HPE

Reflections on 30 Years of
HPC Programming Models (abridged)

Brad Chamberlain
CLSAC 2025
October 8, 2025

30 Years Ago vs. Now: Top HPC Systems

Top 5 systems in the Top500, June 1995:
« Cores: 80-3680 cores
* Rmax: ~98.9-170 GFlop/s
« Systems: Fujitsu, Intel Paragon XP/S, Cray T3D

« Networks: crossbar, mesh, 3D torus
TOP500 LIST - JUNE 1995

Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into

account the Turbo CPU clock rate where it applies.

&

Rank

1-100 101-200 201-300 301-400

System

Numerical Wind Tunnel, Fujitsu
National Aerospace Laboratory of Japan
Japan

XP/S140, Intel
Sandia National Laboratories
United States

XP/S-MP 150, Intel
DOE/SC/Oak Ridge National Laboratory
United States

T3D MC1024-8, Cray/HPE
Government
United States

VPP500/80, Fujitsu
National Lab. for High Energy Physics
Japan

401-500

>

Cores

140

3,680

3,072

1,024

80

Rmax
(GFlop/s)

170.00

143.40

127.10

100.50

98.90

Rpeak Power
(GFlop/s) (kW)

235.79

184.00

154.00

153.60

128.00

Top 5 systems in the Top 500, June 2025:

« Cores: 2,073,600-11,039,616 (~563x-138,000x)
* Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
» Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure

* Networks: Slingshot-11, InfiniBand NDR

TOPS500 LIST - JUNE 2025

Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

<«

Rank

1-100 101-200

201-300 301-400

System

EL Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C
1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE
DOE/NNSA/LLNL

United States

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE Cray 0S, HPE

DOE/SC/Oak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade,
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

JUPITER Booster - BullSequana XH3000, GH Superchip
72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA
InfiniBand NDR200, RedHat Enterprise Linux, EVIDEN
EuroHPC/FZJ

Germany

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

401-500 >

Cores

11,039,616

9,066,176

9,264,128

4,801,344

2,073,600

Rmax
(PFlop/s)

1,742.00

1,353.00

1,012.00

793.40

561.20

Rpeak
(PFlop/s)

2,746.38

2,055.72

1,980.01

930.00

846.84

Power
(kW)

29,581

24,607

38,698

13,088

30 Years Ago vs. Now: Top HPC Systems

Top 5 systems in the Top500, June 1995:
« Cores: 80-3680 cores
* Rmax: ~98.9-170 GFlop/s
« Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
* Networks: crossbar, mesh, 3D torus
TOP500 LIST - JUNE 1995

Rmax and Rpeak values are in GFlop/s. For more details about other fields, check the TOP500 description.

Top 5 systems in the Top 500, June 2025:

» Cores: 2,073,600-11,039,616 (~563x-138,000x)

* Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
« Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
* Networks: Slingshot-11, InfiniBand NDR

TOPS500 LIST - JUNE 2025
Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 descri ption.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.
& 1-100 101-200 201-300 301-400 401-500 —>

& 1-100 101-200 201-300 301-400 401-500 > Rmax Rpesk Power
Cores (PFlop/s) (PFlop/s) (kW)
1 n - HPE Cray EX255a, AMD 4th Gen EPYC 24C 11039616 176200 274638 29,581
Rank System And complex. D Instinct MI300A, Slingshot-11, TOSS, HPE
I Do e e R « commodity vector processors
Wiitenll eyt Lelmiony of Jerem ° 353, AMD Optimized 3rd 9066176 135300 208572 24,607
Japan ° multlcore processors a‘AMD \n:xwlnmclxzhjwzsrux‘
. b
2 XPISIAD, Intel multi-socket compute nodes
Sandia National Laboratories °
United States ° NUMA com pute I‘IOde arChlteCtu res ascale Compute Blade, 9264128 101200 198001 38,498
° ° ° ° JGHz, Intel Data Center GPU
T * high-radix, low-diameter interconnects -
aboratory
DOE/SC/Oak Ridge National Laboratory °
e . * GPU computing
(Often in wavs that hurt ro rammabilit) Joster - BullSequana XH3000, GH Superchip 4,801,344 793.40 930.00 13,088
" NVIDIA GH200 Superchip, Quad-Rail NVIDIA
4 T3D MC1024-8, Cray/HPE y p g y Band NDR200, RedHa:g::Zr;‘npr\seusmu:‘EV\DEN
Government oHPC/FZJ
United States ermany
. Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
5 VPP500/80, Fujitsu 80 98.90 128.00

National Lab. for High Energy Physics
Japan

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

Top 5 systems in the Top500, June 1995:
« Cores: 80-3680 cores
* Rmax: ~98.9-170 GFlop/s
« Systems: Fujitsu, Intel Paragon XP/S, Cray T3D

Top 5 systems in the Top 500, June 2025:
» Cores: 2,073,600-11,039,616 (~563x-138,000x)
* Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
« Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure

* Networks: crossbar, mesh, 3D torus * Networks: Slingshot-11, InfiniBand NDR
Broadly-adopted HPC programming notations: Broadly-adopted HPC programming notations:
* Languages: C, C++, Fortran * Languages: C, C++, Fortran
* Inter-node: MPl, SHMEM * Inter-node: MPI, SHMEM, Fortran 2008 Coarrays
« Intra-node: vendor-specific pragmas & intrinsics * Intra-node: OpenMP, vendor-specific pragmas & intrinsics
« OpenMP on the horizon: 1997 « GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC_, ...
 Scripting: Perl, [[t]lc]sh, Tcl/TK Scripting: Python, bash

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

Top 5 systems in the Top500, June 1995:
« Cores: 80-3680 cores
* Rmax: ~98.9-170 GFlop/s
« Systems: Fujitsu, Intel Paragon XP/S, Cray T3D

Top 5 systems in the Top 500, June 2025:

« Cores: 2,073,600-11,039,616 (~563x-138,000x)

* Rmax: ~477.9-1742.0 PFlop/s (~2,810,000x-17,600,000x)
» Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
* Networks: crossbar, mesh, 3D torus * Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
* Languages: C, C++, Fortran

Broadly-adopted HPC programming notations:
...Wwhile HPC notations have

largely stayed the same,
* Inter-node: MPl, SHMEM modulo GPU computing * Inter-node: MPI, SHMEM, Fortran 2008 Coarrays

* Languages: C, C++, Fortran

« Intra-node: vendor-specific pragmas & intrinsics * Intra-node: OpenMP, vendor-specific pragmas & intrinsics
* OpenMP on the horizon: 1997 » GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACG_C, ...
 Scripting: Perl, [[t]lc]sh, Tcl/TK Scripting: Python, bash

Why the relative stasis in HPC programming languages?

Is it because language design is dead?
“Programming language design ceased to be relevant in the 1980s.”
—anonymous reviewer, circa 1995 (paraphrased, from memory)

Seems unlikely...
« Consider all the currently relevant languages that emerged or rose to prominence during those 30 years:
« Java (~1995)
« Javascript (~1995)
* Python (~1989; v2.0 ~2000)
« C# (~2000)
» Go (~2009)
e Rust (-2012)
 Julia (~2012)
« Swift (~2014)

Such languages have become favorite day-to-day languages of many users across multiple disciplines

—1

Why the relative stasis in HPC programming languages?

Is it for lack of trying?

Again "no"...

« Mid-to-late 90's Classics: « HPCS-era languages:
« HPF: High Performance Fortran * Chapel
« /PL * Fortress
« NESL « X10
« PGAS founding members: « CAF 2.0
* CAF: Coarray Fortran * Post-HPCS:
« UPC « XcalableMP
* Titanium * Regent
« C-based approaches: « Embedded pseudo-languages
» Cilk ¢ Charm++, Global Arrays, HPX, UPC++, Legion, ...
« SAC: Single-Assignment C « And many more...

Not all attempts have been worthy of broad adoption;
yet, past failures to achieve broad adoption don’t mean we should stop trying

Why the relative stasis in HPC programming languages?

Is it due to lack of added value?

Many would argue "no"...
« “Why Languages Matter More Than Ever” by Kathy Yelick, CHIUW 2018 keynote

e High level, elegant syntax
Improve programmer productivity

Syntax

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get

Performance Sl el L

We need a compiler (back-end)

e Language defines what is easy and hard
Influences algorithmic thinking

Algorithms

Programming languages offer unique advantages over libraries and extensions

Why the relative stasis in HPC programming languages?

Q: So then why?

We are a unique community with unique computational needs
We often must focus on maintaining longstanding apps rather than writing new ones

We tend to invent new programming notations for each new form of HW parallelism
« commodity vectorization » vendor-specific pragmas and intrinsics
e distributed memory » MPI, SHMEM, Fortran 2008 Coarrays, UPC
* multicore > OpenMP
« GPUS » CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, OpenCL, ...

Our HW::SW investment and focus tilt heavily toward HW
We generally doubt that we are large / important enough to warrant and sustain a language of our own

We tend not to develop support structures for HPC software beyond the research stage

« Though maybe that’s changing with HPSF...? | m— mnn] H PSF
— =

HIGH PERFORMANCE

Chapel’s adaptable persistence

Chapel pre-dates all the architectural changes mentioned previously, other than commodity vectors...

Arkouda Argsort Performance

9000 [~ - -~ ---<--ssmessoesecseeecsooocooooooo

L Slingshot-11 May 2023, 32 GiB/node —+— - -~ -~ - - - - ="
8000 Slingshot-ﬂ Apr‘|1 2023, 32 GiB/node —e—
7000 [~ HDR-100 IB May 2021, 128 GiBlnode —»— =~~~ —=>"" ~~ "~~~
6000

5000
4000
3000
2000
1000

commodity vector processors
« multicore processors

* multi-socket compute nodes

« NUMA compute node architectures
 high-radix, low-diameter interconnects
GPU computing

=

CcCHHAaPRPEL

=

GiB/s

1024 2048 4096 8192
Nodes

...yet it supports all of these HW features
« Moreover, using essentially the same language features as ~20 years ago
« How? By focusing on expressing parallelism and locality independently from HW mechanisms

—1 10

Chapel’s Generality

Chapel has proven to be generally applicable, as designed

« Read about user experiences in our 7 Questions with Chapel Users interview series

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: | Earth Sciences | Image Analysis = GPU Programming

User Experiences | Interviews

By: Brad Chamberlain, Engin Kayraklioglu

7 Questions for Bill Reus: Interactive
Supercomputing with Chapel for Cybersecurity

Posted on February 12, 2025.

Tags: User Experiences | Interviews = Data Analysis = Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Nelson Luis Dias:

Atmospheric Turbulence in Chapel
Posted on October 15, 2024.

Tags: User Experiences | Interviews = Data Analysis

Earth Sciences || Computational Fluid Dynamics

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Tiago Carneiro and
Guillaume Helbecque: Combinatorial
Optimization in Chapel

Posted on July 30, 2025.

Tags: User Experiences Interviews

By: Engin Kayraklioglu, Brad Chamberlain

(C Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

7 Questions for Eric Laurendeau: Computing
Aircraft Aerodynamics in Chapel

Posted on September 17, 2024.

Tags: Computational Fluid Dynamics = User Experiences | Interviews

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for David Bader: Graph
Analytics at Scale with Arkouda and Chapel

Posted on November 6, 2024.

Tags: User Experiences | Interviews || Graph Analytics = Arkouda

By: Engin Kayraklioglu, Brad Chamberlain

7 Questions for Marjan Asgari: Optimizing
Hydrological Models with Chapel

Posted on September 15, 2025.

Tags: User Experiences | Interviews || Earth Sciences

By: Engin Kayraklioglu, Brad Chamberlain

N

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Al, HPC, and Languages

Q: Al can program now*. Would we still benefit from better HPC languages?

My answer is "yes"...

« To say we no longer need good programming languages and compilers in the age of Al
is like saying we no longer need to invest in roads, automobile manufacturing,
fuel efficiency, safety, and traditional driving skills in an age of self-driving cars.

(* = your mileage may vary)

12

Closing Statements

| consider HPC programmers—whether current or aspiring—
to be at least as worthy of modern languages as the
Python, Rust, Swift, and Julia communities

Within the next 30 years,
the number of broadly adopted scalable parallel languages
should be >1, rather than the current O.

13

The Advanced Programming Team at HPE

Improving system design and operation via system simulation and telemetry at scale
Making HPC speeds and scales accessible to all programmers with Chapel

Making HPC speeds and scales available to Python programmers, interactively, with Arkouda
« Growing Arkouda’s strengths with Honeycomb: user-extensible, multi-lingual (Julia, Rust, plain English, ...)

14

Thank You

@ChapelLanguage

: © 2025 Hewlett Packard Enterprise Development LP

