
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Reflections on Programming Environments and Productivity
(based on experiences with HPCS and Chapel)

Brad Chamberlain, Chapel Team, Cray Inc.

ASCR Exascale Computing Systems Productivity Workshop
June 3rd, 2014

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

Copyright 2014 Cray Inc.
2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Programming Environments

Copyright 2014 Cray Inc.
3

● Programming Notations / Programming Models
●  languages, language extensions, DSLs, pragmas, libraries, …

●  Tools
●  debuggers, profilers, autotuners, IDEs, …

● Runtime Support
●  communication, tasking, memory, I/O

coupled closely
with applications

coupled closely
with OS

my bias

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel (part of the reason for my bias)

Copyright 2014 Cray Inc.
4

● An emerging parallel programming language
●  Design and development led by Cray Inc.

●  in collaboration with academia, labs, industry

● Goal: Improve productivity of parallel programming

● A work-in-progress

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity: Traditional, pre-Exascale Concerns

Copyright 2014 Cray Inc.
5

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2014 Cray Inc.
6

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
 without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
 without taking away the control that HPC programmers want,
 implemented in a language as attractive as recent graduates want.”

want full control
 to ensure performance”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity: My nightmare scenario

Copyright 2014 Cray Inc.
7

Scenario:
●  A mainstream computing buddy wants to do some scalable parallelism

●  Accustomed to using Python, Matlab, or Java, say
●  Also IDEs with auto-completion, refactoring, integrated debugging, …

●  Knowing you’re an expert in the field, wants recommendations

The source of my fears:
“As the HPC community, do we have anything we can recommend as a
productive solution to such a person with a straight face?”

“Do any of us even recognize what productivity means to most
programmers anymore? Would we know it if it bit us on the leg?”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to attract/retain HPC programmers?

Copyright 2014 Cray Inc.
8

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

One Answer: “Decent” Parallel Languages

What was the last parallel notation you used that felt:
●  productive?
●  high-level?
●  powerful?
●  flexible?
●  effective?
●  modern?
●  fun?
●  (…all the things we judge good software by…)?

(Because that’s what we’re competing against when it

comes to attracting new talent)

SUPERCOMPUTING CENTER	

Copyright 2014 Cray Inc.
9

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity in the Exascale Era

Copyright 2014 Cray Inc.
10

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Prototypical Exascale Processor Technologies

Copyright 2014 Cray Inc.
11

Intel MIC

Sources: http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg, http://www.zdnet.com/amds-trinity-processors-take-on-intels-ivy-bridge-3040155225/,
http://insidehpc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/, http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Nvidia Echelon Tilera Tile-Gx

AMD APU

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Exascale: Programmer Productivity Challenges

Copyright 2014 Cray Inc.
12

Emerging processor designs…
…are increasingly locality-sensitive
…potentially have multiple processor/memory types

⇒ Exascale programmers will have a lot more to think about
at the node level than in the past

⇒ What will it take to keep the productivity bar level
 (to say nothing of improving it?)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summarizing: Three Productivity Challenges

Copyright 2014 Cray Inc.
13

1.  How to improve productivity relative to current practice?
2.  How to improve productivity to entice new users?
3.  How to maintain productivity in the face of exascale?

●  let alone improve it?

Happily, #3 gives us a renewed excuse to work on #’s 1 & 2:
 If we’re going to have to switch to something new anyway, it’s a

great opportunity to change to something truly productive

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity, HPCS, and Cray:

A Brief History/Review

Copyright 2014 Cray Inc.
14

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity, as defined by HPCS

Copyright 2014 Cray Inc.
15

Productivity (10x improvement goal) =
 performance
+ programmability

(readability, writeability, maintainability, modifiability, tunability, …)
+ portability
+ robustness

A reasonable starting point…
…yet, how to combine four areas down to a single metric?

●  particularly given that most of them are hard to measure individually?

Also some unreasonable (IMO) goals/expectations:
●  Initially, a stated desire to see the establishment of Moore’s Law-style

productivity improvements year after year

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Productivity: Played Out?

Copyright 2014 Cray Inc.
16

●  There’s some sense that productivity isn’t “hot” anymore
●  “Didn’t we [solve | fail to solve] that in HPCS?”

● Arguably analogous to “peace”
●  not particularly “new” or “hip” as an concept
●  reasonable causes for skepticism about our ability to achieve it
●  but clearly something to desire over the alternatives

● Personally, I prefer not to throw in the towel (in either case)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

My “Zany Metrics” (a brainstorming exercise)

Copyright 2014 Cray Inc.
17 (HPCS Phase II Metrics Kickoff: 2003-8-5)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

“Language Bingo”

Copyright 2014 Cray Inc.
18 (slide from some HPCS productivity meeting)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sterling’s Model of Productivity

Copyright 2014 Cray Inc.
19 (HPCS Phase II Metrics Kickoff: 2003-8-5)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sterling’s Model of Productivity

Copyright 2014 Cray Inc.
20 (HPCS Phase II Metrics Kickoff: 2003-8-5)

…coincidence?!? I think not…

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Various Others’ Models of Productivity

Copyright 2014 Cray Inc.
21 http://hpc.sagepub.com/content/18/4.toc

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Application Kernel Matrix

Copyright 2014 Cray Inc.
22 (Marina del Mar SW Productivity Workshop, 2005?)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Application Kernel Matrix Website (R.I.P.)

Copyright 2014 Cray Inc.
23 (defunct website, formerly http://akm.cray.com)

(While the AKM did not catch on,
other similar comparison sites have,
at least in the mainstream

One of my favorites (content and form):
•  The Computer Language Benchmarks Game

http://benchmarksgame.alioth.debian.org/

The HPC Challenge, Berkeley Dwarfs,
and Graph-500 arguably play similar roles).

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

HPCS Workflows

Copyright 2014 Cray Inc.
24 (slide from internal Cray government review)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Timed Markov Models

Copyright 2014 Cray Inc.
25 (slide from internal Cray government review)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

User Studies: Quantitative Evaluation

Copyright 2014 Cray Inc.
26 (slide from internal Cray government review)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

User Studies: Qualitative Evaluation

Copyright 2014 Cray Inc.
27

“I loved not having to think as hard about offsets and counts for the
parallel version of the code in Chapel, as opposed to the MPI version,
where I almost always had to chase down two or three indexing errors.”

“The biggest feature from a broad perspective for me was domains.
Especially for scientific codes, it is invaluable to be able to define
the couple problem domains you're working with. It makes it trivial
to change the size or layout or distribution if you decide you need to,
it helps guarantee that all of your different arrays match up. A 3D
rectangular grid is infinitely more clear in Chapel with domains than in C,
where you have to figure out how they laid it out (is it one giant array?
what is the major dimension? x? z? y?).”

“Lastly, I'm a huge huge fan of the type inference used in Chapel.
I like that I don't have to specify types everywhere--they can just
be inferred from how I'm using them, but if I mess something up,
the compiler catches it.”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summary: Many Useful Concepts/Techniques…

BUT…

Copyright 2014 Cray Inc.
28

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Catch with Productivity Metrics

Copyright 2014 Cray Inc.
29

My suspicion: If I were to tell you that any of these metrics…
…demonstrated that Chapel was 10x better than Fortran+MPI
…showed that X10 was 2x better than Chapel
…indicated that Perl was 5x better than Python
…proved that emacs was 8.5x better than vim
…dared suggest that alpine is 7x better than Outlook

…would you believe me? Enough to change your practices?

Maxim #1: “I can’t define productivity, but I know it when I see it”

●  “And seeing is believing”

Maxim #2: “Productivity is in the eye of the beholder”
●  “To each his/her own productivity solutions”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

If Not Metrics, Then What?

Copyright 2014 Cray Inc.
30

For many of us, case studies can be compelling...

Here are three examples from Chapel

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case 1: LULESH in Chapel

Copyright 2014 Cray Inc.
31

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH in Chapel

Copyright 2014 Cray Inc.
32

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

1288 lines of source code
plus 266 lines of comments

487 blank lines

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH in Chapel

Copyright 2014 Cray Inc.
33

This is the only representation-dependent code.
It specifies:
•  data structure choices

•  structured vs. unstructured mesh
•  local vs. distributed data
•  sparse vs. dense materials arrays

A good poster child for my “zany metrics”

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH’s Technical Productivity Lesson

Copyright 2014 Cray Inc.
34

● Put hardware-mapping-specific choices in declarations
●  Makes computation independent of key decisions like:

●  memory layouts
●  distributions
●  sparse vs. dense
●  # of dimensions

●  Supports switching between options easily

●  This is a design trend that (happily) seems to be growing
●  Several similar designs reported on at PADAL 2014 workshop

http://padalworkshop.org

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

LULESH’s Social Productivity Lesson

Copyright 2014 Cray Inc.
35

● Written by intern in final 2 weeks as a “bonus” project
●  productive!

●  Illustrated Chapel use in a familiar setting to scientists
●  ones who’d heard many Chapel talks previously, and yet…

● Served as a medium for discussion, collaboration
● Demonstrated productivity of features thought not to be

●  global indexing, sparse domains

● Provided bidirectional feedback/knowledge transfer
●  co-design!

(a nice win for DOE’s proxy apps effort)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case 2: Chapel Rank-Independent AMR Framework

36

UW applied mathematician wrote one code that could be
used to produce results in 2D, 3D, 6D, 17D…

(pictures courtesy of Jonathan Claridge, UW Amath) Copyright 2014 Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case 3: Chapel’s Appeal to Educators/Students

Copyright 2014 Cray Inc.
37

http://faculty.knox.edu/dbunde/teaching/chapel/SIGCSE14/

http://prezi.com/wp13iqmsl1di/summer-scholars/?utm_campaign=share&utm_medium=copy

http://courses.cs.washington.edu/courses/csep524/13wi/

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Chapel Wrap-up

Copyright 2014 Cray Inc.
38

●  (Many other productive demonstrations in addition…)

● Chapel’s Productivity Scorecard
●  Performance
●  Programmability
●  Portability
●  Robustness

● Work is ongoing to improve Chapel’s weak areas
●  Productivity often requires long-term investment and patience

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summary / Takeaways

Copyright 2014 Cray Inc.
39

● Productivity still matters
●  even if the term is well-worn

● Exascale brings new productivity challenges
●  but also an opportunity to improve upon past approaches

● Not convinced we can measure productivity
●  nor that it matters whether or not we can

● Proxy apps are a useful medium for productivity studies
●  serve as a place to demonstrate productivity features
●  serve as meeting place for distinct communities

● Educators and Students are a good resource
●  can’t stand in for today’s experts, but may be tomorrow’s

● Productivity gains may not happen overnight

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Funding Productivity: Personal Opinions

Copyright 2014 Cray Inc.
40

●  Invest in software to compensate for hardware challenges
● Pursue a combination of evolution and revolution

●  can’t afford to just do one

● Evaluate based on user (or prospective user) viewpoints
●  computer science viewpoints are not necessarily as relevant

● Must budget for evaluation/study of new technologies
●  can’t expect such studies to be spare time activities
●  requires time from experts, not simply novices
●  again, well-designed proxy apps can be useful here

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer

Copyright 2014 Cray Inc.
41

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

