The Audacity of Chapel:

Scalable Parallel Programming Done Right
(director’s cut, with outtakes)

Brad Chamberlain, Chapel Team, Cray Inc.
ACCU 2017, Bristol UK
April 27th, 2017

/éi:;;t aCC LU
o 2017

7~
C

Safe Harbor Statement

~

Ghis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
\ ? Y,

Copyright 2017 Cray Inc.

Fair Warning Statement :l:Ayf '

This keynote contains many slides and no guitar solos ®

BUT... it does contain thematically relevant
UK rock lyrics trivia!l

Copyright 2017 Cray Inc.

)

I am the egg man

Introductions

| am the Walrus
The Beatles
Magical Mystery Tour

(“Pssst... Who is this turkey?”) ——P-CUy

Hi, I’'m Brad Chamberlain

e graduate of the University of Washington _ \
e worked on a data-parallel array language, ZPL '

e principal engineer at Cray Inc.

e founding member and technical lead of the Chapel project
2

=Rasr
cHAPEL
/

=
e more of a practical parallel computing guy than a PL expert...

=/ Copyright 2017 Cray Inc.

The Context for My Work

HPC: High Performance Computing

e parallelism at large scales
e lots of distributed processors and memories

e performance rules
e and too often, is all that matters
e programmers are virtually living in the dark ages

CRRANY": The Supercomputer Company

=/ Copyright 2017 Cray Inc.

Recent Highlighted Cray Systems

A

' 5] Sandia ® M Lawrence Livermore
N A “a o - Los Alamos LA National Laboratory Next-Gen Cray XC

R ERRTI

19k compute nodes
40+ PF, 2+ PB
80+PB File System

e E,N\x 5200 sq ft

Crayl/Intel
partnership

50k+ compute nodes
180PF, 7+ PB
150+ PB File System |

s

Petroleum Geo-Services

Cray Market Segments

Machine Learning & Deep Learning o = Higher Education

Financial
Earth Sciences Energy Services

()

“I don’t really care about HPC programming...”=l=tA:Yf '

S \
\

e OK, but do you care about parallelism & concurrency?
e \What about performance? \
e What about scaling up your data set sizes?
e What about targeting next-generation processors?

Next-generation processors and computations are
increasingly resembling traditional HPC.

Copyright 2017 Cray Inc.

If you didn’t care what happened to me,
And | didn’t care for you,

We would zig zag our way

Through the boredom and pain...

Motivation for Chapel

Pigs on the Wing (part one)
Pink Floyd
Animals

Motivation from Kathy Yelick (UC Berkeley, LBNL) =='A‘Yf '

Why Consider New Languages at all?

e Do we need a language? And a compiler?
e If higher level syntax is needed for productivity
e We need a language

e If static analysis is needed to help with correctness
e \We need a compiler (front-end)

e |f static optimizations are needed to get performance

e We need a compiler (back-end)

=/ Copyright 2017 Cray Inc.

\

\

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

=/ Copyright 2017 Cray Inc.

N
Y

What does “Productivity” mean to you? o

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“that sugary stuff that | don’t need because | -wasborato-suffer”
want full control to ensure performance”
Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

=/ Copyright 2017 Cray Inc.

“The Audacity of Chapel”? cRas

audacity (according to Google):
/0. dastti/ \
noun

1. a willingness to take bold risks.
‘I applaud the audacity of the Chapel team in attempting to create
a new language given how hard it is for new languages to succeed.”

2. rude or disrespectful behaviour; impudence.

“| can’t believe the Chapel team has the audacity to create a new
language when we already have [C++ | Python | ...]V

=/ Copyright 2017 Cray Inc.

This Talk’s Thesis cRas

)
S \
\

Programming language designers have, to date, largely
failed the large-scale parallel computing community. \

Copyright 2017 Cray Inc.

This just feels like spinning plates
I’m living in cloud-cuckoo land

The Status Quo in HPC Programming

Like Spinning Plates
Radiohead
Amnesiac

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, =B; + a.- C,

In pictures:

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C

Compute: Vi € 1.m, A, =B; + a.- C,

In pictures, in parallel (shared memory / multicore):

A

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi € 1.m, A, =B; + a.- C,

In pictures, in parallel (distributed memory):
|

STREAM Triad: a trivial parallel computation ==as~

. S \
Given: m-element vectors A, B, C \

Compute: Vi < 1.m, A, =B;+ o C, \

In pictures, in parallel (distributed memory multicore):
|

+ 7+ 01+ [+ 01+ +1 + ; +
C

A T AR B
alililil

\
Scalable Parallel Programming Concerns SR '

)
S \
\

Q: What should scalable parallel programmers focus on?
A: What should execute simultaneously? ‘
Locality: Where should those tasks execute?

+ 7+ 01+ [+ 01+ +1 + ; +

I I I
alililil

STREAM Triad: MPI

static int VectorSize;
static double *a, *b, *c; [] : a : [-] : [-]

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI_Comm size(comm, &commSize);
MPI_Comm rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm) ;

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if ('a ||

if (c) HPCC_free(c);
if (b) HPCC_free (b);
if (a) HPCC_free(a);

'b

if (doIO) {
fprintf(outFile,
allocate memory (%d).\n",

VectorSize) ;
fclose(outFile);

}

return

1;

'c)

{

"Failed to

for (j=0; j<VectorSize; j++) {

b[3] =
cl[jl =
}

scalar =

2.0;
1.0;

3.0;

for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]];

HPCC_free(c) ;
HPCC_free(b) ;
HPCC_free(a) ;

return O;

}

STREAM Triad: MPI+OpenMP
#include <hpcc.h> if (ta || 'b || 'e) {

#ifdef _OPENMP if (c) HPCC_free(c);
#include <omp.h> % if (b) HPCC_ free(b);
#fendif if (a) HPCC_free(a);
if (doIO) {
static int VectorSize; fprintf(outFile, "Failed to
static double *a, *b, *c; [-] : a : a : [-] allocate memory (%d).\n",
VectorSize);
int HPCC_StarStream(HPCC_Params *params) { fclose(outFile) ;
int myRank, commSize; }
int rv, errCount; return 1;
MPI Comm comm = MPTI_ COMM WORLD; }
MPI_Comm size(comm, &commSize); #ifdef OPENMP
MPI_Comm rank(comm, &myRank); #pragma_bmp parallel for
#endif
rv = HPCC_Stream(params, 0 == myRank); for (j=0; j<VectorSize; j++) {
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, b[j] = 2.0;
0, comm); cl3] = 1.0;

}

return errCount;
scalar = 3.0;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
= b[]j]+scalar*c[j];

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, alj]

sizeof (double), 0); HPCC free(c) :

a = HPCC_XMALLOC(double, VectorSize); HPCC_free (b) ;
b = HPCC XMALLOC(double, VectorSize); HPCC_free(a);

¢ = HPCC XMALLOC(double, VectorSize);
— return 0; }

STREAM Triad: MPI+OpenMP AN

[\
#include <hpcc.h> MPI + OpenMP if ('a || !a#aéfisé N 2000000 CUDA #“ \ \

#ifdef _OPENMP if (c) HPQC_ free(c);
éntreaimf); {

#include <omp.h> % if (b) HPQED
#endif if (a) Hpqc fleakajd a, *d b, *d c;

if (doIO) (_float scalar; (-] : (-] : (-] : [~]
static int VectorSize; : . o
stat;c :iouble *a i:, *c (-] | a | a | a fpr:.ntf- ogﬁgé&aelloc%(a(;x:le:%'f;?&d_a, sizeof (float) *N) ;
o ! ' I allocgte nmemory) (¥ Z\‘&**)&d_b, sizeof (£loat) *N) ; \

VectoySize lMalioc ((void**)sd c, sizeof (float)*N);

int HPCC_StarStream(HPCC_Params *params) { fclose (JoutFile);

J:.nt myRank, commSize; } dim3 dimBlock (128) ;

int rv, errCount; return 1; | dim3 dimGrid(N/dimBlock.x);

MPI_Comm comm = MPI_COMM WORLD; } if(N % dimBlock.x != 0) dimGrid

MPI_Comm_ size(comm, &commSize); #ifdef OPENMH set array<<<dimGrid,dimBlock>>>(d_b, .5f£, N);

MPI_Comm_rank(comm, &myRank); #pragma_omp pa rafeblapeay<<<dimGrid,dimBlock>>>(d c, .5f, N);
#endif

rv = HPCC_Stream(params, 0 == myRank); for (3=0; .<Ves¥al§§j=3.'0f.;++
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, I=Y7 I1ves ff'r‘iah<<)<d£mGrid,dimBlock>>>(d_b, d c, d_a, scalar, N);

0, comm) ; b[::I] =2.4; cudaThreadSynchronize() ;
! ’ cl[j]l = 1.4;
return errCount; } cudaFree(d a);
} scalar = 3.(; cudaFree (d_b);

cudaFree(d c);

#ifdef _OPENME

#pragma omp pgrallel for

#endif __global void set_array(float *a, float value, int len) {
for (§=0; jqvedrbridxss threpdIdx.x + blockIdx.x * blockDim.x;

1+i€a{id® g en) alidx] = value;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, aljl = b[]
sizeof (double), 0);

HPCC free(c)|; . :
. HPCC_free (b . _global void STREAM Triad(float *a, float *b, float *c,
a = HPCC_XMALLOC(double, VectorSize); — ’ float scalar, int len) {

b = HPCC_XMALLOC(double, VectorSize); HPCC_free(a): .t jax = threadIdx.x + blockIdx.x * blockDim.x;
c = HPCC_XMALLOC(double, VectorSize); if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

return 0;)

STREAM Triad: MPI+OpenMP

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

MPI + OpenMP
[[[
O I Tn

static int VectorSize;

static double *a, *b, *c; [-] : a : [] : [-]
int HPCC_StarStream(HPCC_Params *params) {

int myRank, commSize;

HPC suffers from too many distinct notations for expressing parallelism and locality.

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile,

VectorSize) ;
fclose(outFile);

}

"Failed to
allocate memory (%d).\n",

#define N 2000000

)
CUDA %
int main() {

float *d a, *d b, *d c;
float scalar; a : [-] : [-] : [-]
sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

cudaMalloc ((void**)&d a,
cudaMalloc ((void**)&d b,
cudaMalloc ((void**)&d c,

dim3 dimBlock (128) ;

This tends to be a result of bottom-up language design.

MPI_Reduc;(&rv,
0, comm);

gerrCount, 1, MPI_INT, MPI_SUM,

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;

double scalar;
VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

@
=

for (J=0; j<VectorSize; Jj++)
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[jl = b[jl+scalar*c[]];

HPCC_free(c) ;
HPCC_free(b) ;
HPCC_free(a) ;

return 0; }

{

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronize() ;

cudaFree(d_a);
cudaFree(d b) ;
cudaFree(d c);

__global void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

N) ;

Why so many programming models? —— Y-

[\
S \

HPC tends to approach programming models bottom-up:

Given a system and its core capabilities... \

...provide features that permit users to access the available performance.
e portability? generality? programmability? These are second- or third-order concerns, if that.

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[MP|CL|ACC] SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

STREAM Triad:

Chapel

u

config const m = 1000
alpha =

const ProblemSpace =
var A, B, C:

2.0;
1.0

@)
I

.
. 14

b
I

B + alpha * C;

[ProblemSpace]

14

3.0;

{1..m}(dmapped ..;

real;

b
CRAY

The special sauce:
How should this index

set—and any arrays and
computations over it—be &
mapped to the system?

Philosophy: Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

This Talk’s Takeaways cRas

If you design a parallel programming language...

...don’t tie yourself to low-level, architecture-specific mechanisms \

e yet don’t make them inaccessible either...
e permit interoperating with such mechanisms
e or support them as the “assembly” to your higher-level features

It’s so easy to laugh, it’s so easy to hate
It takes guts to be gentle and kind

SPMD Programming Models like MPI

| Know It’s Over
The Smiths
The Queen is Dead

HPC’s Status Quo: SPMD Programming e

SPMD: Single Program, Multiple Data

e concept: write one program, run multiple copies of it in parallel

e a “bottom-up” programming model design
e “HPC systems can run lots of programs, so let’s get parallelism that way”
e oOften clumsy in practice

=/ Copyright 2017 Cray Inc.

(30)

SPMD by Example (in pictures)
“Apply a 3-Point Stencil to a vector”

Conceptual View

11

+TTT I)2
=LITTTTT]

SPMD View

]

SPMD by Example (in pictures)
“Apply a 3-Point Stencil to a vector”

Conceptual View

(

+TTT I)2

SPMD View

| |
| N | N
N2 VN2)2
" u - O

|

SPMD by Example (in code) cRas

“Apply a 3-Point Stencil to a vector”

SPMD pseudo-code

proc main() {

var n = 1000;

var p = numProcs (),
me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {
send (me+1, A[myN]);
recv (me+1, A[myN+1]);
}
if (me > 0) {
send (me-1, A[1l]);
recv (me-1, A[0]);
}
forall i in 1..myN do

14

B[i] = (A[i-1] + A[i+1]1)/2;

SPMD by Example (in code)
“Apply a 3-Point Stencil to a vector”

Global-view code (Chapel)

s\\\\’proc main () {

const n = 1000,

var A,

forall
B[1]

——

[1..n]

D = {l..n} dmapped Block(..);
B:

real;

in 2..n-1 do

(A[1-1]

+ A[i+11)/2;

\
cCcRAaY
[\
S \
SPMD pseudo-code \
proc main() {
var n = 1000; \
var p = numProcs (),
me = myProc(),
myN = n/p,
var A, B: [0..myN+1] real;
if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);
}
if (me > 0) {
send (me-1, A[1])
recv (me-1, A[0]);
}
forall i in 1..myN do
B[i] = (A[i-1]1 + A[i+11)/2;

SPMD by Example (in code)
“Apply a 3-Point Stencil to a vector”

Global-view code (Chapel)

s\\\\’proc main () {

const n = 1000,

D= {1..n} dmapped Block(..);
var A, B: [1l..n] real;

forall i in 2..n-1 do

Bug: Refers to uninitialized values at ends of A

SPMD pseudo-code

proc main () {
var n = 1000;
var p = numProcs (),
me = myProc(),
myN = n/p,
var A, B: [0..myN+1] real;

if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);

}

if (me > 0)
send (me-1
recv (me-1

forall™Jin 1..myN do

B[i] = (A[i-1] + A[i+1]1)/2;

SPMD by Example (in code)

“Apply a 3-Point Stencil to a vector” §

~——

Global-view code (Chapel)

proc main ()

const n = 1000,
= {l1..n} dmapped Block(..);
var A, B: [1l..n] real;
f°rall Communication becomes
geometrically more complex
for higher-dimensional arrays

()
1000;
numProcs (),
= myProc (),
myN = n/p,

myLo = 1,

myHi = myN;
var A, B: [0..myN+1] real;

proc main

if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);
else
/ myHi = myN-1;

if (me > 0) {
send (me-1, A[l]);
recv (me-1, A[0]);

)

Copyright 2017 Cray Inc.

Assumes p divides n

} else
myLo = 2;

forall i in myLo..myHi do
B[i] = (A[i-1] + A[i+1])/2;

// w\\
J/

)

rprj3 in Fortran + MPI cRas

subroutine rprj3(r,mlk,m2k,m3k,s,mlj,m27,m37, k) do j3=2,m3j-1
implicit none i3 = 2*j3-d3
include 'cafnpb.h' do j2=2,m2j-1
include 'globals.h' i2 = 2*%32-d2
do j1=2,mlj
integer mlk, m2k, m3k, mlj, m23j, m3j,k il = 2*9j1-d1
x1(il-1) = r(il-1,i2-1,i3) + r(il-1,i2+1,i3)
double precision r (mlk,m2k,m3k), s(mlj,m2j,m37) > + r(il-1,i2, 1i3-1) + r(il-1,1i2, 1i3+1)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j yl(il-1) = r(il1-1,12-1,1i3-1) + r(il-1,1i2-1,1i3+1)
double precision x1 (m), yl(m), x2,y2 > + r(il-1,i2+1,i3-1) + r(il-1,i2+1,i3+1)
enddo
if (mlk.eq.3) then do jl=2,mlj-1
dl = 2 il = 2%j1-d1
else y2 = r(il, 1i2-1,i3-1) + r(il, 1i2-1,i3+1)
dal = 1 > + r(il, 12+1,i3-1) + r(il, 1i2+1,13+1)
endif x2 = r(il, 1i2-1,i3) + r(il, 1i2+1,1i3)
> + r(il, 12, i3-1) + r(il, 12, 1i3+1)
if (m2k.eq.3) then s(j1,32,33) =
d2 = 2 > 0.5D0 * r(il,i2,1i3)
else > + 0.25D0 * (r(il-1,i2,1i3) + r(il+1,i2,13) + x2)
d2 = 1 > + 0.125D0 * (x1(il-1) + x1(il+1) + y2)
endif > + 0.0625D0 * (yl(il-1) + yl(il+1))
enddo
if (m3k.eq.3) then enddo
43 = 2 enddo
else o= k-1
43 = 1 call comm3 (s, mlj,m273,m373,7)
endif return

end

rprj3 in Fortran + MPI cRas

subroutine rprj3(r,mlk,m2k,m3k,s,mlj,m27,m37, k) do j3=2,m3j-1
implicit none i3 = 2*j3-d3
include 'cafnpb.h' do j2=2,m2j-1
include 'globals.h' i2 = 2*%32-d2
do j1=2,mlj
integer mlk, m2k, m3k, mlj, m23j, m3j,k il = 2*9j1-d1
x1(il-1) = r(il-1,i2-1,i3) + r(il-1,i2+1,i3)
double precision r (mlk,m2k,m3k), s(mlj,m2j,m37) > + r(il-1,i2, 1i3-1) + r(il-1,1i2, 1i3+1)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j yl(il-1) = r(il1-1,12-1,1i3-1) + r(il-1,1i2-1,1i3+1)
double precision x1(m), yl(m), x2,y2 > + r(il-1,i2+1,1i3-1) + r(il-1,i2+1,i3+1)
enddo
if (mlk.eq.3) then do jl=2,mlj-1
dl = 2 il = 2%j1-d1
else y2 = r(il, 1i2-1,i3-1) + r(il, 1i2-1,i3+1)
dal = 1 > + r(il, 12+1,i3-1) + r(il, 1i2+1,13+1)
endif x2 = r(il, i2-1,i3) + r(il, 1i2+1,i3)
> + r(il, 12, i3-1) + r(il, 12, 1i3+1)
if (m2k.eq.3) then s(j1,32,33) =
d2 = 2 > 0.5D0 * r(il,i2,1i3)
else > + 0.25D0 * (r(il-1,i2,i3) + r(il+1,i2,1i3) + x2)
d2 = 1 > + 0.125D0 * (x1(il-1) + x1(il+1) + y2)
endif > + 0.0625D0 * (yl(il-1) + yl(il+1))
enddo
if (m3k.eq.3) then enddo
43 = 2 enddo
else o= k-1
43 = 1 call comm3 (s, mlj,m2j,m37,7)
endif return

end

comm

subroutine comd(u,nl 2,03,k
use caf_intrins:
implicit none
include 'cafrpb.h'
include 'globals.h'
integer nl, n3,
double precision u(nl, oy ,n3)
integer axis
if(.not. dead(k.k)) then
axis
if(npmcs _ne. 1) then

call sync all()
call give3(axis, +1, u, nl,

n2,
aall L give3(axis, -1, u, nl,
n2, n3
aall sync all()
take3(axis, -1, u, nl,
n2, n3)
call take3(axis, +1, u, nl,
n2, n3)
else
call commilp(axis, u, nl, n2,
n3, kk)
endif
‘enddo
else

axis = 1, 3
call sync all()
call sync all()

enddo
call zero3(u,nl,n2,n3)
endif

return

subroutine give3(axis, dir, u, nl, n2,
k)

use vaf intrinsics

implicit none
include 'cafrpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3, k, ierr
double precision u(ni, n2, n3)

integer i3, i2, il, buff _len,buff id

buff id
buf€ len

2 + dir
0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i2=2,n2-1
buff len = buff len + 1
¢ len,buff id) =
u(2, i2,i3)
enddo
enddo

buff (1:buff_len,buff_id+l) [nbr (axi

N

the communication for rprj3

s,dir, k)] =
> buff (1:

uff_len buff_id)
else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n
buff_ien = buffilen +
1
buff (buff_len,
buff_id) = u(nl-T, i2,i3)
enddo

enddo
buff (1:buff_len buff_id+l) [nbr
(axis, dir, k).
> buff (1: buff len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

il=1,nl
uff_len = buff_len +
buff (buff_len,
buff_id) = u(il, ~2,i3)

en
enddo

buff (1:buff_len buff_id+1) [nbr
(axis,dir, k]
> buff (1:buff_len,buff_id)

else if(dir .eq. +1) then
do i3=2;n3-1
1
buff_len = buff_len +
. ! !
buff (buff len,
buff_id)= u(il,nZ°1,i3)
en
enddo
buff (1:buff len buff_id+l) [nbr
(axis,dir,kJ]
> buff (1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i ,n2

=1,nl
buEE len = buff_len +
1
buff (buff_len,
buff_id) = u(i1,i2,2)
~ enddo

enddo

buff (1:buff len buff_id+l) [nbr
(axis, dir, k)]

buff (1:buff_len,buff_id)
else if(dir .eq. +1) then
do i2=1,n2
do il=1,nl
buff_len = buff_len +
1
buff (buff_len,
buff_id) = u(i1,1i2,n3-1)
en
enddo
buff (1:buff len,buff_id+l) [nbr
(axis,dir, k]
buf (1:buff_len,buff_id)

endif
endif

return
end
subroutine take3(axis, dir, u,

nl, n2, n3
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3
double precision u(nl, n2, n3)

integer buff_id, indx
integer i3, i2, il

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1

&
N

i
u(nl,i2,i3) =
buff (indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then
n3-

12=2, n2-1

indx = indx + 1

u(1,i2,i3) =
buff(mdx buff id)

do i3=2,
do

enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do il=1,n1

indx = indx

u(il,n2,i3)

buff (indx, buff_id)

enddo

"+
-

enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do

il=1,n1
indx = indx + 1
u(il,1,i3) =
buff (indx, buff id)
enddo
en
endif

endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do

il=1,n1
indx = indx + 1
u(il,i2,n3) =
buff (indx, buff id

enddo
else if(dir .eq. +1) then

do

ing
u (i
buff(x.ndx buff id)
end
end.d.o

endif
endif

return

end

subroutine commlp(axis, u, nl,
n2, n3, kk)

use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3
double precision u(ni, n2, n3)

integer i3, i2, il,
buff_len,buff id
integef i, kk, fmdx

dir 1

buff id = 3 + dir
buff_len = nm2

do i=1,nm2
buff (i,buff_id) = 0.0DO
ddo

dir = +1

buff id = 3 + dir
buff_len = nm2

do i=1,nm2
buff (i,buff_id) = 0.0D0
enddo -

dir = 41

buff_id =
buff_len

len = buff len + 1
buff (buff len, bnff id)
= u(nl-1, i2,i3)
enddo
enddo
endif

if (axis .eq. 2)then
do i3=2;n3-1
do ii=1,
buft len = buff_len + 1
buff{buff len, buff_id
u(il,n2-1,i3)
enddo

s£(sxis eq. 3)then
do i2=1,n2
o ii=1,n1
buff len = buff len + 1
buff{buff_len, Buff_id)
= u(i1,i2,n3-1)
enddo

enddo

endif

dir = -1

buff id = 2 + dir

buff_len = 0

if(axis 1)then
o i3<2/n3-1

12=2,n2-"

1
buff len = buff len +
bufﬂbuff len,’ buff id
=u(2, i2,i3)
ido

1
)

end.
enddo
endif
s£(sxis eq. 2)then
i3=2,n3-1
ii=1,n1

buff len = buff len + 1
buff{buff_len, Buff_id)
=u(il, 2,i3)

CC=RANY

enddo
en
endif

if(axis_.eq. 3)then
do i2=1,n2

do il=1,nl
wit fen = len + 1
buff{buff_: len buff id)
= u(il1,i2,2)
enddo
ddo
endif
do i=1,nm2
buff (i, 4) = buff(i,3)
buff(i,2) = buff(i,1)
enddo
dir = -1

buff_id = 3 + dir
indx = 0

if(axis $%s 1) then
do i3:

do , z 1
indx 4 indx + 1
u(nl,i2,i3) buff(indx,
buff_id)
enddo
endif
if(axis .eq. 2)then
do i3=2,n3-1
indx = indx + 1
u(il,n2,i3) = buff (indx,
buff_id)
enddo
endif
if(axis .eq. 3)then
do i2=1,n2
do il=1,n1
indx = indx + 1
u(il,i2,n3) = buff(indx,
buff_id)
énddo
en
endif
dir = +1

buff_id = 3 + dir
indx =

if(axis_.eq. 1)then
do i3=2,n3-1

do i2=2,n2- 1
indx

in 1
n(l i2, 13) buff(indx.

2)then
3-

indx = indx + 1
u(il,1,i3)
buff_id)
endd.o
enddo
endif

buff_id)
énddo

enc
endif

return
end

1
indx = indx
u(il,i2,1) =

)
)

= buff (indx,

3)then
2

+ 1
buff (indx,

\

Being Gutsy, Gentle, and Kind to MPI — Yo

(Y \
S \
\

e It’'s enabled the vast majority of HPC results for the past ~20 years

e It’s very analogous to assembly programming

e explicitly move data from memory to registers
VS.
explicitly move data between compute nodes’ memories

e Just like assembly, it’s an important technology
e for programming at low levels
e for enabling higher-level technologies

e Yet, as with assembly, we should develop higher-level alternatives

=/ Copyright 2017 Cray Inc.

rprj3 in ZPL I:

procedure rprj3(var S,R:
d: array

begin
S

0.5000
0.2500

0.1250

0.0625

>*

*

R +
(Re"d
R@™d
(Re"d
R@™d
R@™d

(Re"d
R@"d
R@™d
R@™d

[
[_
[
[
[_
R@ D[-
[
[
[_
[_

’
’
14

’

’
’
14
14

1
1
1
1
1,
1
1
1
1
1

14

double;
of direction);

HF R P RPRPRRPR R RPR OO
e eNeNoNeoNeNe!
+ + + + + + + + + +

~ ~ ~
|

~

~ ~ ~ ~
|

N e e e e
~

~

~ ~

~

~

~

~

~

~

HF R R RO OO OR R
~
N e = e = e e

—_ e e e e e L b L L

~

~—"
~

o+ + + + + + + +

R@"d
R@™d
R@"d
R@™d
R@™d
R@"d

rm — /. /0

~ ~

~

~

O O O O O O
~

~

~ ~ ~
|

~

H R R PR OO
~
L e

~

+ + + + + +

NAS MG Speedup: Cray T3E

MG

-
»
|

1
\

— — — |inear speedup

—eo— A-ZPL
ZPL

—8— F+MPI

RN
N
]

Speedup over best 16-processor time
(114.607 seconds in A-ZPL)
(00]
]

0 32 64 128 256

Processors

\
Code Size Comparison S S
1200 : \ \
1000 [declaratio.ns
@ computation

The MPI version...

800

...only supports 2% problem sizes

...only supports running on 2P nodes
...requires k and p to be specified statically
...only supports a single 3D distribution

Lines of Code

The ZPL version...
...iIs completely flexible in these regards

...supports making these decisions at launch-time

F+MPI ZPL
Language

This Talk’s Takeaways cRas

If you design a parallel programming language...

...don’t base your model for parallelism and locality on SPMD \
e instead, support a global view of parallelism and locality (like ZPL)

Epilogue: So why was ZPL not adopted? oy

e Too restricted in terms of generality:
e only a single level of array-based data parallelism \
e only a single parallel array type: block-distributed
e lack of “manual overrides” to drop down closer to the system
e choices that were dated (no OOP, modula-based syntax, ...)

e Great academic project, not a great practical language
e however, ZPL’s experiences informed Chapel’s design greatly

C/ y (46)

=/ Copyright 2017 Cray Inc.

[Instrumental]

Chapel Characteristics

The Liberty Bell March
John Philip Sousa
(unreleased?)

Chapel’s Goal

To create a language that is...
...as productive as Python
...as fast as Fortran
...as portable as C
...as scalable as MPI
...as fun as [insert your favorite language here]

=/ Copyright 2017 Cray Inc.

//777\\\
(49)
\\,ﬂ//

The Challenge ==AYf '

)
S \

\
Q: So why don’t we already have such a language already?
A: Fechmical-challenges? \
e while they exist, we don’t think this is the main issue...
A: Due to a lack of...
...long-term efforts
...resources

...community will
...co-design between developers and users

...patience

Chapel is our attempft to reverse this trend

=/ Copyright 2017 Cray Inc.

Chapel is Portable cRa~ |

(Y \
S \
\

e Chapel’s design and implementation are hardware-independent

e The current release requires: \

e a C/C++ compiler

e a *NIX environment: Linux, Mac OS X, Windows 10 w/ bash, Cygwin, ...
e POSIX threads

e UDP, MPI, or RDMA (if distributed memory execution is desired)

e Chapel runs on...

...laptops and workstations

...commodity clusters

...the cloud

...HPC systems from Cray and other vendors
...modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release

VR
(81)
=/ Copyright 2017 Cray Inc. N

Chapel is Open-Source

e Chapel’s development is hosted at GitHub
e https://github.com/chapel-lang

e Chapel is licensed as Apache v2.0 software

e Instructions for download + install are online
e see http://chapel.cray.com/download.html to get started

=)
=/ Copyright 2017 Cray Inc.

14 full-time employees + 2 summer interns + occasional visiting academics
(one of each started after photo taken)

— A, " "\ T S

Chapel Community R&D Efforts cRAY

HERIOT 1 [Zmags £
DWALT amp Wi ses™ WESTERN

WASHINGTON UNIVERSITY

o RERL %%a?" ORICE s

University

f}l ﬂ LLg Lawrence Livermore
National Laboratory

BERKELEY LAB

Lawrence Berkeley Sandia National Laboratories
National Laboratory

(and several others...)

http://chapel.cray.com/collaborations.html

You say you got a real solution
Well, you know
We’d all love to see the plan

Chapel in a Nutshell

Revolution
The Beatles
The Beatles

Chapel language feature areas

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Base Language

C Domain Maps
Data Parallelism
Task Parallelism

b1 Base Language
Locality Control

Lower-level Chapel

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

N
@

Base Language Features, by example

Modern iterators

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln(f) ;
for i in 1..n {
yield current;
current += next;
current <=> next;

@

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Configuration declarations
(to avoid command-line argument parsing)

./a.out —-n=1000000

canig const n = 10;

for £ in fib(n) do
writeln (£f) ;

Base Language Features, by example

Static type inference for:

» variables

iter fib(n)!
var current = 0,
next = 1;

~

for i in 1..n {
yield current;
current += next;
current <=> next;

e arguments
* return types

confii/?éhst n'
for £%in fib (n)

writeln (£f) ;

do

Base Language Features, by example

iter fib(n) { \

var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Zippered iteration

config const n =

for (i,f) in zip (0

writeln("fib #",

..#n, fib(n)) do

i, " 4ig n’ f),

Base Language Features, by example

Range types and

operators

iter fib(n) {
var current =
next = 1;

of)

for i in 1..n {
yield current;
current += next;
current <=> next;

config const n =\10;

for (i,f) in zip(0..#n,

writeln("fib #", 1,

"

Base Language Features, by example

iter fib(n) { configfconst n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

N
C

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

=~
C

Task Parallelism and Locality Control

«
—)

——)

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

-coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel

prompt> ./taskParallel —--numLocales=2

Hello from task 1 of 2 running on nl033

Hello from task 2 of

running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;

coforall tid in 1..numTasks do
itef ("Hello from task %n of %Sn "+

on %$s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example e

High-Level

Task Parallelism

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
\\\\'coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Task Parallelism and Locality, by example

Not seen here:

Data-centric task coordination
via atomic and full/empty vars

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",
tid,

numTasks, here.name);

promp
promp
Hello
Hello
Hello
Hello

t> chpl taskParallel.chpl -o taskParallel
t> ./taskParallel —--numLocales=2
from task 1 of 2
from task 2 of 2
from task 2 of 2
from task 1 of 2

running on nl033
running on nl032

running on nl033

running on nl032

Task Parallelism and Locality, by example e

7~
@

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl -o taskParallel
prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033

Hello from task 2 of running on nl032

2
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2

running on nl032

Parallelism and Locality: Distinct in Chapel <=|=A:Y®' '

\

S \
\

e This is a parallel, but local program:

coforall 1 in 1..msgs do \
writeln (“Hello from task 7, i)

e This is a distributed, but serial program:

writeln (“Hello from locale 0!”); W

on Locales[l] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!'”);

e This is a distributed parallel program:

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln (“Hello from task ”, i,
“ running on locale ”, here.id);

—
=/ Copyright 2017 Cray Inc.

Partitioned Global Address Space (PGAS) Languages CRANY

(Or more accurately: partitioned global namespace languages) ") \

\

\
e\

e abstract concept:

e support a shared namespace on distributed memory \
e permit parallel tasks to access remote variables by naming them

e establish a strong sense of ownership
e every variable has a well-defined location
e local variables are cheaper to access than remote ones

e traditional PGAS languages have been SPMD in nature
e best-known examples: Fortran 2008’s co-arrays, Unified Parallel C (UPC)

partitioned shared name-/address space

private private private private private
space 0 space 1 space 2 space 3 space 4

=/ Copyright 2017 Cray Inc.

S P M D PGAS La n g u ag es (using a pseudo-language, not Chapel)

shared int i (*); // declare a shared variable i

=)
=/ Copyright 2017 Cray Inc.

S P M D PGAS La n g u ag es (using a pseudo-language, not Chapel)

shared int i (*); // declare a shared variable i

function main () {

i = 2*this image(); // eachimage initializes its copy

=)
=/ Copyright 2017 Cray Inc.

S P M D P GAS La n g u ag es (using a pseudo-language, not Chapel)

shared int i (*); // declare a shared variable i
function main () {

i = 2*this image(); // eachimage initializes its copy

private int j; // declare a private variable j

(@
=)
= Copyright 2017 Cray Inc.

S P M D P GAS La n g U ag es (using a pseudo-language, not Chapel) S !

shared int i (*); // declare a shared variable i

function main () {
i = 2*this image () ; //eachimage initializes its copy

barrier () ;

private int j; // declare a private variable j

j = 1i((this_image()+1) % num images());
// M access our neighbor’s copy of i; compiler and runtime implement the communication

// Q: How did we know our neighbor had an i?
// A: Because it's SPMD — we’re all running the same program so if we have an i, so do they.

—
k./ Copyright 2017 Cray Inc.

Chapel and PGAS cRas

Q \
S \
\

e Chapel is PGAS, but unlike most, it’s not inherently
SPMD \

e never think about “the other copies of the program”
e “global name/address space” comes from lexical scoping
e as in traditional languages, each declaration yields one variable
e variables are stored on the locale where the task declaring it is executing

Locales (think: “compute nodes”)

_, (81 ‘\"
=/ Copyright 2017 Cray Inc. N/

Chapel: Scoping and Locality

var 1: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

\
CR=RANY |
(Y \
S \
\

Chapel: Scoping and Locality

var i: int;
on Locales[1] {

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*%1 + 73

OK to access i, j, and k
) wherever they live

Locales (think: “compute nodes”)

Copyright 2017 Cray Inc.

Chapel: Scoping and Locality

var i: int;
on Locales[1] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2%1 + 3;
here, i and j are remote, so

the compiler + runtime will
} transfer their values

Locales (think: “compute nodes”)

Copyright 2017 Cray Inc.

Chapel: Locality queries o

var i: int;
on Locales[1] {
var j: int; '
coforall loc in Locales {
on loc {
var k: int;

..here... // query the locale on which this task is running
..J.locale.. //query the locale on which j is stored

Locales (think: “compute nodes”)

=)
=/ Copyright 2017 Cray Inc.

Higher-Level Features AN

Chapel language concepts

C Domain Maps
D Higher-level
 Task Parallelism Chapel

Base Language
Locality Control

Data Parallelism, by example

7~
C

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,j] = 1+ (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel

prompt>

1.1 1.

2
3.
4
5

1

1
1
1
1

2
3.
4
5

3 1.51.7 1.9
2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

./dataParallel --n=5

\
Data Parallelism, by example ANy

Domains (Index Sets) dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

12
1 3.
1 4
15

2.7 2.9
3.7 3.9
4.7 4.9
5.7 5.9

N
C

\
Data Parallelism, by example ANy

dataParallel.chpl

config const n = 1000;

var D = {l1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

7~
@

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

Domain Maps (i,3) in D do
(Map Data Parallelism to the System) Afi,j] =i+ (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Distributed Data Parallelism, by example o

dataParallel.chpl

use CyclicDist;

config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,Jj] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl -o dataParallel
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

N
C

LULESH: a DOE Proxy Application AN

e \
S \
\

Goal: Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single \
material

DB: sedov_001.00000 ﬁ‘f N DB: sedov_001.00617
Cycle: 0 Time:0 Cycle: 617 Time:0.01

[

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

LULESH in Chapel

Copyright 2017 Cray Inc.

\
CR=RANY |
[\
S \
\

LULESH in Chapel

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be foundin the Chapel release under examples/benchmarks/lulesh/*.chpl

LULESH in Chapel cRAaNyY

This is all of the representation-dependent code.
It specifies:
 data structure choices

 structured vs. unstructured mesh

* local vs. distributed data
* sparse vs. dense materials arrays

« a few supporting iterators
Small number of changes enabled by domain maps

\
Domain Maps SRSy
S \
\

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation... \

A = B + alpha * C;

...to the target locales’ memory and processors:
I I

Locale 1

k \
—
=/ Copyright 2017 Cray Inc.

Chapel’s Domain Map Philosophy — Yo

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
e to cope with any shortcomings in our standard library

Domain Maps

Task Parallelism
Base Language
Locality Control

3. Chapel’s standard domain maps are written using the end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases
o in fact every Chapel array is implemented using this framework

Chapel’s Multiresolution Philosophy o

[\
S \
\

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity \
e lower levels for greater degrees of control

Task Parallelism
Base Language
Locality Control

e build the higher-level concepts in terms of the lower
e permit users to intermix layers arbitrarily

k \
—
=/ Copyright 2017 Cray Inc.

\
Two Other Multiresolution Features =AY

1) parallel iterators: User-specified forall-loop implementations
e how many tasks to use and where they run
e how iterations are divided between the tasks
e how to zipper with other parallel iterators

2) locale models: User-specified locale types for new node architectures
e how do | manage memory, create tasks, communicate, ...

Like domain maps, these are...
...written in Chapel by expert users using lower-level features
...available to the end-user via higher-level abstractions

=/ Copyright 2017 Cray Inc.

This Talk’s Takeaways cRas

If you design a parallel programming language...
...create attractive ways of expressing parallelism and locality \
o these are key concerns—shouldn’t be yet another library call / pragma
...support first-class index sets
e very expressive concept for users (not seen here, today)
e enable the implementation to reason about alignment (ditto)
...support multiresolution features
e give users the ability to develop their own parallel policies

Puttin’ me down for thinking of someone new
Always the same

Playin’ your game

Drive me insane...

Computer Language Benchmarks Game Results

Your Time is Gonna Come
Led Zeppelin
Led Zeppelin

Computer Language Benchmarks Game (cLBG) ==A:Yf '

S \

e Computer Language = u \
Website supporting cross-
64-bit quad core data set Ianguage comparlsons
Will your toy benchmark program be faster if you write it in Y 13 toy benChmark programs

a different programming language? It depends how you write
* e exercise key computational idioms
which prograns are fast? e specific approach prescribed

Which are succinct? Which are efficient?

Ada C Chapel Clojure C# C++

Take results with a grain of salt
Haskell Java JavaScript Lisp Lua ® y0UI’ mlleage may Vary

0Caml Pascal Perl PHP Python

Racket Ruby JRuby Rust Scala That said, it is one Of the Only
Smalltalk Swift TypeScript SUCh games in town...

Dart Erlang F# Fortran Go Hack

e

Computer Language Benchmarks Game (cLBG) ==A:Yf '

S \

‘
Chapel’s approach to the CLBG:

64-bit quad core data set

Will your toy benchmark program be faster if you write it in

e striving for elegance over heroism
a different programming language? It depends how you write

it e ideally: “Want to learn how program xyz
works? Read the Chapel version.”

Which programs are fast?
Which are succinct? Which are efficient?

Ada C Chapel Clojure C# C++

Dart Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

0Caml Pascal Perl PHP Python

Racket Ruby JRuby Rust Scala

Smalltalk Swift TypeScript

CLBG: Relative Performance Summary

£
= 300
£
o
o 100
o
S— 50
@ 30
17
Y
-~ 10
(O]
E S
c 3
©
S 1
o

-

T

=

a) u
L

How many times slower?

4

4

[\
S \
\
Q
\
-
1

benchmarks game

20 Apr 2017 ub4q

CLBG: Website

Can sort results by execution time, code size, memory or CPU use:

The Computer Language The Computer Language

Benchmarks Game

chameneos -redux
description

program source code,

measurements
X source secs
1.0 Cgcc #5 0.60
1.2 C++g++ #5 0.70
1.7 Lisp SBCL #3 1.01
2.3 Chapel #2 1.39
3.3 Rust #2 2.01
5.6 C++ g++ #2 3.40
6.8 Chapel 4.09
8.0 Java #4 4.82
8.5 Haskell GHC 5.15
10 Java 6.13
10 Haskell GHC #4 6.34
11 C# .NET Core 6.59
11 Go 6.90
13 Go #2 7.59
13 Java #3 7.94

chameneos-redux

description

command-line and

measurements
mem gz cpu cpu load X source
820 2863 2.37 100% 100% 98% 100% 1.0 Erlang
3,356 1994 2.65 100% 100% 91% 92% 1.0 Erlang HiPE
55,604 2907 3.93 97% 96% 99% 99% 1.1 Perl #4
76,564 1210 5.43 99% 99% 98% 99% 1.1 Racket
56,936 2882 7.81 97% 98% 98% 98% 1.1 Racket #2
1,880 2016 11.88 100% 51% 100% 100% 1.2 Python 3 #2
66,584 1199 16.25 100% 100% 100% 100% 1.3 M
37,132 1607 16.73 98% 98% 54% 99% 1.3 Ruby JRuby
8,596 989 9.26 79% 100% 2% 2% 1.3 Go #5
53,760 1770 8.78 42% 45% 41% 16% 1.3 Haskell GHC #4
6,908 989 12.67 99% 100% 2% 1% 1.3 Haskell GHC
86,076 1400 22.96 99% 82% 78% 91% 1.6 OCaml #3
832 1167 24.19 100% 96% 56% 100% 1.6 Go gz
1,384 1408 27.65 91% 99% 99% 78% 1.6 Chapel
53,232 1267 26.86 54% 96% 98% 94% 1.6 Chapel #2

Benchmarks Game

175.88
236.84

mem
28,668
25,784
14,084
132,120
116,488
7,908
9,396
628,968
832

program source code, command-line

and

cpu
131.19

131.58
7 min
5 min

175.78
5 min

137.53

112.15
32.48
12.67

9.26

= code size metric
strip comments and extra
whitespace, then gzip

cpu load
62% 60% 51% 53%

60% 56% 56% 54%
40% 40% 29% 28%
1% 0% 0% 100%
100% 1% 1% 0%
24% 48% 27% 45%
35% 35% 35% 34%
65% 60% 49% 58%
75% 74% 75% 73%
99% 100% 2% 1%
79% 100% 2% 2%

32% 38% 37% 39%

00% 96% 56% 100%

p% 100% 100% 100%

99% 99% 98% 99%

CLBG: Chapel entries A

chapel

B chapel

O smallest

O fastest

[[] emean-smallest
() egmean-fastest

relative execution time

relative source size

CLBG: Chapel vs.

{{{{{{{{{

nnnnnnnn

,,,,,,,,,,

Java

9 key languages

nnnnnnnnn

C++
o
Rust
i .
. Scala
A

Fortran

Swift

Python

Chapel vs. C++

relative execution time

chapel-gpp

~odoojj

chapel

gpp

smallest
fastest
gmean-smallest
gmean-fastest

: (o]
e

[<°B P)
2

5

relative source size

Copyright 2017 Cray Inc.

Chapel vs. C++ (zoomed out)

relative execution time

chapel-gpp-full

relative source size

smallest
fastest
gmean-smallest
gmean-fastest

Chapel vs. Python

relative execution time

chapel-python3

relative source size

Copyright 2017 Cray Inc.

B chapel

OLlo.O

python3
smallest
fastest
gmean-smallest
gmean-fastest

Chapel vs. Python (zoomed out)

chapel-python3-full

B chapel
400 = python3
[0 smallest
O fastest
[] emean-smallest
350 () gmean-fastest
a
T T O SO
[m]
v
E
© 250
s
¢ O o
%
v 00
v
>
©
- o
bt (o]
150
oo
100 D o
50 O Q
o o
C o
o
m ﬂ- -0 m m Om
1 3 4 6 7

relative source size

CLBG: Qualitative Comparisons o

proc main() {
printColorEquations();

const groupl
const group2

= [i in 1..popSizel] new Chameneos(i, ((i-1)%3):Color);
= [i in 1..popSize2] new Chameneos(i, colorslO[i]);
cobegin {

holdMeetings(groupl, n);

holdMeetings(group2, n);
}

print(groupl);
print(group2);

for ¢ in groupl do delete c;
for ¢ in group2 do delete c;

//
// Print the results of getNewColor() for all color pairs.
//
proc printColorEquations() {
for cl in Color do
for c2 in Color do
writeln(cl, " + ", c2,
writeln();

-> ", getNewColor(cl, c2));

//
// Hold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;

}

excerpt from 1210 gz Chapel entry

Can also browse program source code (but this requires actual thought):

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

{

Copyright 2017 Cray Inc.

cpu_set_t active_cpus;
FILE* ;

char buf [2048];
char const* pos;

int cpu_idx;

int physical_id;
int core_id;

int cpu_cores;
int apic_id;
size_t cpu_count;
size_t i;

char const* processor_str "processor";

size_t processor_str_len strlen(processor_str);
char const* physical_id str "physical id";

size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str = "core id";

size_t core_id_str_len strlen(core_id_str);
char const* cpu_cores_str "cpu cores";

size_t cpu_cores_str_len = strlen(cpu_cores_str);

CPU_ZERO(&active_cpus);

sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
cpu_count = 0;

for (i = 0; i != CPU_SETSIZE; i += 1)

{
if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
}
}

if (cpu_count 1)

is_smp[0] = 0;
return;

}

is_smp[0] = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

\

CLBG: Qualitative Comparisons e

[\
Q

Can also browse program source code (but this requwes actual thought):

proc main() { i int* , cpu_set_t* affinityl, cpu_set t* affinity2)
printColorEquations(); _ .aes
ane
----------- ° active_cpus;
const groupl = [i 1n JLeepopsSi¥el] new Chameneos(i, cobe ln { £;
const ‘q_r-qupﬁ n=s 11 :m 1..popSize2] new Chameneos(i, ¢ g buf [2048];

cobegin { holdMeetings(groupl, n); Son. tax;

holdMeetings(groupl, n); physical_id;

j hordueetings(growz, m); holdMeetings(group2, n); Sore_id:

cpu_cores;

T apic_id
pﬁht’(‘gzoup].“_"_ } cpu_cou;xt;
print(group2); "Tttrreean,,, i
...........
for c¢ in groupl do delete c; "tTesaag,,, processor_str = "processor";
for c in group2 do delete c; size_t pr ~str_len = strlen(processor_str);
} char const* physical_id str = "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str = "core id";
ff P th 1t f getNewColor() £ 11 1 'b n(core_id_str);
rint e resu s O ge ewColor or a co. QB G . . . lcores" :
77 e proc holdMeetings(population, numMeetings) { o (epa. cores_str);
proc printColorEquations() { ““' . . - -
for cl in Color do o const place = new MeetingPlace(numMeetings);
for c2 in Color do o*

writeln(ecl, " + ", c2, " “’ ', getNewColor(cl, d
writeln();

e coforall c in population do // creaf
1 " c.haveMeetings(place, population);

// Hold ;neetlngs among the population by creating a sH
// p]‘aéc and then creating per-chameneos tasks to ha
.

delete place;

g
const place = new MeetingPlace(numMeetings);

coforall c in population do // creatp a tg }
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Comparisons o

e \
S \

Can also browse program source code (but this requires actual thought):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

. . {
char const* core_id_str = "core id"}L cpu_set_t active_cpus;
: .4 K FILE* :
size_t core_id_str_ len = strlen(coj: char buf [2048]; \
char const* cpu_cores_str = "cpu core{ % Shar const* s idxs
3 - K i hysical_id;
size_t cpu_cores_str_len = strlen(cpy 3 i pocha by
. int cpu_cores;
. % int apic_id;
CPU_ZERO(&active_cpus); El size t cpu_count;
- . P Size | 17
sched getaffinity(0, sizeof(active cpus), &active cpus); B
_ - - % char const* processor_str = "processor";
Cpu_Count = 0; "‘ size_t processor_str_len = strlen(processor_str);
s M. 41— W 3 oa— * ch tx hysical id_st = "physical id";
for (1= 0 HE 8 l = CPU_SETSIZE ;1 += 1) "' zi::_:ons ghi:iz:l_;d_:ti_len Er{:;?:hy;ical_id_str);
{ size_t core:id:str_len ; trlen(o;'e_id_str);
2 2 : h. tx t =" ";
1f (CPU—ISSET(1, &aCtlve—cpus)) si::_‘tmns zg::zco;::::t:_len = sf_l;‘lle;:lt()q:\sx_cores_str);
{ CPU_ZERO(&active_cpus);
Cpu count += 1; sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)
{
} if (CPU_ISSET(i, &active_cpus))
¢ 1
cpu_count += 1;
if (cpu_count == 1) , !
{ is am 0 _ 0 . if (cpu_count == 1)
— p[] ’ is_smp[0] = 0;
return ; return;
} }
“--"‘ is_smp[0] = 1;
. CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

==AY®‘ |
I have run \
I have crawled
I have scaled...
Chapel Scalability Results
U2

| Still Haven’t Found What I’'m Looking For
The Joshua Tree

ISx Execution Time: MPI, SHMEM

ISx weaklSO Total Time

i

—
~

—_
N

RN
o

(o¢]

»

—MPI
e=—=SHMEM

Time (seconds)

N A

o

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

Copyright 2017 Cray Inc.

ISx Execution Time: MPI, SHMEM, Chapel

ISx weaklSO Total Time

—
~

—_
N

RN
o

(o¢]

===Chapel 1.15
nd Y/ o]
e==SHMEM

Time (seconds)
(o))

N

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

=/ Copyright 2017 Cray Inc. \2/

RA Performance: Chapel vs. MPI

Performance of RA (atomics)

2
|.8
1.6
| .4
212
) I
O 08
0.6
0.4
0.2
0 *
16 32 64 128
Locales (x 36 cores per locale)
ref MPI no-bucketing —— ref MPI bucketing —=— [.15 utq ——
D
C

=)
=/ Copyright 2017 Cray Inc.

)

[At? And? Ah’m?] fourteen, and you know
That I've learned the easy way

Some stupid decisions
And with a...a broken heart

Summary

That Summer, at Home | Had Become The Invisible Boy
The Twilight Sad
Fourteen Autumns and Fifteen Winters

This Talk’s Thesis —— v

Q \
Q
\

Programming language designers have, to date, largely
failed the large-scale parallel computing community.
e parallel features have historically been an afterthought

e tacked on through libraries, pragmas, and extensions
e rarely first-class

e even when languages are designed for parallelism...
...most fail to consider scalable computing (distributed memory)
...others tend to be domain-specific and not very general

We can do better!

=/ Copyright 2017 Cray Inc. &/

\

We think Chapel is an attractive candidate cRac |

e Attractive language for end-users
e modern design \
e separates algorithmic specification from mapping to architecture

e Able to achieve competitive performance
e though a good deal of tuning and optimization work remain...

=/ Copyright 2017 Cray Inc. &/

Recap of This Talk’s Takeaways cRas

If you design a parallel programming language...
...don’t tie yourself to architecture-specific mechanisms
...don’t base your model for parallelism and locality on SPMD
...Ccreate attractive ways of expressing parallelism and locality
...support first-class index sets
...support multiresolution features

=/ Copyright 2017 Cray Inc.

Chapel Challenges: Technical o

Q \
S \
\

e design and optimization of multiresolution language features:
e domain maps \
e parallel iterators
e locale models

e compiler architecture: outgrowing the initial research prototype

e tools: classic chicken-and-egg problem
e IDE
e debuggers
e performance analysis
e package manager
e interactive development (interpreter, REPL, iPython, ...)

=/ Copyright 2017 Cray Inc. \8/

Chapel Challenges: Social 0

e building up momentum in the user community
e lots of interest, but also lots of fear of being first / only adopter \

e 3000+ downloads / year for 2 releases

Chapel 1.13.0-1.13.1 Chapel 1.14.0
— Total downloads
— github-chapel-lang-chapel-2433994
— bintray-h b bottles-chapel-1.14.0
_— fi hapel-chapel-1.14.0-chapel-

g
1.14.0.tar.gz

1500

1500

1000

1000

Downloads

500

Downloads

e
T i

1
0
Jul 2016 Oct 2016 Jan 2017 Jul 2016 Oct 2016 Jan 2017

e combatting impatience / numbness to our message and progress
e developing an aggressive language in a conservative field (HPC)

e engaging with peers in mainstream computing

500

L
4 Copyright 2017 Cray Inc.

Scratch my name on your arm with a fountain pen
This means you really love me

Further Resources

Rusholme Ruffians
The Smiths
Meat is Murder

How to Stalk Chapel

http://facebook.com/ChapelLanquage

http://twitter.com/ChapelLanguaqge

https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

chapel-announce@lists.sourceforge.net

=

n Sl i o S -

Page Messages Notifications Insights Publishing Tools

=

ol Liked v X\ Following v 4 Share

| Programming Language
47pm- €

We're pleased to note that Chapel is currently ranked 5th in the

= Computer Language Benchmarks Game's “fast-faster-fastest” graphs.
That said, we're even prouder of how clear and concise the Chapel
i entries that p .

Chapel org/.

Programming Fl How many times slower?
Language H 300 232
@ChapelLanguage ém : : :
ome. 50 z -
E 30
Posts 3 gIISeR
S
Videos g s égéé
T 3
E
Pk] 2ed
1
ADY £ Benchmarks game 20 Apr 2017 ubdq
Likes
= 270 pecsleresched
& ke W Comment A Share C-
(© Russel Winder, Mykola Rabchevsiiy and 2 others Top Comments ™

C s

Chapel Language
@ChapelLanguage

Chapel is a productive parallel
programming language designed for
large-scale computing whose
development is being led by @cray_inc
& chapel.cray.com

[) Joined March 2016

3 115 Photos and videos

TWEETS FOLLOWING FOLLOWERS LIKES

222 12 129 32

Tweets Tweets & replies Media

/75 Chapel Language @ChapelLanguage - 5h
(?/ Doing interesting applications work in Chapel or another PGAS language?
' submit it to the PAW 2017 workshop at @SC17.
sourceryinstitute.github.io/PAW/

PAW;

2~
7 %l

The 2nd Annual PGAS Applications

Copyright 2017 Cray Inc.

N

@

=/

Chapel Parallel Programming Language

Home Videos Playlists Channels About

Chapel videos

=~ SC16 Chapel Tutorial Promo

Chapel Parallel Programming Language

6 months ago + 392 views

This s & ~4-minute promotional video for our SC16 Chapel tutorial, and also a good way to
geta quick taste of Chapel. All codes shown represent complete Chapel programs, not.

Chapel Productive, Muli ion Parallel |Brad
Cray, Inc.

ANL Training

7 months ago + 651 views

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016.

CHIUW 2016 keynote: “Chapel in the ical) Wild", Nikhil

Chapel Parallel Programming Language
10 months ago + 277 views

This is Nikhil Padmanabharis keynote talk from CHIUW 2016: the 3rd Annual Chapel
Impl d Users workshop. The siid bl

A Chapel talk to watch next (user perspective) <=I=A:Yf '

S \
\

Chapel in the (Cosmological) Wild (CHIUW 2016 keynote)

Nikhil Padmanabhan, Yale University Professor, Physics & Astronomy \

Abstract: This talk aims to present my personal experiences using Chapel in my research. My

constra
Operat N (111] Tube Search Q
on act

@ Chapel Parallel Programming Language Videos Playlists Channels

CHIUW 2016 keynote: "Chapel in the (Cosmological) Wild",
Nikhil Padmanabhan

Chapel Parallel Programming Language

1 month ago * 86 views

This is Nikhil Padmanabhan's keynote talk from CHIUW 2016: the 3rd
Annual Chapel Implementers and Users workshop. The slides are availabl...

es, both

ng a

S to

5 quickly

ample of
ghting its
t it would

Copyright 2017 Cray Inc.

Suggested Reading (healthy attention spans) ==as

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is now also available online

Suggested Reading (short attention spans) e

Q \
Q
\

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a Series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |IEEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2017 Cray Inc. 4/

\

— All we ever wanted was everything... = ~
@-.:SET_ (I have Chapel swag to give you) @;‘é‘(_\
=/ =/
Get up
Eat jelly
sandwich bars,
(Have a good break and get some yummy snacks!)
e C_C_L_J AiweEver Wanted Was Everything
=017 The Sky's Gone Out

=/ Copyright 2017 Cray Inc

\
Legal Disclaimer SR

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property o \

rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. \

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

=/ Copyright 2017 Cray Inc.

ey
cCHAaAPRPEL

