Hewlett Packard
Enterprise

cuG20249 /
Diverse universe &
PERTH AUSTRALIA R

Portable Support for GPUs and
Distributed-Memory.Parallelism in ChapeL\

el

\.

Andrew Stone, Engi'qr"{'Kayrainoqu
May 9, 2024

It is Hard to Avoid GPUs in HPC

In the top500 list:

e From June 2011 - Nov 2023 there has been a 13x increase in the number of supercomputers with GPUs

o Over the past three years 72% of systems in the top 10 had GPUs

For the #1 system today (Frontier):

o 95% of its compute capability comes from its GPUs

GPUs are Easy to Find... BUT DIFFICULT TO PROGRAM

GPU Programming But... no distributed
Shared Distributed Some models are vendor neutral, memory support here

Memory Memory some support SMP

OpenMP OpenAcc *
. OpenMP *

e Programming for multiple nodes with GPUs appears to require at least 2 programming models
o all of the models rely on C/C++/Fortran, which are less commonly taught these days

e as a result, using GPUs in HPC has a high barrier of entry

Chapel is an alternative for productive
distributed/shared memory GPU programming in a vendor-neutral way.

— | 3

What is Chapel?

Chapel: A modern parallel programming language

e ifs goal is fo make parallel programming at scale far more productive

e open-source & collaborative

e portable & scalable
— works on everything from your laptop to a supercomputer
— Linux laptops/clusters, Cray systems, MacOS, WSL, AWS, Raspberry Pi
— shown to scale on Cray networks (Slingshot, Aries), InfiniBand, RDMA-Ethernet
- NVIDIA and AMD GPUs

\

=

chapel-lang.org

http://chapel-lang.org/

Applications of Chapel

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.
Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Chapel Server

Python3 Client ma
S Socket

Code Modules E I

Distributed

Object Store |8
Platform

7 | Acithmetic

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80 - .

60

40 + o

RH (%) at Lake Mead

20

0
2010 2011 2012 2013 2014 2015
date.

Nelson Luis Dias
The Federal University of Parana, Brazil

FEATURES ENSEMBLES
EXPLORATIONuPARAMETEMAHONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

Active GPU efforts

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.
The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University et al.

ChapQG: Layered Quasigeostrophic CFD
lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

Coral Reef Spectral Biodiversity

1. Read in a (M x N) raster image of habitat data M

A
v

2. Create a (P x P) mask to find all points within a =
given radius.

3. Convolve this mask over the entire domain and
perform a weighted reduce at each location.

P

A
v

v
Algorithmic complexity: O (MNP3)
Typically:

-M,N > 10,000

- P~ 400 v

For more info see: "High-Performance Programming and Execution of a Coral Biodiversity Mapping Algorithm Using Chapel" by Scott Bachman et al. CHIUW 2023

— | 7

https://www.youtube.com/watch?v=lJhh9KLL2X0
https://chapel-lang.org/CHIUW2023.html

Coral Reef Spectral Biodiversity

proc convolve (InputArr, OutputArr) { //3Dlinput, 2D Output
for ... {
tonOfMath () ;

}
}

proc main () {
var InputArr: ...;
var OutputArr: ...;

convolve (InputArr, OutputArr);

}

Coral Reef Spectral Biodiversity

proc convolve (InputArr, OutputArr) { //3DInput, 2D Output

foreach ... { Ui g . q . e GPU .
tonOfMath () ; sing a different loop flavor to enable execution.

}
}

proc main() { Multi-node, multi-GPU parallelism

var InputArr: is expressed using the same language constructs.

var OutputArr:

.
L 4

coforall loc in Locales do on loc { // use all nodes in parallel...
coforall gpu in here.gpus do on gpu { //using GPUs on this node in parallel...
var GpulnputArr = InputArr[...];

var GpuOutputArr: -
convolve (GpulnputArr, GpuOutputArr);

High-level, intuitive array operations
OutputArr[...] = GpuOutputArr;

work across nodes and/or devices

I

—

Coral Reef Takeaway Points

e Runs on multiple nodes on Frontier!

e 5x improvement going from 2 to 64 nodes (16 to 512 GPUs)
e Turned sequential Chapel code into multi-node, multi-GPU per node enabled code with minimal changes
e The same code runs on both NVIDIA and AMD GPUs

Multilocale Coral Image Analysis

N w &
I
\
hY

Speedup

1
T - Speedup over 2 nodes
O | |

24 8 16 32 64
Number of Nodes
(x8 GPUs)

GPU-enabled Chapel Applications and Performance

» We discussed Coral Reef application and showed its performance on Frontier

e In the follow slides we give performance results for a few additional miniapps/applications
» Results were copied directly from the relevant papers (with the authors' permission)

e All these run on both NVIDIA and AMD GPUs and contain no vendor-specific code

e BabelStream, MiniBude, and Teal eaf

o Chapel implementations by Josh Milthorpe (Oak Ridge National Lab and Australian National University) et al.
o results are from a paper accepted for the 2024 Heterogeneity in Computing Workshop HCW (part of IPDPS)
—"Performance Portability of the Chapel Language on Heterogeneous Architectures".

e ChOp (Chapel Optimization)

« written by Tiago Carneiro (Interuniversity Microelectronics Centre (IMEC), Belgium) et al.
» Solves N-Queens problem

o results shown are from a submission to EuroPar (currently pending review)

: | 12

MiniBude: Chapel implementation by Josh Milthorpe from ORNL

e MiniBude is miniapp of Bude (a protein docking simulation)
« The computation is very arithmetically intensive and makes significant use of trigonometric functions
e For this miniapp, Chapel's performance is close to CUDA's and HIP's

o Architectural efficiency = % of peak memory bandwidth for each platform

skylake ST o 24.1% 23.5% 70
Cascade Lake 6000
Sapphire Rapids { 6710
CPUs Rome 2000 »
Milan - 72.6% | 71.7%
ThunderX?2
POWER9 — 2.8% 2.8%
P100 P100
V100 2000 V100
GPUs A100 A100
MI60 1000 MI60
MI100 MI100
A
§ & & & F
QQQQ @\& Q§ CQ
(a) Effective GFLOP/s, higher is better (b) Architectural efficiency, higher is better

Fig. 2: miniBUDE results for small deck bm1

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

— |

13

BabelStream: Chapel implementation by Josh Milthorpe from ORNL

e Performs stream triad computation computing A = B + a *C for arrays A, B, C and scalar a
e Chapel performs competitively for this benchmark
o Architectural efficiency = % of peak memory bandwidth for each platform

Skylake JESSCINBUT: 118 1600 Skylake - -
Cascade Lake ¥\ 169 169 Cascade Lake - - 80
Sapphire Rapids {RECIUMI 1 482 " Sapphire Rapids {79.8% | 79.0% | - - |78.4%
CPUs R 220 219 218 1200 Rome - z
UHENE 198 197 195 - Milan - - i
ThunderX2 @AY} 208 200 ThunderX2 - -
POWERY PP XY! - - 204 300 POWER9 - - n
iJU0E 388 419 419 [E 411 - P100170.7% | 76.3%(76. -]
V100 [-] V100- 922%091.7%) - [90.2%
GPUs A100{ 1544 | 1679 | 1685 | - | 1635 | W™ A100- 86.8%(87.1%) - 184.5% 20
MI60 E 200 MI60 - 784% | - [79.6%) 76.4%
MI100 MI100 82.8% | - [82.3%}80.3%
S & Y S >
& &S TS
(a) Memory bandwidth in GB/s, higher is better (b) Architectural efficiency, higher is better
Fig. 1: BabelStream Triad results for arrays of length 228 FP64 elements

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

— |

Tealeaf: Chapel implementation by Josh Milthorpe from ORNL

e Tealeaf simulates heat conduction over time

e On this application Chapel performed well on CPUs but not GPUs
« We are investigating this and suspect better in-kernel reduction support will help close the gap
o Application efficiency = performance relative to fastest implementation for each platform

Skylake { 491 720 - - 466 464 Skylake A
Cascade Lake{ 316 471 - - 323 324 Cascade Lake
Sapphire Rapids{ 95 289 - - 118 116 “% " Sapphire Rapids - 80
CPUs Rome{ 149 | 530 | - ~ | 165 | 166 Rome |
Milan{ 246 | 770 | - ~ | 269 | 265 - Milan | &
ThunderX21{ 413 864 - - 428 432 ThunderX2 -
POWERY9{ 743 Iml - - 362 361 POWER9
P100{ 281 | 247 | 177 = P100 i
V1001 149 129 96 V100
A100{ 131 69 50 1000 A100 20
GPUS MI60{ 164 115 - MI60
MI1001{ 148 111 - 243 MI100
S N
@Q& & QQO?" & C&Qz’ @\‘»Q
R & C}&Q
(a) Execution time (s), lower is better (b) Application efficiency, higher is better

Fig. 3: Tealeaf results for input tea_bm_5.1in

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

—

ChOp: N-Queens Solver by Tiago Carneiro from IMEC

e Results are shown for two different problem sizes "21" and "22"
e The "CUDA"/"HIP" versions use Chapel's interoperability features to launch kernels written in CUDA/HIP

e For size=21 Chapel and CUDA/HIP perform similarly well, for size=22 the HIP version would crash so we
don't have comparative results for that (the Chapel version would, however, scale)

Linear —Icqu-zz -5 Chpl-22 —& IChpl-Zl = CUDA-21 +| Linear — I HIP-21 -5~ Chpl-21 +|
120 l T ' I 120 | ‘ ‘ T
100 100
Q. Q.
S sof 3 80|
© ©
8 60 3 60 |
Q. Q.
N A
40 + 40 +
20 20
48 16 312 614 128 48 1'6 312 614 128
Number of Nodes Number of Nodes
(a) NVIDIA-based System (b) AMD-based system

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab

: | 16

-\
A

Programming GPUs using G DU

Locales in Chapel

e Locales represent the resources of your HPC system that have:
e processors, so it can run ftasks

e memory, so it can store variables

Compute
Node O

_mm

Compute

Node 1

b

Compute
Node 2

B

. Memory

Processor Core

Compute

Node 3

18

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0D

a // Execution starts on Locale[0O]
var A: [1..4] real;

Locale 1 Locale O coforall i in 1..4 do
A[i1] = someComputation(i);

l_ o l on Locales[1l] {

var B: [1..4] real;
B = 2;
A = B;

CPU Core . Memory

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0D

// Execution starts on Locale[0O]
£ var A: [1..4] real;
Locale 1 Locale O coforall i in 1..4 do
A[i1] = someComputation(i);

l_ o l on Locales[1] {

var B: [1..4] real;
B = 2;
A = By

CPU Core . Memory

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])
» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

// Execution starts on Locale[O]

CPU Core .Memory var A: [1l..4] real;
Locale 1 Locale 0 £ coforall i in 1..4 do
A[i1] = someComputation(i);
1 Q|¢ on Locales[1] {
Q|¢ var B: [1..4] real;
B = 2;
A = By

21

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])
» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

// Execution starts on Locale[O]
var A: [1l..4] real;

Locale 1 Locale O coforall i in 1..4 do
O A[i1] = someComputation(i);
mi e on Locales[1] {
Q|¢' var B: [l..4] real;
B = 2;
A = By

CPU Core . Memory

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])

» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

e The Locales array contains locales for all the nodes in your system

CPU Core Memory
Locale 1 Locale O
1 § A

E

N—"

xecution/allocation
moves to Locale 1

// Execution starts on Locale[0O]
var A: [1l..4] real;
coforall i in 1..4 do
A[i1] = someComputation(i);
{} on Locales[1l] {
var B: [l..4] real;
B = 2;
A = By

23

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])

» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

e The Locales array contains locales for all the nodes in your system

CPU Core Memory
Locale 1 Locale O
1 A

// Execution starts on Locale[0O]
var A: [1l..4] real;
coforall i in 1..4 do
A[i1] = someComputation(i);
on Locales[1l] {
{} var B: [l..4] real;
B = 2;
A = By

24

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])

» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

e The Locales array contains locales for all the nodes in your system

oo

CPU Core Memory
Locale 1 Locale O
e A

o

// Execution starts on Locale[0O]
var A: [1l..4] real;
coforall i in 1..4 do
A[i1] = someComputation(i);
on Locales[1l] {
var B: [l..4] real;
B = 2;
A = By

25

Using Locales in Chapel

e Execution starts with a single task running on the first locale (i.e. Locale[0])

» Use coforall loops to spawn new tasks (one per loop iteration); tasks synchronize at end of loop
e Use on statements to move an executing task from one locale to another

e The Locales array contains locales for all the nodes in your system

CPU Core Memory
Locale 1 | Locale O
1 A

o

// Execution starts on Locale[0O]
var A: [1l..4] real;
coforall i in 1..4 do
A[i1] = someComputation(i);
on Locales[1l] {
var B: [l..4] real;
B = 2;
A = By

26

GPU Sublocales

e Let's add GPU sublocales to the picture
e These are nested under top level node locales

» Refer o gpu sublocales using the gpus array accessible from top-level locales

Locale O Locale 1 Locale 2 Locale 3
GPUO GPU1 GPUO GPU1 GPUO GPU1 GPUO GPU1
IES ES ES ES
=S S8 =S ES
GPU Core
CPU Core

— B Memory

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory

Locale O Q // Execution starts on Locale[0]
var A: [1..4] real;

on here.gpus[0] {
GPU 0 var B: [1..4] real;

B = A;

foreach 1 in 1..4 do

b[i] = someComputation(i);
GPU 1 A = B:
I }

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory

Locale O // Execution starts on Locale[O]
£ var A: [1..4] real;

on here.gpus[0] {
GPU O var B: [1..4] real;

B = A;

foreach i in 1..4 do

b[i] = someComputation(i);
GPU 1 A = B:
I }

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory
Locale O // Execution starts on Locale[0O]
var A: [1..4] real;
"foreach" loops and Q

memory allocation now happen
on the sublocale

Qon here.gpus[0] {
var B: [1..4] real;
B = A;
foreach 1 in 1..4 do

GPU O

b[i] = someComputation (i)
GPU 1 A = B:

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory
Locale O // Execution starts on Locale[0O]
var A: [1..4] real;
"foreach" loops and Q

memory allocation now happen
on the sublocale

on here.gpus[0] {

£ var B: [1..4] real;
B = A;
foreach 1 1n 1..4 do

GPU O

b[i] = someComputation (i)
GPU 1 A = B:

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory
Locale O // Execution starts on Locale[0O]
var A: [1..4] real;
"foreach" loops and Q

memory allocation now happen
on the sublocale

on here.gpus[0] {
var B: [l..4] real;
£ B = 2;

foreach i in 1..4 do

GPU O

b[i] = someComputation(i);
GPU 1 A = R

Parallelism and Locality In The Context Of GPUs

CPU Core

"foreach" loops and

memory allocation now happen
on the sublocale

GPU Core . Memory

Locale O

&

e

e
o o0

// Execution starts on Locale[O]
var A: [1..4] real;

on here.gpus[0] {
var B: [1..4] real;
B = A;

o foreach 1 1n 1..4 do

b[i] = someComputation(i);

A = B;
}

33

Parallelism and Locality In The Context Of GPUs

CPU Core

"foreach" loops and

memory allocation now happen
on the sublocale

GPU Core . Memory

Locale O

&

e

e
o o0

// Execution starts on Locale[O]
var A: [1..4] real;

on here.gpus[0] {

var B: [1..4] real;
B = A;

foreach 1 in 1..4 do

o b[i] = someComputation(i);

A = B;
}

34

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory
Locale O // Execution starts on Locale[0O]
var A: [1..4] real;
"foreach" loops and Q

memory allocation now happen
on the sublocale

GPU O |

on here.gpus[0] {

var B: [1..4] real;
B = A;

foreach 1 in 1..4 do

b[i] = someComputation(i);
GPU 1 a A = R

I)

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory

Locale O // Execution starts on Locale[O]
var A: [1..4] real;

on here.gpus[0] {
GPU O var B: [1..4] real;

B = A;

foreach i in 1..4 do

b[i] = someComputation(i);
GPU 1 A = B:
I }

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory

Locale O // Execution starts on Locale[0O]

var A: [1..4] real;

{:'coforall g in here.gpus do on g {
var B: [1l..4] real;
B = A;
‘}foreach 1 1n 1..4 do
= someComputation (i) ;

"foreach" loops and

memory allocation now happen m

on these sublocales bli]
GPU 1 A = B;

olo[e[o
- || oo ale }
ola[alo

Parallelism and Locality In The Context Of GPUs

CPU Core GPU Core . Memory

Locale 1 Locale O // Execution starts on Locale[0O]

var A: [1..4] real;
a' coforall loc in Locales do on loc {

O coforall g in here.gpus do on g {

GPUO var B: [1..4] real;
| (oo i — .
aaaa. B =4
. olololo aforeachi in 1..4 do
inner
i - b[i] = someComputation (i) ;
GPU 1 GPU 1 A = R
o000 o000 '
i OOOOI I OOOOI }
olololo olololo }

: coforall across 'Locales' |
38

Conclusions

e Chapel enables scalable programming programming
e Chapel represents nodes as locales and GPUs as sublocales

e We presented a handful of community-written applications
e These work both on NVIDIA and AMD GPUs without any vendor-specific code modifications
o Chapel performs competitively for most, we're working on Tealeaf

e GPU support in Chapel has garnered a lot of interest

e Future work includes support for Chapel's distributed arrays on GPUs and execution on Intel GPUs

40

If you Want to Learn More About GPU Programming In Chapel

Technote: hitps://chapel-lang.org/docs/main/technotes/gpu.html
« Anything and everything about our GPU support
- configuration, advanced features, links fo some tests, caveats/limitations
« More of a reference manual than a tutorial

. Introduction to GPU Programming in Chapel
Blogpost: hitps://chapel-lang.org/blog/posts/intro-to-gpus/ rosted on January 8. 2024

Tags: GPU Programming | Tutorial

e Tutorial on GPU programming in Chapel e

Chapel is a programming language for productive parallel computing. In recent years, a particular
subdomain of parallel computing has exploded in popularity: GPU computing. As a result, the
[]
PreVIous I|'a|ks Chapel team has been hard at work adding GPU support, making it easy to create vendor-

o CHIUW '23 Talk: updates from May '22-May '23 period
— https://chapel-lang.org/CHIUW/202 3/KayrakliogluSlides.pdf

o LCPC'22 Talk: a lot of details on how the Chapel compiler works to create GPU kernels
— https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf

« Recent Release Notes: almost everything that happened in each release

- https://chapel-lang.org/release-notes-archives.html

— |

41

https://chapel-lang.org/docs/main/technotes/gpu.html
https://chapel-lang.org/blog/posts/intro-to-gpus/
https://chapel-lang.org/CHIUW/2023/KayrakliogluSlides.pdf
https://chapel-lang.org/presentations/Engin-SIAM-PP22-GPU-static.pdf
https://chapel-lang.org/release-notes-archives.html

Chapel Resources

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage

e Facebook: @ChapelLanguage

e YouTube: https://www.youtube.com/c/ChapelParallelProgramminglanguage
e Blog: https://chapel-lang.org/blog/

Community Discussion / Support:

 Discourse: https://chapel.discourse.group/

o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel

Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores
« a global namespace supporting direct access to local or remote variables

data parallelism to trivially use the cores of a laptop, cluster, or supercomputer

« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel
check out performance highlights like these:

PRK Stencil Performance (Gflop's) NPB-FT Performance (Gop's)

Giop/'s
‘ i
it

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Library
// use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

The Chapel Parallel Programming Language

42

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel-lang.org/blog/
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

HPE Developer Meetup

Meetup for "Vendor-Neutral GPU Programming in Chapel"
Jul 31, 2024 08:00 AM PDT (-7 UTC)

ﬂ Jade Abraham, Engin Kayraklioglu
L'O
~ speakers will discuss Chapel's GPU support in detail and collaborate with you to determine how

it may help in your particular situation.

HPE developer meetups home page:
https://developer.hpe.com/campaign/meetups/

4 Registration:

https://hpe.zoom.us/webinar/reqister/3117139444656/WN 0jVy9LR QHSCGxeqg21ri7A

https://developer.hpe.com/campaign/meetups/
https://hpe.zoom.us/webinar/register/3117139444656/WN_ojVy9LR_QHSCGxeg21rj7A

ChapelCon

ChapelCon

https://chapel-lang.org/ChapelCon24.html

The Chapel Event
of the Year!

June 5-7, 2024
Free and online in a virtual format

Tutorials, open lab sessions, demos, and talks

https://chapel-lang.org/ChapelCon24.html

Conclusions

e Chapel enables scalable, parallel, programming
e Chapel represents nodes as locales and GPUs as sublocales

e We presented a handful of community-written applications
e These work both on NVIDIA and AMD GPUs without any vendor-specific code modifications
o Chapel performs competitively for most, we're working on Tealeaf

e GPU support in Chapel has garnered a lot of interest

e Future work includes support for Chapel's distributed arrays on GPUs and execution on Intel GPUs

ChapelCon
June 5-7, 2024
Free and online in a virtual format

https://chapel-lang.org/ChapelCon24.html
Tutorials, open lab sessions, demos, and talks

https://chapel-lang.org/ChapelCon24.html

