Reflections on Programming Environments and Productivity
(based on experiences with HPCS and Chapel)

Brad Chamberlain, Chapel Team, Cray Inc.
ASCR Exascale Computing Systems Productivity Workshop
June 3, 2014

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%:A B Copyright 2014 Cray Inc.

Programming Environments

coupled closely
with applications

e Programming Notations / Programming Models

e languages, language extensions, DSLs, pragmas, libraries, .

e Tools
e debuggers, profilers, autotuners, IDEs, ...

e Runtime Support

e communication, tasking, memory, 1/O

coupled closely

with OS

7z
@H::::
-2

Chapel (part of the reason for my bias) N

e An emerging parallel programming language \
e Design and development led by Cray Inc.
e in collaboration with academia, labs, industry

e Goal: Improve productivity of parallel programming

e A work-in-progress

Productivity: Traditional, pre-Exascale Concerns

What does “Productivity” mean to you? o

Recent Graduates: \
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’'t need because | wasbornto-suffer-
want full control

to ensure performance’

J

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

COMPUTE | STORE | ANALYZE

=
B ®
= Copyright 2014 Cray Inc.

Productivity: My nightmare scenario o

Scenario:

e A mainstream computing buddy wants to do some scalable parallelism
e Accustomed to using Python, Matlab, or Java, say
e Also IDEs with auto-completion, refactoring, integrated debugging, ...

e Knowing you're an expert in the field, wants recommendations

The source of my fears:
“As the HPC community, do we have anything we can recommend as a
productive solution to such a person with a straight face?”

“Do any of us even recognize what productivity means to most
programmers anymore? Would we know it if it bit us on the leg?”

= COMPUTE | STORE | ANALYZE

(== @
= Copyright 2014 Cray Inc.

How to attract/retain HPC programmers?

FOR PARALLEL PROGRAMMING
NEAREST SUPERCOMPUTING CENTER

One Answer: “Decent” Parallel Languages .

What was the last parallel notation you used that felt:

e productive?
high-level?
powerful?

o

o

o flexible?
o effective?
o

o

o

modern? | ')
(...all the things we judge good software by...)? | W/ You

FOR PARALLEL PROGRAMMING

NEAREST SUPERCOMPUTING CENTER

(Because that’s what we’re competing against when it
comes to attracting new talent)

7z
@H::::
-2

Productivity in the Exascale Era

L J
\
. . =AY
Prototypical Exascale Processor Technologies .o

) \
\
\
YT Joee| 2 umu’,}g uUsB DDR3 Controller
JTAG, I’C, SPI
High-Radix Router Module (RM) o
; : 36.Cores
.t 2
| n_' | PCle 2.0 - 8 Lanes g
i PCle 2.0 - 4 Lanes 2
:
PCle 2.0 - 4 Lanes
Processor (PC)
Node 0 (NO) 20TF, 1.6TB/s, 256GB
csiuel (i (W) 1 0TS 2. 8T Bési2 - Flexible 1/O DDR3 Controller
Ech;:'lonS‘y's!em
Nvidia Echelon Tilera Tile-Gx
http://download.intel.com/pressroom/images/Aubrey e_diejpg hitp//iwww.zdnet.com/amds-trinity-processors-take-on-iptels-ivy-bridge-3040
idia-reveals-details-of-echelon-apu-desians-for-exascale/ - http://ilera.com/sites/default/files/préductbriefs/Tile-Gx%203036%20SB012-01.pd @

D http://insidehpc.com/2010 6/nvid
@::;:
= Copyright 2014 Cray Inc.

Exascale: Programmer Productivity Challenges S

Emerging processor designs...
...are increasingly locality-sensitive
...potentially have multiple processor/memory types

= Exascale programmers will have a lot more to think about
at the node level than in the past

= What will it take to keep the productivity bar level
(to say nothing of improving it?)

= COMPUTE | STORE | ANALYZE
@\=.h Copyright 2014 Cray Inc. @

!
CRAaY |
!

Summarizing: Three Productivity Challenges .

L)

1. How to improve productivity relative to current practice?
2. How to improve productivity to entice new users?

3. How to maintain productivity in the face of exascale?
e let alone improve it?

Happily, #3 gives us a renewed excuse to work on #s 1 & 2:

If we're going to have to switch to something new anyway, it's a
great opportunity to change to something truly productive

~__

\

\

\
\

Productivity, HPCS, and Cray:

A Brief History/Review

Productivity, as defined by HPCS .o

Productivity (10x improvement goal) = \
performance
+ programmability
(readability, writeability, maintainability, modifiability, tunability, ...)
+ portability
+ robustness

A reasonable starting point...

...yet, how to combine four areas down to a single metric?
e particularly given that most of them are hard to measure individually?

Also some unreasonable (IMO) goals/expectations:
e Initially, a stated desire to see the establishment of Moore’s Law-style
productivity improvements year after year

COMPUTE | STORE | ANALYZE

B ®
=% Copyright 2014 Cray Inc.

Productivity: Played Out? .o

e There’s some sense that productivity isn’t “hot” anymore |
e “Didn’t we [solve | fail to solve] that in HPCS?”

e Arguably analogous to “peace”
e not particularly “new” or “hip” as an concept
e reasonable causes for skepticism about our ability to achieve it
e but clearly something to desire over the alternatives

e Personally, | prefer not to throw in the towel (in either case)

COMPUTE | STORE | ANALYZE

=
= Copyright 2014 Cray Inc.

My “Zany Metrics” (a brainstorming exercise) .o

“Zany” Metrics M |

¢ Abstractness of Code
- how much code must change if we...

change number of processors, shape of processor set?
change problem size?
make processors not divide problem size evenly?
make processor dimensions, problem size non-2¢?
switch dense arrays to sparse?
change an array’ s rank?

¢ Portability of Code

- how much code must change...
to run on another vendor’ s machine?
to get performance satisfactory to that vendor?

AN

(55“& (HPCS Phase Il Metrics Kickoff: 2003-8-5) O

“Language Bingo”

A PEL

D

Language Comparison

HPES

MPI | SHMEM | Java uPC CAF HPF | OpenMP Forganl
Performs | (o) ? ? o) ? ?
Portable| () ? (o) ? ? X
P°”°'",J|1'L‘;e, (o) (o) (o) (0) (o) X X X
Global View | X X X X X o o O
Post-scalar | ~/X /X (o) X /X /X
Abstractions | X X (o) X X X
Succinct| X X X X X
General | O o) o) X X X O
C --=no comment O = good =s0-s0 X =poor ? =unproven)

AN

(slide from some HPCS productivity meeting)

O

Sterling’s Model of Productivity

@ Productivity Factors M
(Sterling Model) Version 2.1

Performance «——— Efficiency (E)
Productivity Application Portability
Construction
S /— Maintainability
Availability «=—— Reliability

(A) \
Accessibility

Peak Performance (S, Cy,)

AN

=== (HPCS Phase Il Metrics Kickoff: 2003-8-5))

Sterling’s Model of Productivity .o

@D General Model of Productivity M

NR
Ri =i" result product
, d Te= YT
Ti= time to compute result R: -

T} = total lifetime of machine T =Tr+Tv +To
Tv = total overhead time of machine N
Tp = quiescent time of machine RL = 2 R
Tr = working time of machine ;
Nr = total number of result products during 7z Cr=Cis+Cu+Cro
C: = all costs associated with machine during 7% N
CLs = application software costs during 7% CLs = 2 Csi
Cro = costs of ownership during 77 i
Cu = cost of procurement and initial installation R:
Cs: = cost of application software for result R: W= Cix T
W = productivity
Eﬂ ...coincidence?!? | think not... CCRRANY

o= (HPCS Phase Il Metrics Kickoff: 2003-8-5) ()

Various Others’ Models of Productivity N

Sign In to gain access to subscriptions and/or My Tools. @ Signin | My Tools | Contact Us | HELP

QSAGE jOUFﬂG'S (Q search all journals @ Advanced Search Search History Browse Journals

International Journal of

HIGH PERFORMANCE
COMPUTING APPLICATIONS

Home OnlineFirst All Issues Subscribe RSS @ Email Alerts

« Return to Search Results | Edit My Last Search (Q search this journal @ Advanced Journal Search »

Impact Factor: 1.295 | Ranking: 15/50 in Computer Science, Hardware & Architecture | 27/100 in Computer Science, Theory & a2 2 J(p;;"";"gn;g‘gj;;;%?g
Methods | 53/99 in Computer Science, Interdisciplinary Applications

« Previous | Next Issue » Current Issue

Table of Contents » May 2014, 28 (2)

Winter 2004; 18 (4) This Issue
Winter 2004; 18 (4) mm‘
O Articles BT
() Jeremy Kepner
HPC Productivity: An Overarching View
Intemational Joumnal of High Performance Computing Applications Winter 2004
18: 393-397, doi:10.1177/1094342004048533 » Alert me to new issues of
Abstract Full Text (PDF)? Request Permissions Intornational Journal of High
Performance Computing
———— Applications
[J D.E. Postand R. P. Kendall ———
Software Project Management and Quality Engineering Practices for == Submita M int
Complex, Coupled Multiphysics, Massively Parallel Computational bad SUbmita Manuscrip
Simulations: Lessons Learned From ASCI Z‘J Free Sample Copy
Intemational Joumnal of High Performance Computing Applications Winter 2004 .
18: 399-416, doi:10.1177/1094342004048534 » Index By Author (&) Email Alerts
Abstract Full Text |PDF)Z:J References Request Permissions Articles & RSSfeed
() Marc Snir and David A. Bader ch'g a"“‘:'? in this issue containing More aboutthis Journal
€ words:
A Framework for Measuring Supercomputer Productivity
Intemational Joumnal of High Performance Computing Applications Winter 2004 Search Issue m
4Q: A47 A2 Ani AN A4AT7TIANOAAINNANAQR2R -_— -
COMPUTE | STORE | ANALYZE

=_
@“’“ Copyright 2014 Cray Inc. http://hpc.sagepub.com/content/18/4.toc @

The Application Kernel Matrix

D

AKM Dimensions M |

S T
S
system ~— 77"~
o //
language // L1
//
|
P
e e
//
architecture-neutral implementations | || //
— | | |
code listing
line/token count
\ performance
programmer information
kernel B

AN

/“\v s
cHaPEL

(Marina del Mar SW Productivity Workshop, 2005?)@

®
i
CRAaY |

The Application Kernel Matrix Website (R.1.P.) o

23 Kernel Matrix - Microsoft Internet Explorer E @ z
T
n

File Edit View Favorites Tools Help

QBack ~ ¥ & @ P search Favorites @ Media €2 (J- fn [¥ 3

Address [@ http: //akm.cray.com/matrix.php?target=generic&anguage =fortran&kernel=ccg v Go Links >

Google - | | @osearchweb - @searchsie (3] K P O @ @ - #doptons - @ -
-~

Cascade: Application Kernel Matrix

discussion forum

info the kernels the matrix programmer's log kernel submission form

Kernel Specs & Kernel Matrix:

Solutions: The matrix is a graphical representation of all the submissions that we have received and
O NASPB Conjugate Gradient confirmed. Programmers can submit a "generic” solution, or one that is tuned for high
Sweep3D performance on a specific computer system. If you submit a]:keme\ solution in a language

that hasn't been used in the matrix before, a new row getsadded to the matrix. Hover

NASPB Unstructured Adaptive over a row, column, or cell for more information about already-submitted solutions.
Connected Components

O Chip Floorplan Design
NASPB Fourier Transform

O NASPB Multigrid Benchmark
Protein Sequence Matching Unified Parallel C
Sparse Matrix Triangular Chapel
Backsolve e
Vector Max and Prefix Sums

Links:
O Cray, Inc.

The Cascade Project

O HPCS: High Productivity
Computing Systems program
DARPA: Defense Advance
Research Projects Agency

Select a target system: | Generic Implementation v
CG S3D UA CCG CFD NFT NMG PSM SMB VMP}
Fortran 1

1
Most recent submissi January 7 2005 @ 19:27:39‘

Submitted August 17 2004 @ 15:34:39
Submitted by: Justin Garcia of Rice University
Kernel: Connected Components
Language: Fortran
Line count: 100

Contacts: Token count: 1000
David Mizell Execution time: 1.2 seconds
John Feo T ey
O John Lewis + Compiled with gcc 3 on 3 Powerbook G4 running Mac 0S 10.3.
Brad Chamberlain :
O Justin Garcia Download the source code

Back to top

Last Modified: October 27 2004 03:51:26 PM

R e
CHAaPEL

(While the AKM did not catch on,
other similar comparison sites have,
at least in the mainstream

One of my favorites (content and form):
* The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/

The HPC Challenge, Berkeley Dwarfs,
and Graph-500 arguably play similar roles).

(defunct website, formerly http://akm.cray.com) O

HPCS Workflows .

@ Level 1 Functional Workflows £

(1) Writing Large Multi-Module Codes 3) Running Codes

Formulate Develop ' Develop \\ V&V P i Analyze
question. Approach Code / 4 Results
Kl

. Writing Small Codes ,

Chapel <redacted> | <redacted> | <redacted>

<redacted> | <redacted> | <redacted> | <redacted>

(4) Porting Code

. .."4 Py e
Identify Change . B
Qifference; Code I

(5) Administration

Problem Resource Security HW/SW
Resolutio Janageme| lanagemep Upgrade

<redacted> | <redacted> | <redacted> | <redacted>

<redacted> | <redacted> | <redacted> | <redacted>

¢ Workflows comprise many steps; many overlapping

¢ Item in red represent areas with highest HPC specific interest

Workflow Coverage (2) ==Av
/ixv R
N\ (slide from internal Cray government review)

Timed Markov Models XS

@ Our Workflow Analysis Approach M ~

Timed Markov
Models

1.0, 268s

Compile

Workflow Coverage (4) ==N

/;D\-QAPEI_ . . . O
(b/ (slide from internal Cray government review)

User Studies: Quantitative Evaluation S SR

! cmas
CHAPEL
=

Workflow 2 — Productivity Improvement Summary

Time Usage by Process Step, by Method, by Coding Order

Hours Used

Process Ses

Overall Relative Productivity
Improvement 2.3 to 2.6 X

|

Debug Parallel Code

Programmers created less bugs when programming in Chapel

¥ Global view of data simplifies programming
[mf

Program Parallel
L]

Fewer changes needed when going from serial to parallel

¥ Multi-resolution of parallelism makes it easier to go from serial to parallel
Designing Parallel Algorithm

MPI programs frequently require restructuring of the serial C code, finding right MPI lib routine

S et

(slide from internal Cray government review) O

User Studies: Qualitative Evaluation KOO

“The biggest feature from a broad perspective for me was domains.
Especially for scientific codes, it is invaluable to be able to define
the couple problem domains you're working with. It makes it trivial
to change the size or layout or distribution if you decide you need to,

it helps guarantee that all of your different arrays match up. A 3D
rectangular grid is infinitely more clear in Chapel with domains than in C,

where you have to figure out how they laid it out (is it one giant array?
what is the major dimension? x? z? y?).”

“l loved not having to think as hard about offsets and counts for the
parallel version of the code in Chapel, as opposed to the MPI version,
where | almost always had to chase down two or three indexing errors.”

“Lastly, I'm a huge huge fan of the type inference used in Chapel.
| like that | don't have to specify types everywhere--they can just

be inferred from how I'm using them, but if | mess something up,

the compiler catches it.”

Summary: Many Useful Concepts/Techniques...

BUT...

The Catch with Productivity Metrics .

My suspicion: If | were to tell you that any of these metrics...
...demonstrated that Chapel was 10x better than Fortran+MPI
...showed that X10 was 2x better than Chapel
...indicated that Perl was 5x better than Python
...proved that emacs was 8.5x better than vim

...dared suggest that alpine is 7x better than Outlook

Would you believe me? Enough to change your practices?

Maxim #1: “| can’t define productivity, but | know it when | see it”

“And seeing is believing”

Maxim #2: “Productivity is in the eye of the beholder”
“To each his/her own productivity solutions”

PEL

= COMPUTE | STORE | ANALYZE
@ Copyright 2014 Cray Inc.

If Not Metrics, Then What?

For many of us, case studies can be compelling...

Here are three examples from Chapel

Case 1: LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

It spemfles =
. data structure“chmces

- Iocal VS. dlstnbuted data
* sparse vs. dense materlals arrays

LULESH’s Technical Productivity Lesson .

e Put hardware-mapping-specific choices in declarations

e Makes computation independent of key decisions like:
e memory layouts
e distributions
e sparse vs. dense
e # of dimensions

e Supports switching between options easily

e This is a design trend that (happily) seems to be growing
e Several similar designs reported on at PADAL 201ﬂﬂm“\"{vorkshop

- -
PADALWorkshop 2014%

ApLil=28-29 LugangmSwitzerland ="

Workshop on Programming Abstractions for Data Locality (PADAL)

sssssss The cost of data movement has become the dominant factor of a high performance computing system both in terms of energy ion and perfc To data

"""" ications have to be optimized both for vertical data movement in the memory hi y and hori. data ing units. While microarchitectural technology

Pasticipunts trends allow the scaling of the number of cores per chip, cache coherence will likely not scale to the large number of cores due to the traffic overhead of maintaining coherence. in the
Radons future, d memory and i caches or memory will be p Thus, applicati need a set of i ions to ibe data

locality on the new computing ecosystems.

Architectural trends break our existing i i the current tools optimize for floating point operations not memory traffic. They ignore the incurred cost of

=\ COMPUTE | STORE | ANALYZE
&@“L Copyright 2014 Cray Inc. http://padalworkshop.org

LULESH’s Social Productivity Lesson .

e Written by intern in final 2 weeks as a “bonus” project \
e productive!

e lllustrated Chapel use in a familiar setting to scientists
e ones who'd heard many Chapel talks previously, and yet...

e Served as a medium for discussion, collaboration

e Demonstrated productivity of features thought not to be
e global indexing, sparse domains

e Provided bidirectional feedback/knowledge transfer
e CcO-design!

(a nice win for DOE’s proxy apps effort)

APPLIED MATHEMATICS ®

UNIVERSITY of WASHINGTON \
cRANY
Case 2: Chapel Rank-Independent AMR Framework .

S \
\

UW applied mathematician wrote one code that could be |
used to produce results in 2D, 3D, 6D, 17D...

@::E: (pictures courtesy of Jonathan Claridge, UW Amath) O

Today'sS LeSSon

programming Zero
to
Parallel Hero

_in Six HourS

http://prezi.com/wp13igmsl1di/summer-scholars/?utm campaign=share&utm mealem=coov

i
CcC=RANY

Case 3: Chapel’s Appeal to Educators/Students .

[—

\

SIGCSE
ATLANTA March 5-8, 2014

2‘ : 14 Atlanta, Georgia

OpenConf Peer Review & Conference Management System

OpenConf HomelEmail Chair|

Full Program »
Chapel: A versatile tool for teaching undergraduates parallel programming

Chapel is a programming language being developed for high-performance applications. It is well-suited for teaching parallelism in a
wide variety of undergrad courses. Chapel is easy to learn since it supports a low-overhead style like a scripting language as well as

http://faculty.knox.edu/dbunde/teaching/chapel/SIGCSE 14/

/7\ cRese
| CHaPEL
\—J

CSEP524: Parallel Computation

Software

Pthreads: (included with the above)

OpenMP: (included with the above)

Chapel: chapel-fedoral7-1.6.1.1.tar.gz
(This is a pre-release of the Chapel 1.6.1 sources, pre-compiled for the Fedora 17 VM;
and skipping step 2 if you're using the VM)

MPI: Setup MPI
This describes how to install MPI and how to run it locally and on our course VM cluster.

http://courses.cs.washington.edu/courses/csep524/13wi/

O

Chapel Wrap-up

e (Many other productive demonstrations in addition...) \

e Chapel’s Productivity Scorecard

e Work is ongoing to improve Chapel’s weak areas

Performance

Programmability

Portability
Robustness

e Productivity often requires long-term investment and patience

PEL

COMPUTE

STORE

Copyright 2014 Cray Inc.

ANALYZE

Summary / Takeaways

e Productivity still matters
e even if the term is well-worn

e Exascale brings new productivity challenges
e but also an opportunity to improve upon past approaches

e Not convinced we can measure productivity
e nor that it matters whether or not we can

e Proxy apps are a useful medium for productivity studies
e serve as a place to demonstrate productivity features
e serve as meeting place for distinct communities

e Educators and Students are a good resource
e can't stand in for today’s experts, but may be tomorrow’s

e Productivity gains may not happen overnight

= COMPUTE | STORE | ANALYZE
@\-.h Copyright 2014 Cray Inc.

Funding Productivity: Personal Opinions .

e Invest in software to compensate for hardware challenges

e Pursue a combination of evolution and revolution
e can't afford to just do one

e Evaluate based on user (or prospective user) viewpoints
e computer science viewpoints are not necessarily as relevant

e Must budget for evaluation/study of new technologies
e can’t expect such studies to be spare time activities
e requires time from experts, not simply novices
e again, well-designed proxy apps can be useful here

= COMPUTE | STORE | ANALYZE

@::.I
= Copyright 2014 Cray Inc.

\
\

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective

owners.

Copyright 2014 Cray Inc.

(&= ®

CRANY

THE SUPERCOMPUTER COMPANY

"'_rav.com chapel info

