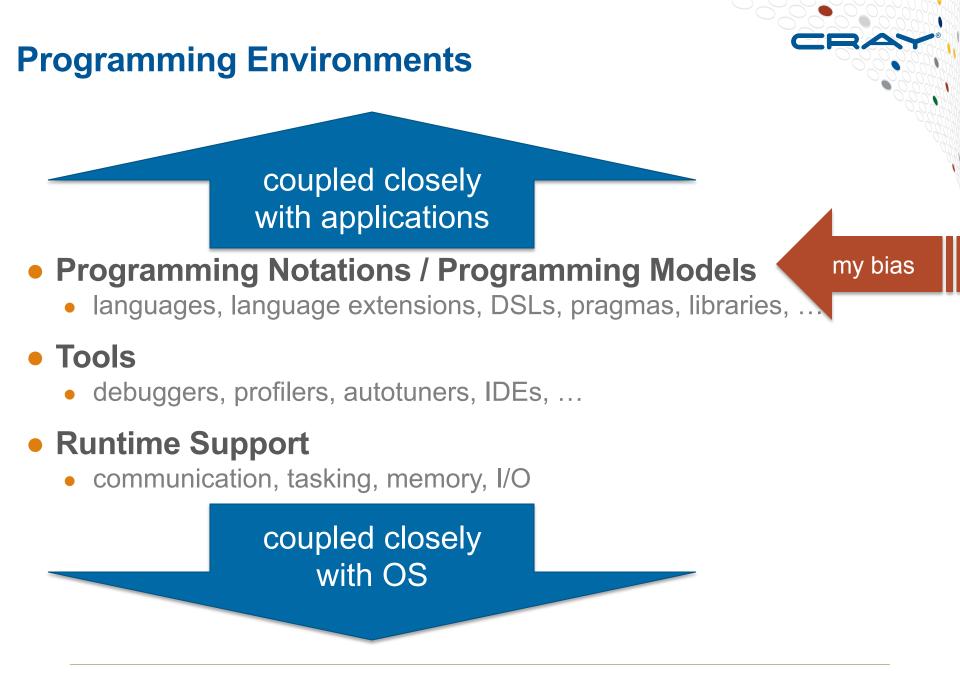
Reflections on Programming Environments and Productivity (based on experiences with HPCS and Chapel)

Brad Chamberlain, Chapel Team, Cray Inc. ASCR Exascale Computing Systems Productivity Workshop June 3rd, 2014



COMPUTE | STORE | ANALYZE

Safe Harbor Statement

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

3

Chapel (part of the reason for my bias)

- An emerging parallel programming language
 - Design and development led by Cray Inc.
 - in collaboration with academia, labs, industry
- Goal: Improve productivity of parallel programming
- A work-in-progress

Productivity: Traditional, pre-Exascale Concerns

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

5

What does "Productivity" mean to you?

Recent Graduates:

"something similar to what I used in school: Python, Matlab, Java, ..."

Seasoned HPC Programmers:

"that sugary stuff that I don't need because I was born to suffer" want full control to ensure performance"

Computational Scientists:

"something that lets me express my parallel computations without having to wrestle with architecture-specific details"

Chapel Team:

"something that lets computational scientists express what they want, without taking away the control that HPC programmers want, implemented in a language as attractive as recent graduates want."

COMPUTE | STORE | ANALYZE

Productivity: My nightmare scenario

Scenario:

- A mainstream computing buddy wants to do some scalable parallelism
 - Accustomed to using Python, Matlab, or Java, say
 - Also IDEs with auto-completion, refactoring, integrated debugging, ...
- Knowing you're an expert in the field, wants recommendations

The source of my fears:

"As the HPC community, do we have anything we can recommend as a productive solution to such a person with a straight face?"

"Do any of us even recognize what productivity means to most programmers anymore? Would we know it if it bit us on the leg?"

How to attract/retain HPC programmers?

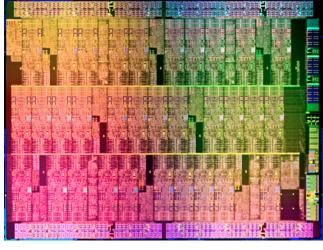
One Answer: "Decent" Parallel Languages

What was the last parallel notation you used that felt:

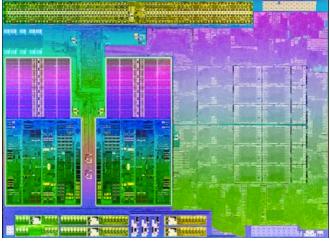
- productive?
- high-level?
- powerful?
- flexible?
- effective?
- modern?
- fun?
- (...all the things we judge good software by...)?

(Because that's what we're competing against when it comes to attracting new talent)

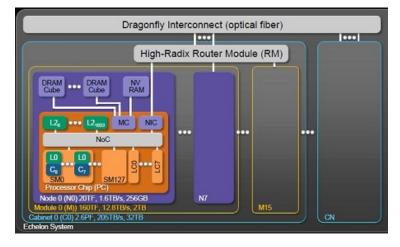
COMPUTE | S


STORE

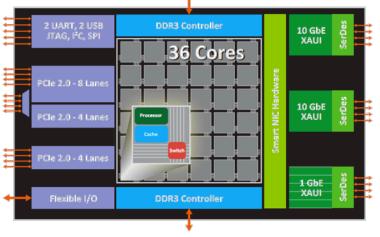
ANALYZE



COMPUTE | STORE | ANALYZE


Prototypical Exascale Processor Technologies

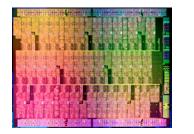
Intel MIC

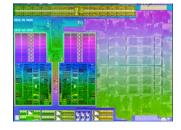


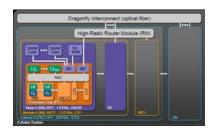
AMD APU

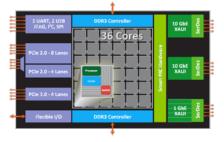
Nvidia Echelon

CHAPEL




Tilera Tile-Gx


11


http://download.intel.com/pressroom/images/Aubrey_Isle_die.jpg http://www.zdpet.com/amds-trinity-processors-take-on-iptels-ivy-bridge-3040155225/ http://insidehoc.com/2010/11/26/nvidia-reveals-details-of-echelon-gpu-designs-for-exascale/____http://tilera.com/sites/default/files/productbriefs/Tile-Gx%203036%20SB012-01.pdf

Exascale: Programmer Productivity Challenges

Emerging processor designs...

... are increasingly locality-sensitive

...potentially have multiple processor/memory types

- ⇒ Exascale programmers will have a lot more to think about at the node level than in the past
- ⇒ What will it take to keep the productivity bar level (to say nothing of improving it?)

ANALYZE

Summarizing: Three Productivity Challenges

- **1.** How to improve productivity relative to current practice?
- **2.** How to improve productivity to entice new users?
- **3.** How to maintain productivity in the face of exascale?
 - Iet alone improve it?

Happily, #3 gives us a renewed excuse to work on #'s 1 & 2:

If we're going to have to switch to something new anyway, it's a great opportunity to change to something truly productive

Productivity, HPCS, and Cray: A Brief History/Review

COMPUTE | STORE | ANALYZE

Productivity, as defined by HPCS

Productivity (10x improvement goal) =

performance

+ programmability

(readability, writeability, maintainability, modifiability, tunability, ...)

+ portability

+ robustness

A reasonable starting point...

...yet, how to combine four areas down to a single metric?

• particularly given that most of them are hard to measure individually?

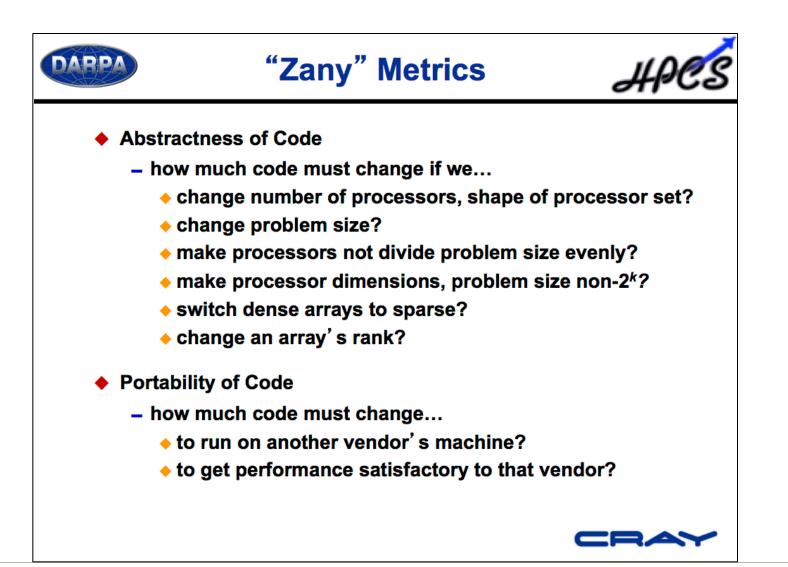
Also some unreasonable (IMO) goals/expectations:

 Initially, a stated desire to see the establishment of Moore's Law-style productivity improvements year after year

Productivity: Played Out?

• There's some sense that productivity isn't "hot" anymore

• "Didn't we [solve | fail to solve] that in HPCS?"


Arguably analogous to "peace"

- not particularly "new" or "hip" as an concept
- reasonable causes for skepticism about our ability to achieve it
- but clearly something to desire over the alternatives

• Personally, I prefer not to throw in the towel (in either case)

My "Zany Metrics" (a brainstorming exercise)

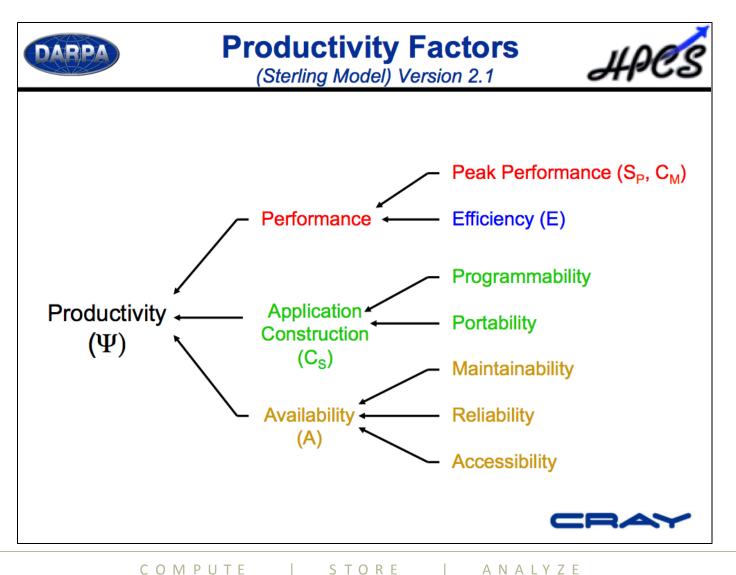
STORE

"Language Bingo"

DARPA	L.	Language Comparison						HPCS		
ſ	MPI	SHMEM	Java	UPC	CAF	HPF	OpenMP	Fortran/ C		
Performs Well	0	0	?	?	0	?	?	~		
Portable	0	?	0	?	?	~	X	~		
Performance Model	0	0	0	0 X	0 X	X	X	X O		
Global View	Χ	X	Χ			0	0			
Post-scalar	~/X	~/X	0	X	~	~	~/X	~/X		
Abstractions	X	X	0	~	~	X	X	Χ		
Succinct	X	X	X	X	X	~	~	~		
General	0	0	0	~	X	X	X	0		
= no c	ommen	t O = g	good	~ = so-s	o X =	poor	? = unpro	oven		
		-	-							

COMPUTE | ST

STORE

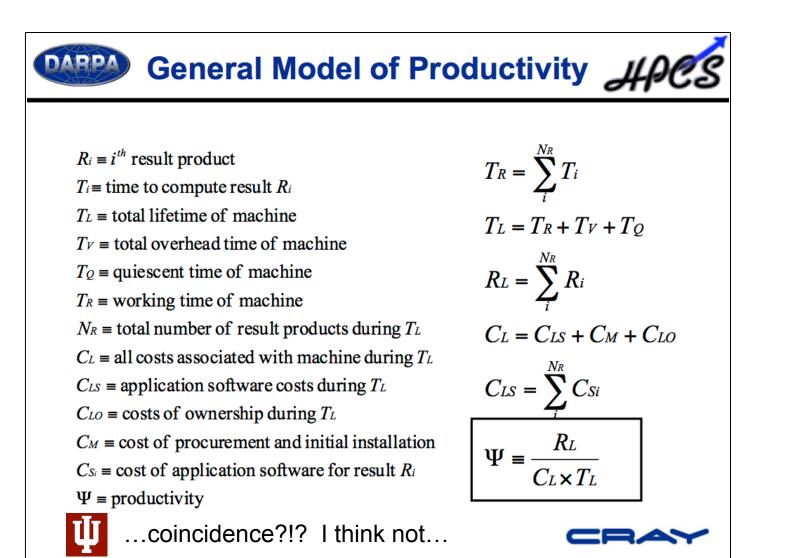

ANALYZE

Copyright 2014 Cray Inc.

(slide from some HPCS productivity meeting)

(18)

Sterling's Model of Productivity



ANALYZE

(HPCS Phase II Metrics Kickoff: 2003-8-5)

19

Sterling's Model of Productivity

COMPUTE STORE

ANALYZE

Copyright 2014 Cray Inc.

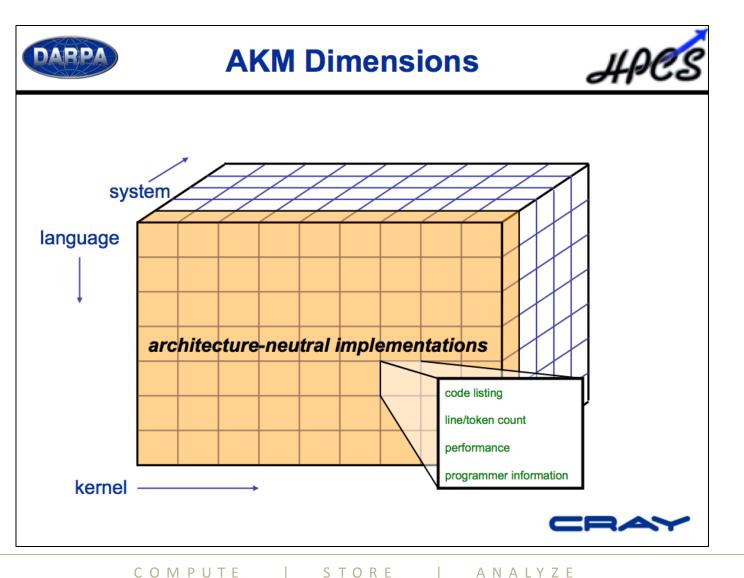
(HPCS Phase II Metrics Kickoff: 2003-8-5)

Various Others' Models of Productivity

COMPUTE

Sign In to gain access to subscriptions and/or My Tools.	Sign In My Tools Contact U	s HELP		
SAGE jOURNALS Q Search all journals Search >	Search History Browse Jour	nals 🕨		
International Journal of HIGH PERFORMANCE COMPUTING APPLICATIONS				
« Return to Search Results Edit My Last Search	Q Search this journal	Advanced Journal Search »		
Impact Factor: 1.295 Ranking: 15/50 in Computer Science, Hardware & Architecture 27/100 Methods 53/99 in Computer Science, Interdisciplinary Applications	in Computer Science, Theory &	Source: 2012 Journal Citation Reports® (Thomson Reuters, 2013)		
Table of Contonto	« Previous Next Issue »	Current Issue		
Table of Contents		May 2014, 28 (2)		
Winter 2004; 18 (4)	This Issue			
Articles	Winter 2004; 18 (4)	HIGH PERFORMANCE COMPUTING APPLICATIONS		
 Jeremy Kepner HPC Productivity: An Overarching View International Journal of High Performance Computing Applications Winter 2004 18: 393-397, doi:10.1177/1094342004048533 Abstract Full Text (PDF) Request Permissions D. E. Post and R. P. Kendall 		 Alert me to new issues of International Journal of High Performance Computing Applications 		
Software Project Management and Quality Engineering Practices for Complex, Coupled Multiphysics, Massively Parallel Computational	EVALUTY Manufacture With the advancement With the advancement	Submit a Manuscript		
Simulations: Lessons Learned From ASCI		Free Sample Copy		
International Journal of High Performance Computing Applications Winter 2004 18: 399-416, doi:10.1177/1094342004048534	» Index By Author	Email Alerts		
Abstract Full Text (PDF) Areferences Request Permissions	Articles	🔊 RSS feed		
 Marc Snir and David A. Bader A Framework for Measuring Supercomputer Productivity International Journal of High Performance Computing Applications Winter 2004 18: 417 429 doi:10.1177/10.0442/2004/04535 	Find articles in this issue containing these words:	+ More about this journal		

ANALYZE


Copyright 2014 Cray Inc.

STORE

http://hpc.sagepub.com/content/18/4.toc

21

The Application Kernel Matrix

ANALYZE

(Marina del Mar SW Productivity Workshop, 2005?)⁽²²⁾ Copyright 2014 Cray Inc.

The Application Kernel Matrix Website (R.I.P.)

Links

Cascade: Application Kernel Matrix

info the kernels the matrix programmer's log kernel submission form discussion forum

🔾 Back 🔻 🕤 👻 😰 🏠 🔎 Search 🤸 Favorites 😵 Media 🔗 🔗 🚽 🌺 🚍 🖵 💥 🖄

Address 🗃 http://akm.cray.com/matrix.php?target=generic&language=fortran&kernel=ccg

Kernel Specs & Solutions:

Sweep3D

NASPB Conjugate Gradient

Connected Components Chip Floorplan Design NASPB Fourier Transform

NASPB Multigrid Benchmark Protein Sequence Matching

NASPB Unstructured Adaptive

Google -

Kernel Matrix - Microsoft Internet Explorer File Edit View Favorites Tools Help

Kernel Matrix:

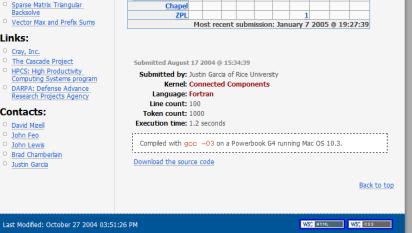
The matrix is a graphical representation of all the submissions that we have received and confirmed. Programmers can submit a "generic" solution, or one that is tuned for high performance on a specific computer system. If you submit a kernel solution in a language that hasn't been used in the matrix before, a new row gets added to the matrix. Hover over a row, column, or cell for more information about already-submitted solutions.

	Select a target system: Generic Implementation								on 🗸	
	CG	S3D	UA	CCG	CFD	NFT	NMG	PSM	SMB	VMP
Fortran				1						
Unified Parallel C										
Chapel										
ZPL							1			
Most recent submission: January 7 2005 @ 19:27:39										

📸 Search Web 🔹 👰 Search Site 🝺 🔗 🦪 🥵 🙂 🚇 🖓 🕶 🗖 Options 💼 🔹 🥖

Links:

Cray, Inc.


Backsolve

- The Cascade Project
- HPCS: High Productivity Computing Systems program
- DARPA: Defense Advance Research Projects Agency

Contacts:

- David Mizell
- John Feo John Lewis
- Brad Chamberlain
- Justin Garcia

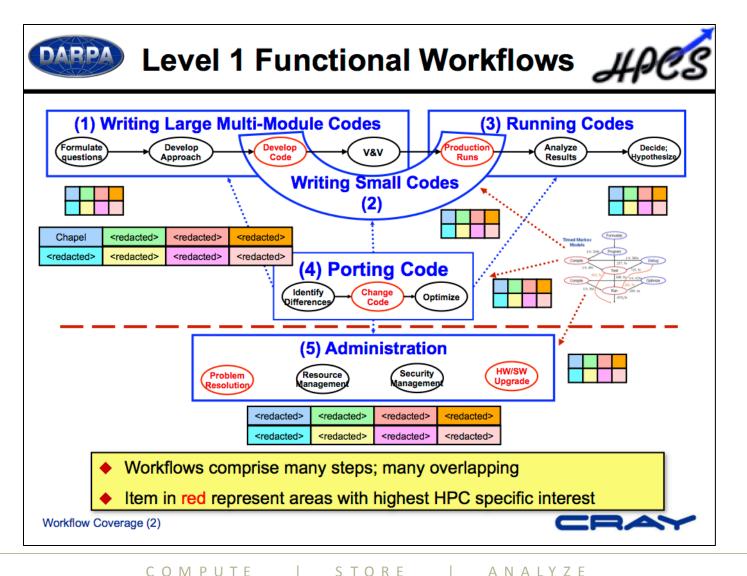
COMPUTE

(While the AKM did not catch on, other similar comparison sites have, at least in the mainstream

One of my favorites (content and form):

 The Computer Language Benchmarks Game http://benchmarksgame.alioth.debian.org/

The HPC Challenge, Berkeley Dwarfs, and Graph-500 arguably play similar roles).

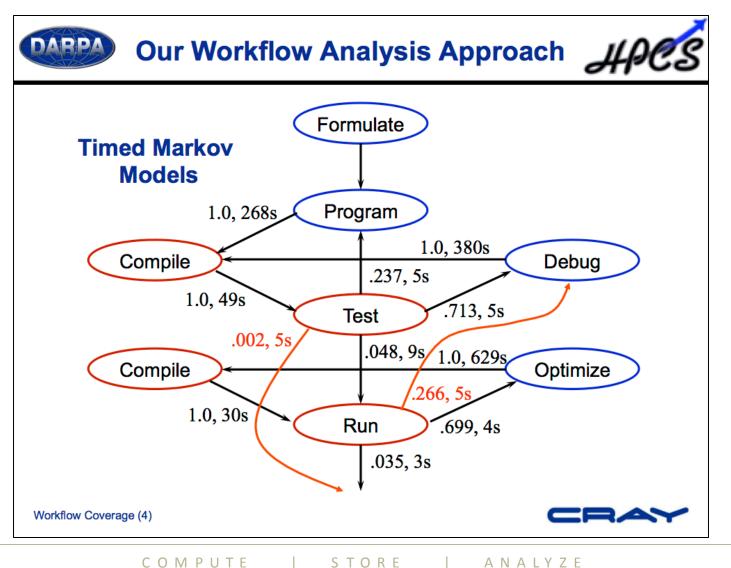

STORE

ANALYZE

Copyright 2014 Cray Inc.

(defunct website, formerly http://akm.cray.com)

HPCS Workflows

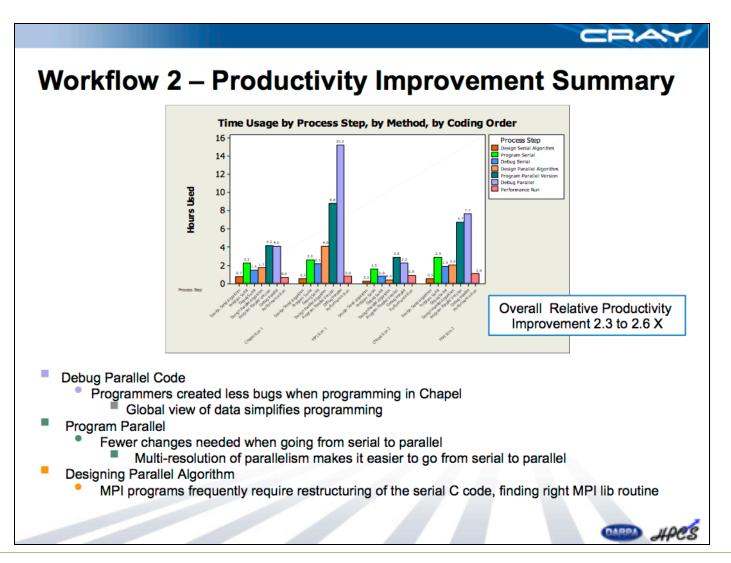

ANALYZE

Copyright 2014 Cray Inc.

(slide from internal Cray government review)

24

Timed Markov Models


Copyright 2014 Cray Inc.

(slide from internal Cray government review)

(25)

User Studies: Quantitative Evaluation

COMPUTE

STORE

ANALYZE

(slide from internal Cray government review)

Copyright 2014 Cray Inc.

26

User Studies: Qualitative Evaluation

"The biggest feature from a broad perspective for me was domains. Especially for scientific codes, it is invaluable to be able to define the couple problem domains you're working with. It makes it trivial to change the size or layout or distribution if you decide you need to, it helps guarantee that all of your different arrays match up. **A 3D rectangular grid is infinitely more clear in Chapel with domains than in C**, where you have to figure out how they laid it out (is it one giant array? what is the major dimension? x? z? y?)."

"I loved not having to think as hard about offsets and counts for the parallel version of the code in Chapel, as opposed to the MPI version, where I almost always had to chase down two or three indexing errors."

"Lastly, **I'm a huge huge fan of the type inference used in Chapel.** I like that I don't have to specify types everywhere--they can just be inferred from how I'm using them, but if I mess something up, the compiler catches it."

Summary: Many Useful Concepts/Techniques... BUT...

COMPUTE | STORE | ANALYZE

The Catch with Productivity Metrics

My suspicion: If I were to tell you that any of these metrics...

- ...demonstrated that Chapel was 10x better than Fortran+MPI
- ...showed that X10 was 2x better than Chapel
- ...indicated that Perl was 5x better than Python
- ...proved that emacs was 8.5x better than vim
- ...dared suggest that alpine is 7x better than Outlook
- ...would you believe me? Enough to change your practices?

Maxim #1: "I can't define productivity, but I know it when I see it"

"And seeing is believing"

Maxim #2: "Productivity is in the eye of the beholder"

• "To each his/her own productivity solutions"

If Not Metrics, Then What?

For many of us, case studies can be compelling...

Here are three examples from Chapel

COMPUTE | STORE | ANALYZE

Case 1: LULESH in Chapel

_____ SCENERGARVER. -----MUTAZYHD. - BEDANY

- ogs. Hinder *** i Serie 3,- 11 3,- 11 --------------------..... 10100 ---------_____ . WEEF LEDEDAR -----

Q:= = : =:=:::... -----

·-----IRANTIN.....

Ulliner:

ulti--

122222

. 82-----

****** Y-

-----Segur-..... 320753--------------------Wasses----------gezer. TXXX--YEBSET-..... . _____ Yerne. tarar Yeller THEFT. WARRANG CO 10012-----Wanger INCOMPANY OF LT ----

-----.....

____ (igthing and in the second sec

Y----

Tasua Sector 1

-----.....

ΞĒ ¥.....

Marine-Martinger.

Mag Inter-Warth and

NILES SENSE.

100 YOR III BEA

-.....

197

YSALESsa...

...... ****** WS-____ æ====:.

.....

· · _____

u.....

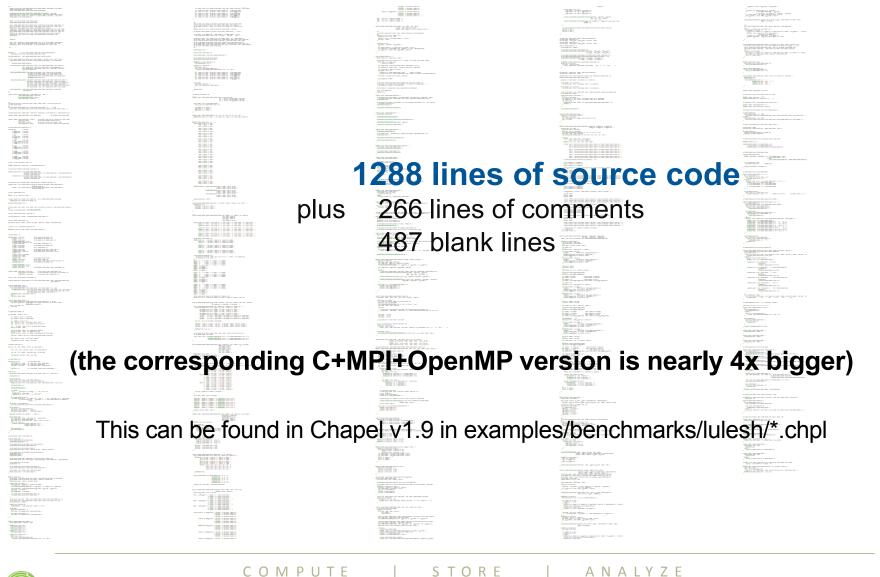
-

Verence Verence 122--------.....

-

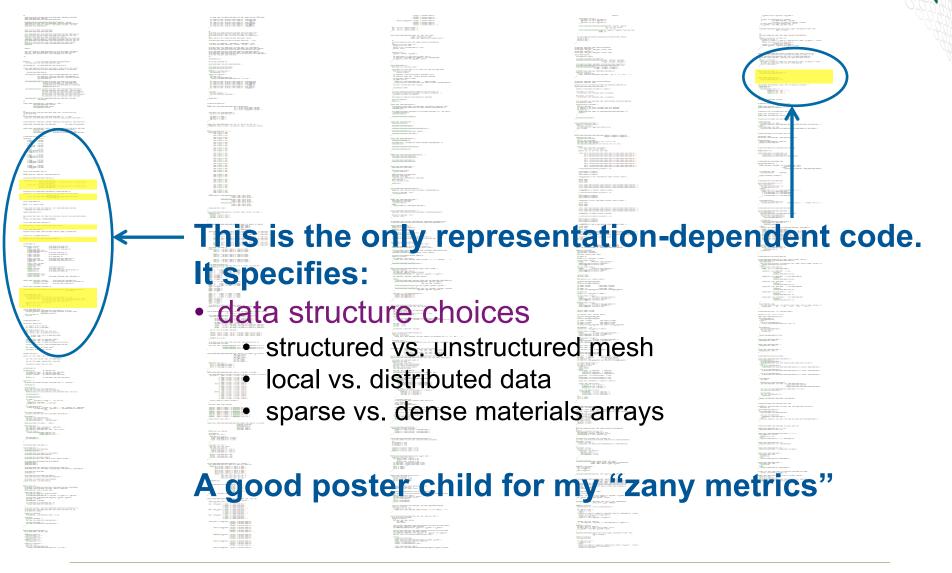
S T O R E

And the second s


COMPUTE

ANALYZE

Copyright 2014 Cray Inc.


١

LULESH in Chapel

LULESH in Chapel

S T O R E Copyright 2014 Cray Inc.

СОМРИТЕ

ANALYZE

LULESH's Technical Productivity Lesson

Put hardware-mapping-specific choices in declarations

- Makes computation independent of key decisions like:
 - memory layouts
 - distributions
 - sparse vs. dense
 - # of dimensions
- Supports switching between options easily

• This is a design trend that (happily) seems to be growing

• Several similar designs reported on at PADAL 2014 workshop

PADAL Workshop 2014 April 28-29 Lugano, Switzerland

Programming Abstractions for Locality (PADAL Abstracts Logistics Panels Participants Presentations Registration

Schedule

Workshop on Programming Abstractions for Data Locality (PADAL)

The cost of data movement has become the dominant factor of a high performance computing system both in terms of energy consumption and performance. To minimize data movement, applications have to be optimized both for vertical data movement in the memory hierarchy and horizontal data movement between processing units. While microarchitectural technology trends allow the scaling of the number of cores per chip, cache coherence will likely not scale to the large number of cores due to the traffic overhead of maintaining coherence. In the future, software-managed memory and incoherent caches or scratchpad memory will be prevalent. Thus, application developers need a set of programming abstractions to describe data locality on the new computing ecosystems.

Architectural trends break our existing programming paradigm because the current software tools optimize for floating point operations not memory traffic. They ignore the incurred cost of

СОМРИТЕ

STORE

ANALYZE

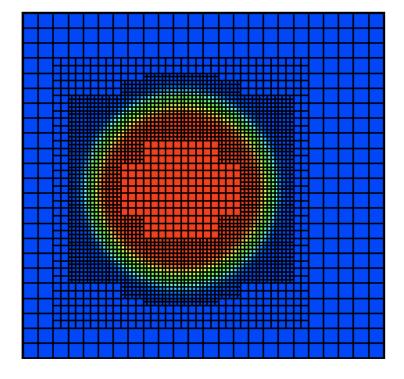
http://padalworkshop.org

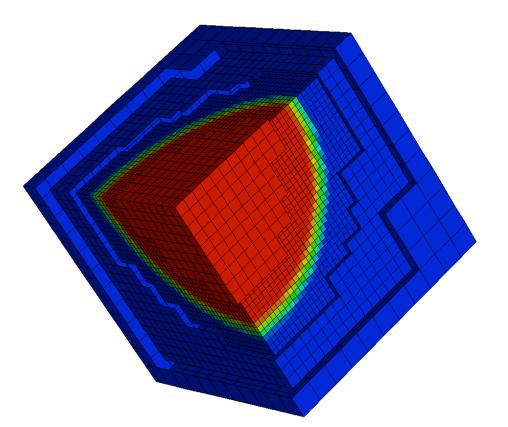
Copyright 2014 Cray Inc.

34

LULESH's Social Productivity Lesson

- Written by intern in final 2 weeks as a "bonus" project
 - productive!
- Illustrated Chapel use in a familiar setting to scientists
 - ones who'd heard many Chapel talks previously, and yet...
- Served as a medium for discussion, collaboration
- Demonstrated productivity of features thought not to be
 - global indexing, sparse domains
- Provided bidirectional feedback/knowledge transfer
 - co-design!

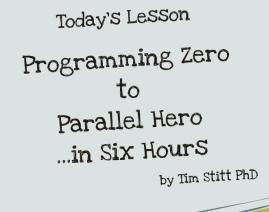

(a nice win for DOE's proxy apps effort)



Case 2: Chapel Rank-Independent AMR Framework

UW applied mathematician wrote one code that could be used to produce results in 2D, 3D, 6D, 17D...

СОМРИТЕ


STORE

ANALYZE

Copyright 2014 Cray Inc(pictures courtesy of Jonathan Claridge, UW Amath)

36

Case 3: Chapel's Appeal to Educators/Students

http://prezi.com/wp13iqmsl1di/summer-scholars/?utm_campaign=share&utm_medium=copy

March 5-8, 2014 Atlanta, Georgia

OpenConf Peer Review & Conference Management System
OpenConf Home Email Chair

Full Program »

Chapel: A versatile tool for teaching undergraduates parallel programming

Chapel is a programming language being developed for high-performance applications. It is well-suited for teaching parallelism in a wide variety of undergrad courses. Chapel is easy to learn since it supports a low-overhead style like a scripting language as well as

http://faculty.knox.edu/dbunde/teaching/chapel/SIGCSE14/

CSEP524: Parallel Computation

Software

Pthreads: (included with the above)

OpenMP: (included with the above)

Chapel: chapel: chapel: chapel: chapel: <a href="chapel-fedora17-1.6.1"

MPI: <u>Setup MPI</u>

This describes how to install MPI and how to run it locally and on our course VM cluster.

http://courses.cs.washington.edu/courses/csep524/13wi/

COMPUTE

STORE

ANALYZE

Chapel Wrap-up

- (Many other productive demonstrations in addition...)
- Chapel's Productivity Scorecard
 - Performance
 - Programmability
 - Portability
 - Robustness

• Work is ongoing to improve Chapel's weak areas

• Productivity often requires long-term investment and patience

Summary / Takeaways

Productivity still matters

- even if the term is well-worn
- Exascale brings new productivity challenges
 - but also an opportunity to improve upon past approaches

Not convinced we can measure productivity

nor that it matters whether or not we can

• Proxy apps are a useful medium for productivity studies

- serve as a place to demonstrate productivity features
- serve as meeting place for distinct communities

• Educators and Students are a good resource

• can't stand in for today's experts, but may be tomorrow's

Productivity gains may not happen overnight

Funding Productivity: Personal Opinions

- Invest in software to compensate for hardware challenges
- Pursue a combination of evolution and revolution
 - can't afford to just do one
- Evaluate based on user (or prospective user) viewpoints
 - computer science viewpoints are not necessarily as relevant

Must budget for evaluation/study of new technologies

- can't expect such studies to be spare time activities
- requires time from experts, not simply novices
- again, well-designed proxy apps can be useful here

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

STORE

ANALYZE

http://chapel.cray.com chapel_info@cray.com http://sourceforge.net/projects/chapel/