
The Audacity of Chapel:
Scalable Parallel Programming Done Right

(director’s cut, with outtakes)
Brad Chamberlain, Chapel Team, Cray Inc.

ACCU 2017, Bristol UK
April 27th, 2017

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
2

Fair Warning Statement

Copyright 2017 Cray Inc.

This keynote contains many slides and no guitar solos L

BUT… it does contain thematically relevant
UK rock lyrics trivia!!

3

I am the egg man

4
Copyright 2017 Cray Inc.

I am the Walrus
The Beatles

Magical Mystery Tour

Introductions

(“Pssst… Who is this turkey?”)

Copyright 2017 Cray Inc.

Hi, I’m Brad Chamberlain
● graduate of the University of Washington

● worked on a data-parallel array language, ZPL

● principal engineer at Cray Inc.
● founding member and technical lead of the Chapel project

● more of a practical parallel computing guy than a PL expert…

5

The Context for My Work

Copyright 2017 Cray Inc.

HPC: High Performance Computing
● parallelism at large scales

● lots of distributed processors and memories
● performance rules

● and too often, is all that matters
● programmers are virtually living in the dark ages

: The Supercomputer Company

6

Recent Highlighted Cray Systems
Next-Gen Cray XC

19k compute nodes
40+ PF, 2+ PB

80+PB File System
5200 sq ft

Cray/Intel
partnership

50k+ compute nodes
180PF, 7+ PB

150+ PB File System

Copyright 2017 Cray Inc.
7

Compute AnalyzeStore

Manufacturing

Energy

Life Sciences

Financial
Services

Government and Defense

Higher Education

Cybersecurity Earth Sciences

Machine Learning & Deep Learning

Cray Market Segments

Copyright 2017 Cray Inc.
8

“I don’t really care about HPC programming...”

Copyright 2017 Cray Inc.

● OK, but do you care about parallelism & concurrency?
● What about performance?
● What about scaling up your data set sizes?
● What about targeting next-generation processors?

Next-generation processors and computations are
increasingly resembling traditional HPC.

9

If you didn’t care what happened to me,
And I didn’t care for you,
We would zig zag our way
Through the boredom and pain…

10
Copyright 2017 Cray Inc.

Pigs on the Wing (part one)
Pink Floyd

Animals

Motivation for Chapel

Motivation from Kathy Yelick (UC Berkeley, LBNL)

Copyright 2017 Cray Inc.

Why Consider New Languages at all?

● Do we need a language? And a compiler?
● If higher level syntax is needed for productivity

● We need a language
● If static analysis is needed to help with correctness

● We need a compiler (front-end)
● If static optimizations are needed to get performance

● We need a compiler (back-end)

11

What is Chapel?

Chapel: A productive parallel programming language
● portable
● open-source
● a collaborative effort

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming at scale far more productive

Copyright 2017 Cray Inc.
12

What does “Productivity” mean to you?

Copyright 2017 Cray Inc.

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control to ensure performance”

13

“The Audacity of Chapel”?

Copyright 2017 Cray Inc.

audacity (according to Google):
/ɔːˈdasɪti/
noun
1. a willingness to take bold risks.

“I applaud the audacity of the Chapel team in attempting to create
a new language given how hard it is for new languages to succeed.”

2. rude or disrespectful behaviour; impudence.
“I can’t believe the Chapel team has the audacity to create a new
language when we already have [C++ | Python | …]!”

14

This Talk’s Thesis

Copyright 2017 Cray Inc.

Programming language designers have, to date, largely
failed the large-scale parallel computing community.

15

This just feels like spinning plates
I’m living in cloud-cuckoo land

16
Copyright 2017 Cray Inc.

Like Spinning Plates
Radiohead
Amnesiac

The Status Quo in HPC Programming

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures:

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.

=

α

+

A

B

C
·

17

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel	(shared	memory	/	multicore):

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

18

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel	(distributed	memory):

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

19

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel	(distributed	memory	multicore):

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

20

Scalable Parallel Programming Concerns

Copyright 2017 Cray Inc.

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

Q: What should scalable parallel programmers focus on?
A: Parallelism: What should execute simultaneously?

Locality: Where should those tasks execute?

21

STREAM Triad: MPI

Copyright 2017 Cray Inc.

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);

fclose(outFile);
}
return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0; }

22

STREAM Triad: MPI+OpenMP

Copyright 2017 Cray Inc.

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);

fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0; }

23

STREAM Triad: MPI+OpenMP

Copyright 2017 Cray Inc.

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);

fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0; }

24

STREAM Triad: MPI+OpenMP

Copyright 2017 Cray Inc.

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);

fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0; }

HPC suffers from too many distinct notations for expressing parallelism and locality.
This tends to be a result of bottom-up language design.

25

Why so many programming models?

Copyright 2017 Cray Inc.

HPC tends to approach programming models bottom-up:
Given a system and its core capabilities…

…provide features that permit users to access the available performance.
● portability? generality? programmability? These are second- or third-order concerns, if that.

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism
Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[MP|CL|ACC] SIMD function/task

26

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to
allocate memory (%d).\n",
VectorSize);

fclose(outFile);
}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0; }

STREAM Triad: Chapel

Copyright 2017 Cray Inc.

Philosophy: Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

use …;

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

The special sauce:
How should this index
set—and any arrays and
computations over it—be
mapped to the system?

27

This Talk’s Takeaways

Copyright 2017 Cray Inc.

If you design a parallel programming language…
…don’t tie yourself to low-level, architecture-specific mechanisms

● yet don’t make them inaccessible either…
● permit interoperating with such mechanisms
● or support them as the “assembly” to your higher-level features

28

It’s so easy to laugh, it’s so easy to hate
It takes guts to be gentle and kind

29
Copyright 2017 Cray Inc.

I Know It’s Over
The Smiths

The Queen is Dead

SPMD Programming Models like MPI

HPC’s Status Quo: SPMD Programming

Copyright 2017 Cray Inc.

SPMD: Single Program, Multiple Data
● concept: write one program, run multiple copies of it in parallel
● a “bottom-up” programming model design

● “HPC systems can run lots of programs, so let’s get parallelism that way”
● often clumsy in practice

30

SPMD by Example (in pictures)

Copyright 2017 Cray Inc.

Conceptual View

(

+

=

)/2

SPMD View

“Apply a 3-Point Stencil to a vector”

31

SPMD by Example (in pictures)

Copyright 2017 Cray Inc.

“Apply a 3-Point Stencil to a vector”

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

Conceptual View SPMD View

32

SPMD by Example (in code)

Copyright 2017 Cray Inc.

“Apply a 3-Point Stencil to a vector”

proc main() {
var n = 1000;
var p = numProcs(),

me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {
send(me+1, A[myN]);
recv(me+1, A[myN+1]);

}
if (me > 0) {
send(me-1, A[1]);
recv(me-1, A[0]);

}
forall i in 1..myN do
B[i] = (A[i-1] + A[i+1])/2;

}

SPMD pseudo-code

33

SPMD by Example (in code)

Copyright 2017 Cray Inc.

“Apply a 3-Point Stencil to a vector”

proc main() {
var n = 1000;
var p = numProcs(),

me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {
send(me+1, A[myN]);
recv(me+1, A[myN+1]);

}
if (me > 0) {
send(me-1, A[1]);
recv(me-1, A[0]);

}
forall i in 1..myN do
B[i] = (A[i-1] + A[i+1])/2;

}

SPMD pseudo-code

Global-view code (Chapel)

proc main() {
const n = 1000,

D = {1..n} dmapped Block(…);
var A, B: [1..n] real;

forall i in 2..n-1 do
B[i] = (A[i-1] + A[i+1])/2;

}

34

SPMD by Example (in code)

Copyright 2017 Cray Inc.

“Apply a 3-Point Stencil to a vector”

proc main() {
var n = 1000;
var p = numProcs(),

me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {
send(me+1, A[myN]);
recv(me+1, A[myN+1]);

}
if (me > 0) {
send(me-1, A[1]);
recv(me-1, A[0]);

}
forall i in 1..myN do
B[i] = (A[i-1] + A[i+1])/2;

}

SPMD pseudo-code

Global-view code (Chapel)

proc main() {
const n = 1000,

D = {1..n} dmapped Block(…);
var A, B: [1..n] real;

forall i in 2..n-1 do
B[i] = (A[i-1] + A[i+1])/2;

}
Bug: Refers to uninitialized values at ends of A

35

Assumes p divides n

SPMD by Example (in code)

Copyright 2017 Cray Inc.

proc main() {
var n = 1000;
var p = numProcs(),

me = myProc(),
myN = n/p,
myLo = 1,
myHi = myN;

var A, B: [0..myN+1] real;

if (me < p-1) {
send(me+1, A[myN]);
recv(me+1, A[myN+1]);

} else
myHi = myN-1;

if (me > 0) {
send(me-1, A[1]);
recv(me-1, A[0]);

} else
myLo = 2;

forall i in myLo..myHi do
B[i] = (A[i-1] + A[i+1])/2;

}

SPMD pseudo-code“Apply a 3-Point Stencil to a vector”

Global-view code (Chapel)

proc main() {
const n = 1000,

D = {1..n} dmapped Block(…);
var A, B: [1..n] real;

forall i in 2..n-1 do
B[i] = (A[i-1] + A[i+1])/2;

}

Communication becomes
geometrically more complex
for higher-dimensional arrays

36

27-point stencils (rprj3 from NAS MG)

Copyright 2017 Cray Inc.
37

rprj3 in Fortran + MPI
do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1
i2 = 2*j2-d2
do j1=2,m1j
i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3+1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3+1)
enddo
do j1=2,m1j-1
i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

Copyright 2017 Cray Inc.
38

rprj3 in Fortran + MPI
do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1
i2 = 2*j2-d2
do j1=2,m1j
i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3+1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3+1)
enddo
do j1=2,m1j-1
i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

Copyright 2017 Cray Inc.
39

comm3: the communication for rprj3

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1,

n2, n3, kk)
call give3(axis, -1, u, n1,

n2, n3, kk)
call sync_all()
call take3(axis, -1, u, n1,

n2, n3)
call take3(axis, +1, u, n1,

n2, n3)
else

call comm1p(axis, u, n1, n2,
n3, kk)
endif

enddo
else

do axis = 1, 3
call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2,
n3, k)

use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) =

u(2, i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axi

s,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len +
1

buff(buff_len,
buff_id) = u(n1-1, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr
(axis,dir,k)] =

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len +
1

buff(buff_len,
buff_id) = u(i1, 2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr
(axis,dir,k)] =

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len +
1

buff(buff_len,
buff_id)= u(i1,n2-1,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr
(axis,dir,k)] =

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len +
1

buff(buff_len,
buff_id) = u(i1,i2,2)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr
(axis,dir,k)] =

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len +
1

buff(buff_len,
buff_id) = u(i1,i2,n3-1)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr
(axis,dir,k)] =

> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u,
n1, n2, n3)

use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(n1,i2,i3) =

buff(indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) =

buff(indx, buff_id)
enddo

enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) =

buff(indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) =

buff(indx, buff_id)
enddo

enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) =

buff(indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) =

buff(indx, buff_id)
enddo

enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1,
n2, n3, kk)

use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1,
buff_len,buff_id

integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)

= u(i1,i2,2)
enddo

enddo
endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx,

buff_id)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx,

buff_id)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx,

buff_id)
enddo

enddo
endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx,

buff_id)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id)

= u(n1-1, i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id

)= u(i1,n2-1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)

= u(i1,i2,n3-1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id)

= u(2, i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)

= u(i1, 2,i3)

indx = indx + 1
u(i1,1,i3) = buff(indx,

buff_id)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx,

buff_id)
enddo

enddo
endif

return
end

Copyright 2017 Cray Inc.
40

Being Gutsy, Gentle, and Kind to MPI

Copyright 2017 Cray Inc.

● It’s enabled the vast majority of HPC results for the past ~20 years

● It’s very analogous to assembly programming
● explicitly move data from memory to registers

vs.
explicitly move data between compute nodes’ memories

● Just like assembly, it’s an important technology
● for programming at low levels
● for enabling higher-level technologies

● Yet, as with assembly, we should develop higher-level alternatives

41

rprj3 in ZPL
procedure rprj3(var S,R: [,,] double;

d: array [] of direction);
begin

S := 0.5000 * R +
0.2500 * (R@^d[1, 0, 0] + R@^d[0, 1, 0] + R@^d[0, 0, 1] +

R@^d[-1, 0, 0] + R@^d[0,-1, 0] + R@^d[0, 0,-1] +
0.1250 * (R@^d[1, 1, 0] + R@^d[1, 0, 1] + R@^d[0, 1, 1] +

R@^d[1,-1, 0] + R@^d[1, 0,-1] + R@^d[0, 1,-1] +
R@^d[-1, 1, 0] + R@^d[-1, 0, 1] + R@^d[0,-1, 1] +
R@^d[-1,-1, 0] + R@^d[-1, 0,-1] + R@^d[0,-1,-1])+

0.0625 * (R@^d[1, 1, 1] + R@^d[1, 1,-1] +
R@^d[1,-1, 1] + R@^d[1,-1,-1] +
R@^d[-1, 1, 1] + R@^d[-1, 1,-1] +
R@^d[-1,-1, 1] + R@^d[-1,-1,-1]);

end;

Copyright 2017 Cray Inc.
42

NAS MG Speedup: Cray T3E

Copyright 2017 Cray Inc.
43

Code Size Comparison

242

70

202

87

566

0

200

400

600

800

1000

1200

F+MPI ZPL
Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

The MPI version…
…only supports 2k problem sizes
…only supports running on 2p nodes
…requires k and p to be specified statically
…only supports a single 3D distribution

The ZPL version…
…is completely flexible in these regards
…supports making these decisions at launch-time

Copyright 2017 Cray Inc.
44

This Talk’s Takeaways

Copyright 2017 Cray Inc.

If you design a parallel programming language…
…don’t base your model for parallelism and locality on SPMD

● instead, support a global view of parallelism and locality (like ZPL)

45

Epilogue: So why was ZPL not adopted?

Copyright 2017 Cray Inc.

● Too restricted in terms of generality:
● only a single level of array-based data parallelism
● only a single parallel array type: block-distributed
● lack of “manual overrides” to drop down closer to the system
● choices that were dated (no OOP, modula-based syntax, …)

● Great academic project, not a great practical language
● however, ZPL’s experiences informed Chapel’s design greatly

46

Copyright 2017 Cray Inc.
47

[Instrumental]

48
Copyright 2017 Cray Inc.

The Liberty Bell March
John Philip Sousa

(unreleased?)

Chapel Characteristics

Chapel’s Goal

Copyright 2017 Cray Inc.

To create a language that is…
…as productive as Python
…as fast as Fortran
…as portable as C
…as scalable as MPI
…as fun as [insert your favorite language here]

49

The Challenge

Copyright 2017 Cray Inc.

Q: So why don’t we already have such a language already?
A: Technical challenges?

● while they exist, we don’t think this is the main issue…
A: Due to a lack of…

…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to reverse this trend

50

Chapel is Portable

Copyright 2017 Cray Inc.

● Chapel’s design and implementation are hardware-independent
● The current release requires:

● a C/C++ compiler
● a *NIX environment: Linux, Mac OS X, Windows 10 w/ bash, Cygwin, …
● POSIX threads
● UDP, MPI, or RDMA (if distributed memory execution is desired)

● Chapel runs on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release

51

Chapel is Open-Source

Copyright 2017 Cray Inc.

● Chapel’s development is hosted at GitHub
● https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

● Instructions for download + install are online
● see http://chapel.cray.com/download.html to get started

52

The Chapel Team at Cray (May 2016)

Copyright 2017 Cray Inc.

14 full-time employees + 2 summer interns + occasional visiting academics
(one of each started after photo taken)

53

Chapel Community R&D Efforts

Copyright 2017 Cray Inc.

http://chapel.cray.com/collaborations.html
(and several others…)

54

You say you got a real solution
Well, you know
We’d all love to see the plan

55
Copyright 2017 Cray Inc.

Revolution
The Beatles
The Beatles

Chapel in a Nutshell

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Chapel language feature areas

56

Base Language

Copyright 2017 Cray Inc.

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target
Machine

Locality Control

Lower-level Chapel

57

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2017 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

58

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

CLU-style iteratorsCLU-style iteratorsModern iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

59

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –-n=1000000

0
1
1
2
3
5
8
…

60

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

61

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

62

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

63

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

64

Base Language Features, by example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

65

Task Parallelism and Locality Control

Copyright 2017 Cray Inc.

Task Parallelism
Base Language

Target
Machine

Locality Control

Domain Maps
Data Parallelism

66

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

67

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

68

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

69

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

70

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

71

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

72

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	vars

73

Task Parallelism and Locality, by example

Copyright 2017 Cray Inc.

taskParallel.chpl
coforall loc in Locales do

on loc {
const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

74

Parallelism and Locality: Distinct in Chapel

Copyright 2017 Cray Inc.

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln(“Hello from task ”, i,

“ running on locale ”, here.id);

75

Partitioned Global Address Space (PGAS) Languages

Copyright 2017 Cray Inc.

(Or more accurately: partitioned global namespace languages)

● abstract concept:
● support a shared namespace on distributed memory

● permit parallel tasks to access remote variables by naming them
● establish a strong sense of ownership

● every variable has a well-defined location
● local variables are cheaper to access than remote ones

● traditional PGAS languages have been SPMD in nature
● best-known examples: Fortran 2008’s co-arrays, Unified Parallel C (UPC)

private
space 0

private
space 1

private
space 2

private
space 3

private
space 4

partitioned shared name-/address space

76

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2017 Cray Inc.

shared int i(*); // declare a shared variable i

i =

77

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2017 Cray Inc.

86420

shared int i(*); // declare a shared variable i
function main() {

i = 2*this_image(); // each image initializes its copy

i =

78

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2017 Cray Inc.

86420

shared int i(*); // declare a shared variable i
function main() {

i = 2*this_image(); // each image initializes its copy

private int j; // declare a private variable j

i =

j =

79

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2017 Cray Inc.

86420

08642

shared int i(*); // declare a shared variable i
function main() {

i = 2*this_image(); // each image initializes its copy

barrier();

private int j; // declare a private variable j
j = i((this_image()+1) % num_images());

// ^^ access our neighbor’s copy of i; compiler and runtime implement the communication
// Q: How did we know our neighbor had an i?
// A: Because it’s SPMD – we’re all running the same program so if we have an i, so do they.

i =

j =

80

Chapel and PGAS

Copyright 2017 Cray Inc.

● Chapel is PGAS, but unlike most, it’s not inherently
SPMD
● never think about “the other copies of the program”
● “global name/address space” comes from lexical scoping

● as in traditional languages, each declaration yields one variable
● variables are stored on the locale where the task declaring it is executing

0 1 2 3 4
Locales (think: “compute nodes”)

81

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;

0 1 2 3 4

i

Locales (think: “compute nodes”)

82

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {

0 1 2 3 4

i

Locales (think: “compute nodes”)

83

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;

0 1 2 3 4

i j

Locales (think: “compute nodes”)

84

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

0 1 2 3 4

i j

Locales (think: “compute nodes”)

85

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
…

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

86

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

OK to access i, j, and k
wherever they live k = 2*i + j;

87

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

here, i and j are remote, so
the compiler + runtime will

transfer their values
k = 2*i + j;

(j)

(i)

88

0 1 2 3 4

Chapel: Locality queries

Copyright 2017 Cray Inc.

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;

…here… // query the locale on which this task is running
…j.locale… // query the locale on which j is stored

}
}

} i j kkkkk

Locales (think: “compute nodes”)

89

Task Parallelism
Base Language

Target
Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Higher-Level Features

Higher-level
Chapel

Domain Maps
Data Parallelism

90

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

91

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

92

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

93

Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

94

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data	Parallelism	to	the	System)

95

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

96

LULESH: a DOE Proxy Application

Copyright 2017 Cray Inc.

Goal: Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single
material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

97

LULESH in Chapel

Copyright 2017 Cray Inc.
98

LULESH in Chapel

Copyright 2017 Cray Inc.

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in the Chapel release under examples/benchmarks/lulesh/*.chpl

1288 lines of source code
plus 266 lines of comments

487 blank lines

99

LULESH in Chapel

Copyright 2017 Cray Inc.

This is all of the representation-dependent code.
It specifies:
• data structure choices

• structured vs. unstructured mesh
• local vs. distributed data
• sparse vs. dense materials arrays

• a few supporting iterators
Small number of changes enabled by domain maps

10
0

Domain Maps

Copyright 2017 Cray Inc.

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:
A = B + alpha * C;

10
1

Chapel’s Domain Map Philosophy

Copyright 2017 Cray Inc.

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
● to cope with any shortcomings in our standard library

3. Chapel’s standard domain maps are written using the end-user framework
● to avoid a performance cliff between “built-in” and user-defined cases
● in fact every Chapel array is implemented using this framework

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

10
2

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit users to intermix layers arbitrarily

Copyright 2017 Cray Inc.

Chapel’s Multiresolution Philosophy

10
3

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Two Other Multiresolution Features

Copyright 2017 Cray Inc.

1) parallel iterators: User-specified forall-loop implementations
● how many tasks to use and where they run
● how iterations are divided between the tasks
● how to zipper with other parallel iterators

2) locale models: User-specified locale types for new node architectures
● how do I manage memory, create tasks, communicate, …

Like domain maps, these are…
…written in Chapel by expert users using lower-level features
…available to the end-user via higher-level abstractions

10
4

This Talk’s Takeaways

Copyright 2017 Cray Inc.

If you design a parallel programming language…
…create attractive ways of expressing parallelism and locality

● these are key concerns—shouldn’t be yet another library call / pragma
…support first-class index sets

● very expressive concept for users (not seen here, today)
● enable the implementation to reason about alignment (ditto)

…support multiresolution features
● give users the ability to develop their own parallel policies

10
5

Puttin’ me down for thinking of someone new
Always the same
Playin’ your game
Drive me insane…

10
6Copyright 2017 Cray Inc.

Your Time is Gonna Come
Led Zeppelin
Led Zeppelin

Computer Language Benchmarks Game Results

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Website supporting cross-
language comparisons
● 13 toy benchmark programs

● exercise key computational idioms
● specific approach prescribed

Take results with a grain of salt
● your mileage may vary

That said, it is one of the only
such games in town…

10
7

Computer Language Benchmarks Game (CLBG)

Copyright 2017 Cray Inc.

Chapel’s approach to the CLBG:
● striving for elegance over heroism

● ideally: “Want to learn how program xyz
works? Read the Chapel version.”

10
8

CLBG: Relative Performance Summary

Copyright 2017 Cray Inc.
10
9

CLBG: Website

Copyright 2017 Cray Inc.

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric
strip comments and extra

whitespace, then gzip

11
0

CLBG: Chapel entries

Copyright 2017 Cray Inc.
11
1

CLBG: Chapel vs. 9 key languages

Copyright 2017 Cray Inc.

C C++ Fortran

Go Rust Swift

PythonScalaJava

11
2

Chapel vs. C++

Copyright 2017 Cray Inc.
11
3

Chapel vs. C++ (zoomed out)

Copyright 2017 Cray Inc.
11
4

Chapel vs. Python

Copyright 2017 Cray Inc.
11
5

Chapel vs. Python (zoomed out)

Copyright 2017 Cray Inc.
11
6

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

11
7

CLBG: Qualitative Comparisons

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

11
8

Copyright 2017 Cray Inc.

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Comparisons

11
9

I have run
I have crawled
I have scaled…

12
0Copyright 2017 Cray Inc.

U2
I Still Haven’t Found What I’m Looking For

The Joshua Tree

Chapel Scalability Results

ISx Execution Time: MPI, SHMEM

Copyright 2017 Cray Inc.

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

MPI

SHMEM

(x 36 cores per node)

12
1

be
tte

r

ISx Execution Time: MPI, SHMEM, Chapel

Copyright 2017 Cray Inc.

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

Chapel 1.15

MPI

SHMEM

(x 36 cores per node)

12
2

be
tte

r

RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

�
���
���
���
���
�
���
���
���
���
�

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������ ��� ��� ��������� ���� ���
(x 36 cores per locale)

12
3

be
tte

r

[At? And? Ah’m?] fourteen, and you know
That I’ve learned the easy way
Some stupid decisions
And with a...a broken heart

12
4Copyright 2017 Cray Inc.

That Summer, at Home I Had Become The Invisible Boy
The Twilight Sad

Fourteen Autumns and Fifteen Winters

Summary

This Talk’s Thesis

Copyright 2017 Cray Inc.

Programming language designers have, to date, largely
failed the large-scale parallel computing community.

● parallel features have historically been an afterthought
● tacked on through libraries, pragmas, and extensions
● rarely first-class

● even when languages are designed for parallelism…
…most fail to consider scalable computing (distributed memory)
…others tend to be domain-specific and not very general

We can do better!
12
5

We think Chapel is an attractive candidate

Copyright 2017 Cray Inc.

● Attractive language for end-users
● modern design
● separates algorithmic specification from mapping to architecture

● Able to achieve competitive performance
● though a good deal of tuning and optimization work remain…

12
6

Recap of This Talk’s Takeaways

Copyright 2017 Cray Inc.

If you design a parallel programming language…
…don’t tie yourself to architecture-specific mechanisms
…don’t base your model for parallelism and locality on SPMD
…create attractive ways of expressing parallelism and locality
…support first-class index sets
…support multiresolution features

12
7

Chapel Challenges: Technical

Copyright 2017 Cray Inc.

● design and optimization of multiresolution language features:
● domain maps
● parallel iterators
● locale models

● compiler architecture: outgrowing the initial research prototype
● tools: classic chicken-and-egg problem

● IDE
● debuggers
● performance analysis
● package manager
● interactive development (interpreter, REPL, iPython, …)

12
8

Chapel Challenges: Social

Copyright 2017 Cray Inc.

● building up momentum in the user community
● lots of interest, but also lots of fear of being first / only adopter
● 3000+ downloads / year for 2 releases

● combatting impatience / numbness to our message and progress
● developing an aggressive language in a conservative field (HPC)
● engaging with peers in mainstream computing

12
9

Scratch my name on your arm with a fountain pen
This means you really love me

13
0Copyright 2017 Cray Inc.

Rusholme Ruffians
The Smiths

Meat is Murder

Further Resources

How to Stalk Chapel

Copyright 2017 Cray Inc.

http://facebook.com/ChapelLanguage
http://twitter.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/
chapel-announce@lists.sourceforge.net

13
1

A Chapel talk to watch next (user perspective)

Copyright 2017 Cray Inc.

Chapel in the (Cosmological) Wild (CHIUW 2016 keynote)
Nikhil Padmanabhan, Yale University Professor, Physics & Astronomy
Abstract: This talk aims to present my personal experiences using Chapel in my research. My
research interests are in observational cosmology; more specifically, I use large surveys of galaxies to
constrain the evolution of the Universe and to probe the physics underlying that evolution.
Operationally, this involves measuring a number of spatial statistics of the distribution of galaxies, both
on actual observations, but also on large numbers of simulated universes. I'll start by presenting a
whirlwind introduction to cosmology, the problems that keep me up at night and our approaches to
solving these. I'll then discuss what attracted me to Chapel—the ability to prototype algorithms quickly
and the promised ease and flexibility of writing parallel programs. I'll then present a worked example of
Chapel being used in a real-world application, discussing some of these aspects as well highlighting its
interoperability with existing libraries, as well as some of the challenges. I'll conclude with what it would
take for me to switch over to using Chapel all of the time.

13
2

Suggested Reading (healthy attention spans)

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● published by MIT Press, November 2015
● edited by Pavan Balaji (Argonne)
● chapter is now also available online

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Copyright 2017 Cray Inc.
13
3

Suggested Reading (short attention spans)

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing Chapel in

spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

Copyright 2017 Cray Inc.
13
4

All we ever wanted was everything…

13
5Copyright 2017 Cray Inc.

All We Ever Wanted Was Everything
Bauhaus

The Sky’s Gone Out

(I have Chapel swag to give you)

(Have a good break and get some yummy snacks!)

Get up
Eat jelly
sandwich bars, ….

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc.
internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the
property of their respective owners.

13
6

