
1
1

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

./dataParallel --n=5

\
Data Parallelism, by example ANy

Domains (Index Sets) dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12
1 3.
1 4
15

2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

N
C

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

Domain Maps (i,3) in D do
(Map Data Parallelism to the System) Afi,j] =i+ (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

N
C

Distributed Data Parallelism, by example o

magic? | HPF-like? dataParallel.chpl
o use CyclicDist;
descriptive? config const n = 1000;

var D = {l1l..n, 1..n}
<:) dmapped Cyclic(startIdx = (1,1));
C) var A: [D] real;

forall (i,j) in D do

Not in the slightest... 211,41 = 4 + (3 = 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example o

Chapel’s prescriptive approach: ([—=—— "

forall (i,3j) in D do..

config const n = 1000;

= invoke and inline D’s var D = {1..n, 1..n};
default parallel iterator
. , var A: [D] real;
* defined by D's type / forall (i,4) in D do
domain map A[i,3] =1 + (3 - 0.5)/n;

writeln (2) ;

default domain map

prompt> chpl dataParallel.chpl -o dataParallel

* create task per local core
 block indices across tasks

prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 .5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example

Chapel’s prescriptive approach:

dataParallel.chpl

forall (i,3j) in D do..

= invoke and inline D’s
default parallel iterator
 defined by D’s type /

domain map

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx =
var A: [D] real;
forall (i,j) in D do
Ali,j] =i + (J - 0.5)/n;

writeln (2) ;

(1,1))7

defaillt domain man
cyclic domain map
. on each target locale...
 create task per core

* block local indices across
tasks

2.1
3.1
4.1
5.1

prompt>
1.1 1.

2
3.
4
5

3 1.51.7 1.9

2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

prompt> chpl dataParallel.chpl -o dataParallel
./dataParallel —--n=5 --numLocales=4

!
Distributed Data Parallelism, by example <=l=A:Yf '
) § \
Chapel’s prescriptive approach: dataparallel.chpl
forall (i,j) in D do.. use CyclicDist;
config const n = 1000; \
var D = {l1l..n, 1..n}
What if | don’t like D’s dmapped Cyclic(startIdx = (1,1));
iteration strategy? var A: [D] real;
Ooforall (i,j) in D do
Ali,il =i + (3 - 0.5)/n;
Write and call your own parallel iterator:

forall (i,j) in myParIter (D) do..
Or, use a different domain map:
var D = {1..n, 1..n} dmapped Block(..);

Or, write and use your own domain map:

var D {1.

.n,

1..n} dmapped MyDomMap (..) ;

Domain Maps specify...
...mapping of indices to locales
...layout of domains / arrays in memory

...parallel iteration strategies
...core operations on arrays / domains

@

Chapel and Performance Portability AN

(Y \
S \
\

e Avoid locking key policy decisions into the language
e Array memory layout? \
e Sparse storage format?
e Parallel loop policies?
e Abstract node architecture?

=/ Copyright 2017 Cray Inc.

Chapel and Performance Portability AN

(Y \
S \
\

e Avoid locking key policy decisions into the language

e Array memory layout? not defined by Chapel \
e Sparse storage format? not defined by Chapel
o Parallel loop policies? not defined by Chapel

e Abstract node architecture? not defined by Chapel

e Instead, permit users to specify these in Chapel itself
e support performance portability through...
...a separation of concerns (drink!)
...abstractions—known to the compiler, and therefore optimizable
e goal: to make Chapel a future-proof language
C, (52)

=/ Copyright 2017 Cray Inc.

Chapel Performance: Increasingly Competitive o
(novel for Chapel; new within the past 12—18 months) S

.

LCALS: Chapel vs. C + OpenMP cn‘?":“ LCALS H PCC RA

Shared memory performance competitive with hand-coded
- Serial LCALS kernels: Chapel vs. g++

E‘g . II|IIIIII|IIII“II]II|IIII|IIIIIIIIIIII|IIIIIIIIII

®g++ serial
Parallel LCALS kernels: Chapel vs g++ w/ 5

. OMP N E il ! !
TREAM PRK R
E E 2 1 I ug++ OMP Locales (x 36 cores per locale)
g o™ un wn wn ull ull N N oER R oA aChapet paralel ref MPI no-bucketing —e— g ——
ref MPI bucketing —=— .15 u+q oversubscribed -+
Triad ISx Stencil |
. \ ® \ o \
HPCC Stream Triad: Chapel vs. MPI+OpenMP = =Ras Isx Peformance: Chapel vs. MPI, SHMEM SRas Stencil PRK Scalability CRATY
: R Stencil PRK (weak scaling) :
Performance of STREAM 1Sx weakISO Total Time oo
| 14 A
25000 - " 10000
" nggg A«M . ’é'\m // g 8000
o) g 8 & 6000
O 10000 g SHMEM o —MPI-OpenMP
5000 E j :hCAhPa‘pe\ 2 4000 Chapel
0 . L ! K 2000
1632 64 128 256 2 3 -
Locales 0 1 2 4 8 16 32 64 ¢ 1 z 4 8 16 32 64 128 256
R:«:ﬁ..;; : . Illcllze:: - 1.12 Global e Nodes (x 36 cores per node) Nodes
C @ (
C\ Nightly performance tickers online at:
> http://chapel.sourceforge.net/perf/

Crossing the Rapids e

: Resc Prototype :

¢ What are the next £ [your productlon V
‘ app here]

el e | ,_ steppmg stones?
RA‘ LULESH § startups ™

: | T
: B Who's mterested in S
Tlme-to-SC|ence g meeting us partway? @

academlc codes

source: http://feelgrafix.com/813578-free-stream-wallpaper.html

My Vision for Advancing Productive Alternatives o

1.

2. Create forums for apps-languages pair-programming

e €.g., host a “speed-dating” Dagstuhl Seminar
e n productive language groups
e n apps groups looking for alternatives
e where n = 3-5?
e session 0: everyone gives lightning summaries of their language / app
e sessions 1-—n: rotate apps x language groups

meanwhile, we’re interested in doing this anytime
(so, send open-minded apps groups our way)

Copyright 2017 Cray Inc.

\

excerpt from CHIUW 2017 keynote AN

[\
S \
\

“My opinion as an outsider...is that Chapel is important,
Chapel is mature, and Chapel is just getting started. :
“If the scientific community is going to have frameworks for

solving scientific problems that are actually designed for our
problems, they’re going to come from a project like Chapel.

“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”
—Jonathan Dursi

Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)
CHIUW 2017 keynote

http://chapel.cray.com/presentations.html / https://www.youtube.com/watch?v=xj0rwdLOR4U

(@
=)
=/ Copyright 2017 Cray Inc.

Chapel Resources

Chapel Central: http://chapel-lang.org

N The Chapel Parallel Programming Language

CHAPEL
—

Home
Chapel Overview

What's New?
Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Documentation

Download Chapel
Try It Now
Release Notes

User Resources
Educator Resources
Developer Resources
Social Media / Blog Posts
Press

Presentations

Tutorials

Publications and Papers

CHIUW

CHUG
Lightning Talks

Contributors / Credits
Research Groups
License

chapeHang.org
chapel_info@cray.com

Evo

What is Chapel?

Chapel is a modern programming language that is...

parallel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the cloud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« read a blog article or book chapter
« watch an overview talk or browse its slides

« download the release

« browse sample programs

« view other resources to learn how to trivially write distributed programs like this:

use CyclicDist; // use the Cyclic distribution Library
config const n = 100; // use ./a.out --n=<val> to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n, " running on node

, here.id);

What's Hot?

« Chapel 1.16 is now available—download a copy today!

The CHIUW 2018 call for participation is now available!

A recent Cray blog post reports on highlights from CHIUW 2017.

Chapel is now one of the supported languages on Try It Online!

Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube.

Browse slides from PADAL, EAGE, EMBRACE, ACCU, and other recent talks.

See also: What's New?

How to Stalk Chapel

http://facebook.com/ChapelLanquage

http://twitter.com/ChapelLanguaqge

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

=

n Sl i o S -

Page Messages Notifications Insights Publishing Tools

=

ol Liked v X\ Following v 4 Share

| Programming Language
47pm- €

We're pleased to note that Chapel is currently ranked 5th in the

= Computer Language Benchmarks Game's “fast-faster-fastest” graphs.
That said, we're even prouder of how clear and concise the Chapel
i entries that p .

Chapel org/.

Programming Fl How many times slower?
Language H 300 232
@ChapelLanguage ém : : :
ome. 50 z -
E 30
Posts 3 gIISeR
S
Videos g s égéé
T 3
E
Pk] 2ed
1
ADY £ Benchmarks game 20 Apr 2017 ubdq
Likes
= 270 pecsleresched
& ke W Comment A Share C-
(© Russel Winder, Mykola Rabchevsiiy and 2 others Top Comments ™

C s

Chapel Language
@ChapelLanguage

Chapel is a productive parallel
programming language designed for
large-scale computing whose
development is being led by @cray_inc
& chapel.cray.com

[) Joined March 2016

3 115 Photos and videos

TWEETS FOLLOWING FOLLOWERS LIKES

222 12 129 32

Tweets Tweets & replies Media

/75 Chapel Language @ChapelLanguage - 5h
(?/ Doing interesting applications work in Chapel or another PGAS language?
' submit it to the PAW 2017 workshop at @SC17.
sourceryinstitute.github.io/PAW/

PAW;

2~
7 %l

The 2nd Annual PGAS Applications

Copyright 2017 Cray Inc.

N

@

=/

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

=~ SC16 Chapel Tutorial Promo

Chapel Parallel Programming Language

6 months ago + 392 views

This s & ~4-minute promotional video for our SC16 Chapel tutorial, and also a good way to
geta quick taste of Chapel. All codes shown represent complete Chapel programs, not.

Chapel Productive, Muli ion Parallel |Brad
Cray, Inc.

ANL Training

7 months ago + 651 views

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016.

CHIUW 2016 keynote: “Chapel in the ical) Wild", Nikhil

Chapel Parallel Programming Language
10 months ago + 277 views

This is Nikhil Padmanabharis keynote talk from CHIUW 2016: the 3rd Annual Chapel
Impl d Users workshop. The siid bl

Suggested Reading (healthy attention spans) ==as

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Suggested Reading (short attention spans) e

Q \
Q
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.

e arun-down of recent events
Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a Series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |EEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2017 Cray Inc. 1/

\

Chapel StackOverflow and GitHub Issues e

votes

24 views

votes

45 views

votes

NS — 0
S stackoverflow Questions Jobs Documentaton Tags Users Q_ [chapel] @ = logh Sign Up \
(’ This repository Pull requests Issues Marketplace Gist
Tagged Questions nfo newest frequent votes acti
1 0 - -
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray. - cha pel lang / Chapel © Watch as % Unstar | 455 ? Fork | 145
learn more... top users synonyms \
1 Code @®lssues 292 Pull requests 26 Projects 0 Settings Insights ~
2 Can one generate a grid of the Locales where a Distribution is mapped? i . . i
votes X § X B Filters ~ is:tissue is:open Labels Milestones New issue
If 1 run the following code: use BlockDist; config const dimension: int = 5; const space = {0..#
0..#di ion}; const i domain(2) pace) = space|
chapel asked 13 hours & N f a
parrymel @® 292 Open v 77 Closed Author ~ Labels v Projects v Milestones ~ Assignee v Sort v
22 views . v
52 02
@® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
3 Is “[<var> in <distributed variable>]" equivalent to “forall’? iyps:Eecformancs]

#6357 opened 13 hours ago by ronawho

| noticed something in a snippet of code | was given: var D: domain(2)
= Space; var A: [D] int; [a in A] a = a.locale.id; Is [a in A] equivalentto forallainAa= ...

(@ Consider using processor atomics for remote coforalls EndCount area: Compiler J13
syntax chapel asked 15 hours af type: Performance
- :zrryv;m #6356 opened 13 hours ago by ronawho 0of 6
(® make uninstall area: BTR |type: Feature Request
Get Non-primitive Variables from within a Cobegin - Chapel #6353 opened 14 hours ago by mppf

| want to compute some information in parallel and use the result outside the cobegin. To be . .
my requirement is to retrieve a domain (and other non primitive types) like this var a,b: ... © make check doesn't work with ./configure area: BTR 37

16 hi f
chapel asked Apr 18 at 6352 opened 16 hours ago by mpp!

-

4v> :ii”":‘ | (@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, D2
not a task-private one area: Compiler [type: Bug

#6351 opened a day ago by cassella

Is there a default String conversion method in Chapel?

Is there a default method that gets called when | try to cast an object into a string? (E.g. toStf © Remove chpl_comm_make_progress area: Runtime easy [type: Design (k]
__str__in Python.) | want to be able to do the following with an array of Objects, ... #6349 opened a day ago by sungeunchoi
@® Runtime error after make on Linux Mint area: BTR user issue J1s

#6348 opened a day ago by danindiana

Where to.. C)RANY

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel _bugs@cray.com: for reporting non-public bugs

Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
#chapel-users (irc.freenode.net): user-oriented IRC channel
chapel-users@lists.sourceforge.net: user discussions

Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
#chapel-developers (irc.freenode.net): developer-oriented IRC channel

Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

f/]ro\\
Copyright 2017 Cray Inc. 3/

Questions?

\
Legal Disclaimer SR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

=/ Copyright 2017 Cray Inc.

=

cRasyr
CcCHARPEL
—

=/

C R0y

THE SUPERCOMPUTER COMPANY

