
May 9, 2024
Andrew Stone, Engin Kayraklioglu

Portable Support for GPUs and
Distributed-Memory Parallelism in Chapel



In the top500 list:

• From June 2011 - Nov 2023 there has been a 13x increase in the number of supercomputers with GPUs

• Over the past three years 72% of systems in the top 10 had GPUs

For the #1 system today (Frontier):

• 95% of its compute capability comes from its GPUs
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It is Hard to Avoid GPUs in HPC



• Programming for multiple nodes with GPUs appears to require at least 2 programming models
• all of the models rely on C/C++/Fortran, which are less commonly taught these days
• as a result, using GPUs in HPC has a high barrier of entry
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GPUs are Easy to Find... BUT DIFFICULT TO PROGRAM

OpenMP

MPI
MPI+OpenMP

Shared
Memory

Distributed
Memory

GPU Programming But… no distributed 
memory support here

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

HIP

OpenAcc

OpenMP

RAJA

KokkosSYCL

CUDA

Some models are vendor neutral,
some support SMP

MPI+CUDA

MPI+OpenMP+X



Chapel: A modern parallel programming language
• its goal is to make parallel programming at scale far more productive

• open-source & collaborative

• portable & scalable
– works on everything from your laptop to a supercomputer
– Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
– shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet 
– NVIDIA and AMD GPUs

What is Chapel?
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chapel-lang.org

http://chapel-lang.org/


Applications of Chapel

5(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration 
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

Active GPU efforts



Use Case: Coral Reef Code 
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Coral Reef Spectral Biodiversity
1. Read in a (M x N) raster image of habitat data M

N

P

P

2. Create a (P x P) mask to find all points within a 
given radius.

3. Convolve this mask over the entire domain and 
perform a weighted reduce at each location.

Algorithmic complexity: 𝑂 𝑀𝑁𝑃!

Typically:
- M, N > 10,000

- P ~ 400

For more info see: "High-Performance Programming and Execution of a Coral Biodiversity Mapping Algorithm Using Chapel" by Scott Bachman et al. CHIUW 2023

https://www.youtube.com/watch?v=lJhh9KLL2X0
https://chapel-lang.org/CHIUW2023.html


proc convolve(InputArr, OutputArr) {  // 3D Input, 2D Output

for ... {
tonOfMath();
}
}
proc main() {
var InputArr: ...;
var OutputArr: ...;

convolve(InputArr, OutputArr);
}
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Coral Reef Spectral Biodiversity



proc convolve(InputArr, OutputArr) {  // 3D Input, 2D Output

foreach ... {
tonOfMath();
}
}
proc main() {
var InputArr: ...;
var OutputArr: ...;

coforall loc in Locales do on loc {     // use all nodes in parallel...

coforall gpu in here.gpus do on gpu {  // using GPUs on this node in parallel...

var GpuInputArr = InputArr[...];
var GpuOutputArr: ...;
convolve(GpuInputArr, GpuOutputArr);
OutputArr[...] = GpuOutputArr;

}}}
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Coral Reef Spectral Biodiversity

Using a different loop flavor to enable GPU execution.

Multi-node, multi-GPU parallelism
is expressed using the same language constructs.

High-level, intuitive array operations 
work across nodes and/or devices
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Coral Reef Takeaway Points

• Runs on multiple nodes on Frontier!
• 5x improvement going from 2 to 64 nodes (16 to 512 GPUs)

• Turned sequential Chapel code into multi-node, multi-GPU per node enabled code with minimal changes
• The same code runs on both NVIDIA and AMD GPUs



Looking at performance: MiniBude, 
BabelStream, TeaLeaf, and ChOp



• We discussed Coral Reef application and showed its performance on Frontier
• In the follow slides we give performance results for a few additional miniapps/applications

• Results were copied directly from the relevant papers (with the authors' permission)
• All these run on both NVIDIA and AMD GPUs and contain no vendor-specific code

• BabelStream, MiniBude, and TeaLeaf
• Chapel implementations by Josh Milthorpe (Oak Ridge National Lab and Australian National University) et al.
• results are from a paper accepted for the 2024 Heterogeneity in Computing Workshop HCW (part of IPDPS)

– "Performance Portability of the Chapel Language on Heterogeneous Architectures".

• ChOp (Chapel Optimization)
• written by Tiago Carneiro (Interuniversity Microelectronics Centre (IMEC), Belgium) et al.
• Solves N-Queens problem
• results shown are from a submission to EuroPar (currently pending review)
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GPU-enabled Chapel Applications and Performance
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MiniBude: Chapel implementation by Josh Milthorpe from ORNL

• MiniBude is miniapp of Bude (a protein docking simulation)
• The computation is very arithmetically intensive and makes significant use of trigonometric functions

• For this miniapp, Chapel's performance is close to CUDA's and HIP's

• Architectural efficiency = % of peak memory bandwidth for each platform

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW) 

CPUs

GPUs
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BabelStream: Chapel implementation by Josh Milthorpe from ORNL

• Performs stream triad computation computing A = B + α ∗C for arrays A, B, C and scalar α
• Chapel performs competitively for this benchmark
• Architectural efficiency = % of peak memory bandwidth for each platform 

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW) 

CPUs

GPUs
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Tealeaf: Chapel implementation by Josh Milthorpe from ORNL

• Tealeaf simulates heat conduction over time
• On this application Chapel performed well on CPUs but not GPUs

• We are investigating this and suspect better in-kernel reduction support will help close the gap
• Application efficiency = performance relative to fastest implementation for each platform

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW) 

CPUs

GPUs



16

ChOp: N-Queens Solver by Tiago Carneiro from IMEC 
• Results are shown for two different problem sizes "21" and "22"
• The "CUDA"/"HIP" versions use Chapel's interoperability features to launch kernels written in CUDA/HIP
• For size=21 Chapel and CUDA/HIP perform similarly well, for size=22 the HIP version would crash so we 

don't have comparative results for that (the Chapel version would, however, scale)

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab

<<
<<

<<



Programming GPUs using GPU locales



• Locales represent the resources of your HPC system that have:
• processors, so it can run tasks
• memory, so it can store variables
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Locales in Chapel

Processor Core

Memory

Compute 
Node 0

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3



• Execution starts with a single task running on the first locale (i.e. Locale[0])
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Using Locales in Chapel

Locale 0

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 



• Execution starts with a single task running on the first locale (i.e. Locale[0])
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Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another
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Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another

22

Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another
• The Locales array contains locales for all the nodes in your system
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Using Locales in Chapel

Locale 0

Execution/allocation
moves to Locale 1

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another
• The Locales array contains locales for all the nodes in your system
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Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 

B



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another
• The Locales array contains locales for all the nodes in your system
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Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 

B



• Execution starts with a single task running on the first locale (i.e. Locale[0])
• Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
• Use on statements to move an executing task from one locale to another
• The Locales array contains locales for all the nodes in your system
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Using Locales in Chapel

Locale 0

A

// Execution starts on Locale[0]
var A: [1..4] real;
coforall i in 1..4 do
A[i] = someComputation(i);

on Locales[1] {
var B: [1..4] real;
B = 2;
A = B;

}

MemoryCPU Core

Locale 1 

B



• Let's add GPU sublocales to the picture
• These are nested under top level node locales

• Refer to gpu sublocales using the gpus array accessible from top-level locales

GPU Sublocales

Locale 0 Locale 1 Locale 2 Locale 3
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CPU Core

Memory

GPU Core
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

A

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

"foreach" loops and
memory allocation now happen

on the sublocale

A

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

"foreach" loops and
memory allocation now happen

on the sublocale

B

A

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

"foreach" loops and
memory allocation now happen

on the sublocale

B

A

GPU Core MemoryCPU Core
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var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

"foreach" loops and
memory allocation now happen

on the sublocale

B

A

GPU Core MemoryCPU Core
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A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1
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B
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GPU Core MemoryCPU Core
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

"foreach" loops and
memory allocation now happen

on the sublocale

B

A

GPU Core MemoryCPU Core
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

B

A

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

A

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;

coforall g in here.gpus do on g {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}

coforall

"foreach" loops and
memory allocation now happen

on these sublocales

B

B
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Parallelism and Locality In The Context Of GPUs

Locale 0

GPU 0

GPU 1

B

B

Locale 1

GPU 0

GPU 1

B

B

coforall across  'Locales'

inner
coforall

GPU Core MemoryCPU Core

// Execution starts on Locale[0]
var A: [1..4] real;
coforall loc in Locales do on loc {

coforall g in here.gpus do on g {
var B: [1..4] real;
B = A;
foreach i in 1..4 do
b[i] = someComputation(i);

A = B;
}

}

A



Conclusions
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Conclusions

• Chapel enables scalable programming programming

• Chapel represents nodes as locales and GPUs as sublocales

• We presented a handful of community-written applications
• These work both on NVIDIA and AMD GPUs without any vendor-specific code modifications
• Chapel performs competitively for most, we're working on Tealeaf

• GPU support in Chapel has garnered a lot of interest

• Future work includes support for Chapel's distributed arrays on GPUs and execution on Intel GPUs



Technote:  https://chapel-lang.org/docs/main/technotes/gpu.html
• Anything and everything about our GPU support

– configuration, advanced features, links to some tests, caveats/limitations

• More of a reference manual than a tutorial

Blogpost: https://chapel-lang.org/blog/posts/intro-to-gpus/
• Tutorial on GPU programming in Chapel

Previous talks
• CHIUW '23 Talk: updates from May '22-May '23 period

– https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf

• LCPC '22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
– https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

• Recent Release Notes: almost everything that happened in each release
– https://chapel-lang.org/release-notes-archives.html
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If you Want to Learn More About GPU Programming In Chapel

https://chapel-lang.org/docs/main/technotes/gpu.html
https://chapel-lang.org/blog/posts/intro-to-gpus/
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf
https://chapel-lang.org/release-notes-archives.html


Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: https://www.youtube.com/c/ChapelParallelProgrammingLanguage

• Blog: https://chapel-lang.org/blog/

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

Chapel Resources
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https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel-lang.org/blog/
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues


Meetup for "Vendor-Neutral GPU Programming in Chapel"
Jul 31, 2024 08:00 AM PDT (-7 UTC)

Jade Abraham, Engin Kayraklioglu

speakers will discuss Chapel's GPU support in detail and collaborate with you to determine how
it may help in your particular situation.

HPE developer meetups home page:

https://developer.hpe.com/campaign/meetups/

Registration: 
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

HPE Developer Meetup
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https://developer.hpe.com/campaign/meetups/
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A


ChapelCon
https://chapel-lang.org/ChapelCon24.html

June 5–7, 2024
Free and online in a virtual format

Tutorials, open lab sessions, demos, and talks

ChapelCon
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The Chapel Event 
of the Year!

https://chapel-lang.org/ChapelCon24.html
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Conclusions

• Chapel enables scalable, parallel, programming

• Chapel represents nodes as locales and GPUs as sublocales

• We presented a handful of community-written applications
• These work both on NVIDIA and AMD GPUs without any vendor-specific code modifications
• Chapel performs competitively for most, we're working on Tealeaf

• GPU support in Chapel has garnered a lot of interest

• Future work includes support for Chapel's distributed arrays on GPUs and execution on Intel GPUs

ChapelCon
June 5–7, 2024

Free and online in a virtual format
https://chapel-lang.org/ChapelCon24.html

Tutorials, open lab sessions, demos, and talks

https://chapel-lang.org/ChapelCon24.html

