
Brad Chamberlain
CLSAC 2025

October 8, 2025

Reflections on 30 Years of
HPC Programming Models (Abridged)

1

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

30 Years Ago vs. Now: Top HPC Systems

2

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

And complex!
• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

(Often in ways that hurt programmability)

30 Years Ago vs. Now: Top HPC Systems

3

HPC HW has
become far

more capable…

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: vendor-specific pragmas & intrinsics

• OpenMP on the horizon: 1997
• Scripting: Perl, [[t]c]sh, Tcl/TK

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM, Fortran 2008 Coarrays
• Intra-node: OpenMP, vendor-specific pragmas & intrinsics
• GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
• Scripting: Python, bash

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

4

HPC HW has
become far

more capable…

Top 5 systems in the Top500, June 1995:
• Cores: 80–3680 cores
• Rmax: ~98.9–170 GFlop/s
• Systems: Fujitsu, Intel Paragon XP/S, Cray T3D
• Networks: crossbar, mesh, 3D torus

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM
• Intra-node: vendor-specific pragmas & intrinsics

• OpenMP on the horizon: 1997
• Scripting: Perl, [[t]c]sh, Tcl/TK

Top 5 systems in the Top 500, June 2025:
• Cores: 2,073,600–11,039,616 (~563x–138,000x)
• Rmax: ~477.9–1742.0 PFlop/s (~2,810,000x–17,600,000x)
• Systems: HPE Cray EX, Eviden Bullsequana, Microsoft Azure
• Networks: Slingshot-11, InfiniBand NDR

Broadly-adopted HPC programming notations:
• Languages: C, C++, Fortran
• Inter-node: MPI, SHMEM, Fortran 2008 Coarrays
• Intra-node: OpenMP, vendor-specific pragmas & intrinsics
• GPUs: CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, …
• Scripting: Python, bash

30 Years Ago vs. Now: Top HPC Systems and Programming Notations

5

HPC HW has
become far

more capable…

…while HPC notations have
 largely stayed the same,
modulo GPU computing

Is it because language design is dead?
“Programming language design ceased to be relevant in the 1980s.”
 —anonymous reviewer, circa 1995 (paraphrased, from memory)

Seems unlikely…
• Consider all the currently relevant languages that emerged or rose to prominence during those 30 years:

• Java (~1995)
• Javascript (~1995)
• Python (~1989; v2.0 ~2000)
• C# (~2000)
• Go (~2009)
• Rust (~2012)
• Julia (~2012)
• Swift (~2014)

Such languages have become favorite day-to-day languages of many users across multiple disciplines

Why the relative stasis in HPC programming languages?

6

Is it for lack of trying?

Again ”no”…
• Mid-to-late 90’s Classics:

• HPF: High Performance Fortran
• ZPL
• NESL

• PGAS founding members:
• CAF: Coarray Fortran
• UPC
• Titanium

• C-based approaches:
• Cilk
• SAC: Single-Assignment C

• HPCS-era languages:
• Chapel
• Fortress
• X10
• CAF 2.0

• Post-HPCS:
• XcalableMP
• Regent

• Embedded pseudo-languages
• Charm++, Global Arrays, HPX, UPC++, Legion, …

• And many more…

Why the relative stasis in HPC programming languages?

7

Not all attempts have been worthy of broad adoption;
yet, past failures to achieve broad adoption don’t mean we should stop trying

Is it due to lack of added value?

Many would argue ”no”…
• “Why Languages Matter More Than Ever” by Kathy Yelick, CHIUW 2018 keynote

Programming languages offer unique advantages over libraries and extensions

Why the relative stasis in HPC programming languages?

8

Q: So then why?

We are a unique community with unique computational needs

We often must focus on maintaining longstanding apps rather than writing new ones

We tend to invent new programming notations for each new form of HW parallelism
• commodity vectorization → vendor-specific pragmas and intrinsics
• distributed memory → MPI, SHMEM, Fortran 2008 Coarrays, UPC
• multicore → OpenMP
• GPUS → CUDA, HIP, SYCL, Kokkos, OpenMP, OpenACC, OpenCL, …

Our HW::SW investment and focus tilt heavily toward HW

We generally doubt that we are large / important enough to warrant and sustain a language of our own

We tend not to develop support structures for HPC software beyond the research stage
• Though maybe that’s changing with HPSF…?

Why the relative stasis in HPC programming languages?

9

Chapel pre-dates all the architectural changes mentioned previously, other than commodity vectors…

…yet it supports all of these HW features
• Moreover, using essentially the same language features as ~20 years ago
• How? By focusing on expressing parallelism and locality independently from HW mechanisms

Chapel’s adaptable persistence

10

• commodity vector processors
• multicore processors
• multi-socket compute nodes
• NUMA compute node architectures
• high-radix, low-diameter interconnects
• GPU computing

Chapel has proven to be generally applicable, as designed
• Read about user experiences in our 7 Questions with Chapel Users interview series

Chapel’s Generality

11

https://chapel-lang.org/blog/series/7-questions-for-chapel-users/

Q: AI can program now*. Would we still benefit from better HPC languages?

My answer is ”yes”…
• To say we no longer need good programming languages and compilers in the age of AI

is like saying we no longer need to invest in roads, automobile manufacturing,
fuel efficiency, safety, and traditional driving skills in an age of self-driving cars.

 (* = your mileage may vary)

AI, HPC, and Languages

12

I consider HPC programmers—whether current or aspiring—
to be at least as worthy of modern languages as the

Python, Rust, Swift, and Julia communities

Within the next 30 years,
the number of broadly adopted scalable parallel languages

should be ≥1, rather than the current 0.

Closing Statements

13

• Improving system design and operation via system simulation and telemetry at scale

• Making HPC speeds and scales accessible to all programmers with Chapel

• Making HPC speeds and scales available to Python programmers, interactively, with Arkouda
• Growing Arkouda’s strengths with Honeycomb: user-extensible, multi-lingual (Julia, Rust, plain English, …)

The Advanced Programming Team at HPE

14

© 2025 Hewlett Packard Enterprise Development LP

@ChapelLanguage

Thank You

