
Arachne: An Open-Source Framework for
Interactive Massive-Scale Graph Analytics

http://www.cs.njit.edu/~bader

David A. Bader
Distinguished Professor and
Director, Institute for Data Science

• IEEE Fellow, ACM Fellow, SIAM Fellow, AAAS Fellow

• IEEE Sidney Fernbach Award

• 2022 inductee into University of Maryland’s Innovation Hall of Fame, A. James Clark School of Engineering

• Recent Service:
• White House's National Strategic Computing Initiative (NSCI) panel

• Computing Research Association Board

• Chair, NSF Committee of Visitors for Office of Advanced Cyberinfrastructure

• NSF Advisory Committee on Cyberinfrastructure

• Council on Competitiveness HPC Advisory Committee

• IEEE Computer Society Board of Governors

• IEEE IPDPS Steering Committee

• Editor-in-Chief, ACM Transactions on Parallel Computing

• Editor-in-Chief, IEEE Transactions on Parallel and Distributed Systems

• Over $188M of research awards

• 300+ publications, ≥ 13,900 citations, h-index ≥ 66

• National Science Foundation CAREER Award recipient

• Directed: Facebook AI Systems

• Directed: NVIDIA GPU Center of Excellence, NVIDIA AI Lab (NVAIL)

• Directed: Sony-Toshiba-IBM Center for the Cell/B.E. Processor

• Founder: Graph500 List benchmarking “Big Data” platforms

• Recognized as a “RockStar” of High Performance Computing by InsideHPC in 2012 and as HPCwire’s People to Watch in 2012 and 2014.

26 April 2024 David A. Bader 2

Today’s talk is dedicated to my uncle

Elliot Norman Ashrey

• B: 23 Sep 1931 in New York City, New York, USA

• D: 26 Apr 2024 in New York City, New York, USA

26 April 2024 David A. Bader 3

2021 IEEE Sidney Fernbach Award

26 April 2024 David A. Bader 4

David Bader cited for the
development of Linux-based
massively parallel production
computers and for pioneering
contributions to scalable discrete
parallel algorithms for real-world
applications.

2022 IEEE Computer Society President Bill Gropp presents
David Bader with the Sidney Fernbach Award at SC21

1998: Bader Invents the Linux Supercomputer

26 April 2024 5

Roadrunner

“This effort of yours has enormous historic resonance,”
 – Larry Smarr, Distinguished Professor Emeritus, UC San Diego

Founding Director of NCSA, Founding Director of Calit2

Source: UC San Diego
https://ucsdnews.ucsd.edu/pressrelease/pioneering-scientist-and-innovator-larry-smarr-retires

David A. Bader

Impact: Top500 Supercomputers Running Linux

26 April 2024 6Source: http://www.Top500.org/

“Today, 100% of the Top 500 supercomputers in the

world are Linux HPC systems, based on Bader’s technical
contributions and leadership. This is one of the most
significant technical foundations of HPC.”
– Steve Wallach is a guest scientist for Los Alamos National Laboratory and 2008 IEEE
CS Seymour Cray Computer Engineering Award recipient.

Photo credit: Information Week, 2008

90% 100%50%

David A. Bader

New Jersey Institute of Technology

26 April 2024 David A. Bader 8

“NJIT Named As One of Nation's 'Best
Colleges' for 2022, The Princeton Review Says”
 – 6 Sep 2021

“NJIT Climbs the Rankings of U.S. News &
World Report, A Top 50 Public University”
 – 13 Sep 2021

“Wall Street Journal/College Pulse Ranks
NJIT No. 2 Public University in the US”
 – 6 Sep 2023

Launched in July 2019, with inaugural director
David A. Bader

(~40 faculty in current centers)

• Big Data Analytics, Systems, and Tools

• Cyberinfrastructure
Center for Big Data

• Practical encryption

• Privacy technologies

• Information Assurance

Cybersecurity
Research Center

• Medical Informatics

• NIH / National Cancer Institute

The Structural
Analysis of Biomedical

Ontologies Center

• Financial Services

• Insurance IndustryFinTech Group

• Real-world technologies

• Industrial partnerships

Machine Learning &
AI

26 April 2024 David A. Bader 9

• Urban sustainability
• Healthcare analytics
• Trustworthy, Free and Fair Elections
• Insider threat detection
• Utility infrastructure protection
• Cyberattack defense
• Disease outbreak and epidemic monitoring

Solving
real-world
challenges

Data-Quad

26 April 2024 David A. Bader 10

Known

Known

Unknown

Unknown

Objects

Pa
tt

er
n

s

Graph Data Science: Real-world challenges

All involve exascale streaming graphs:

• Health care → disease spread, detection and prevention of epidemics/pandemics (e.g. SARS, Avian
flu, H1N1 “swine” flu)

• Massive social networks → understanding communities, intentions, population dynamics,
pandemic spread, transportation and evacuation

• Intelligence → business analytics, anomaly detection, security, knowledge discovery from massive
data sets

• Systems Biology → understanding complex life systems, drug design, microbial research, unravel
the mysteries of the HIV virus; understand life, disease,

• Electric Power Grid → communication, transportation, energy, water, food supply

• Modeling and Simulation → Perform full-scale economic-social-political simulations

26 April 2024 David A. Bader 11

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME AT SCALE

Massive Data Analytics: Infrastructure

• The U.S. high-voltage transmission
grid has >150,000 miles of line.

• Real-time detection of changes and anomalies in the grid is
a large-scale problem.

• May mitigate impact of widespread blackouts due to
equipment failure or intentional damage.

26 April 2024 David A. Bader 12

Network Analysis for Intelligence and Surveillance

• [Krebs ’04] Post 9/11 Terrorist Network
Analysis from public domain information

• Plot masterminds correctly identified from
interaction patterns: centrality

• A global view of entities is often more
insightful

• Detect anomalous activities by
exact/approximate graph matching

26 April 2024 David A. Bader 13

Image Source: http://www.orgnet.com/hijackers.html

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies

for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47

Massive Data Analytics: Public Health

• CDC/national-scale surveillance of public health

• Cancer genomics and drug design
• Computed Betweenness Centrality of Human Proteome

26 April 2024 David A. Bader 14

Human Genome core protein interactions
Degree vs. Betweenness Centrality

Degree

1 10 100

B
e
tw

e
e
n
n

e
s
s
 C

e
n
tr

a
lit

y

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0
ENSG000001

45332.2

Kelch-like

protein

implicated in

breast cancer

Mining Twitter for Social Good

26 April 2024 David A. Bader 15

ICPP 2010 Twitter

Image credit: bioethicsinstitute.org

http://twitter.com/

Arachne:
Interactive Property Graph Analytics at Scale

Image Credit: Matias Del Carmen

26 April 2024 David A. Bader 17

https://news.njit.edu/institute-data-science-aims-democratize-supercomputing-nsf-grant

High Performance Algorithms
for Interactive Data Science at
Scale
(PI: Bader)
$2.2M
3/2021 – 6/2024
NSF CCF-2109988

Arkouda: Dedication to Michael H. Merrill
(June 2, 1964 ~ November 8, 2022)

26 April 2024 David A. Bader

“Mike was a dedicated civil servant. He was a Computer Scientist

at the Department of Defense for 34 years and was recognized in

2022 with a Distinguished Civilian Service Medal. He loved

computers and technology, especially high performance

computing. Mike was a problem solver and innovative thinker; he

was recognized for inspiring and leading numerous large

projects over the course of his career. He loved to share his

knowledge and mentored many colleagues over the years—

sometimes calling them his kids, sometimes his minions, but

always calling them his friend.”

18

Productivity + Performance

26 April 2024 David A. Bader 19

ChapelCon – free virtual event
• June 5th – Tutorial Day
• June 6th – Coding Day
• June 7th – Conference Day

Come code or chat with us!
• GitHub - https://github.com/chapel-lang/chapel
• Gitter - https://gitter.im/chapel-lang/chapel
• Discourse - https://chapel.discourse.group
• StackOverflow - https://stackoverflow.com/questions/tagged/chapel

Follow us on social media
• LinkedIn - https://www.linkedin.com/company/chapel-programming-language
• YouTube - https://www.youtube.com/@ChapelLanguage
• Twitter/X - https://x.com/ChapelLanguage
• Facebook - https://www.facebook.com/ChapelLanguage

Connect with Chapel: the parallel programming language powering Arkouda

REGISTER FOR CHAPELCON

TAKE THE CHAPEL
COMMUNITY SURVEY

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Arkouda + Arachne Framework

Arkouda
• an existing open-source Python

framework that allows for array
and dataframe operations on
data that is terabytes in size but
lacks graph processing
operations.

Arachne
• an open-source extension to

Arkouda to convert massive-
scale dataframes to graphs with
high-performance graph kernels
and property graph capabilities
while maintaining a NetworkX-
like API for new Python users to
easily transition to utilizing it.

26 April 2024 David A. Bader 21

Arkouda + Arachne Framework

26 April 2024 David A. Bader 22

Jupyter Notebook
or

Python3 File

ZMQ Overarching Dispatcher

Q
u

er
y

Su
b

gr
ap

h

U
p

d
at

e

Chapel Server

MPP, SMP, Cluster, Laptop, etc.

Meta

Meta

Distributed Array

Distributed SegGraph

Original image source: https://chapel-lang.org/CHIUW/2020/Reus.pdf was modified for this presentation

User
• Arkouda has NumPy- and Panda-like operations on arrays that are parallel and

distributed (pdarrays).
• Arachne extends Arkouda with graph capabilities.
• This work extends Arachne to store massive-scale graphs.
• Arachne can be thought of as a wrapper that creates a logical graph.

about:blank
about:blank
about:blank

Transit data from the
Arkouda data frame
into an Arachne graph

Results after running
community detection
using Arachne

Karate Club Graph Example

SRC DST

1 0 1

… … …

49 14 32

50 14 33

51 15 32

52 15 33

… … …

Double Index Data Structure

Vertex Index Array Edge Index Arrays

SEG

...

49

51

…

...

14

14

15

15

…

…

32

33

32

33

…

SRC DST
Edge

start

end

0

0

…

1

1

…

0

78 Edges
34 Nodes

78
so

rted
ed

ges

3
4

so
rt

ed
ve

rt
ic

es

Label

26 April 2024 David A. Bader 23

26 April 2024 David A. Bader 24

Drosophila Hemibrain Dataset, [Scheffer et al. 2020]

Drosophila Auditory Circuit [Baker et al. 2022]

Video: Amy Sterling, FlyWire

The Connectome Project

Slide credit: Jakob Troidl, Hanspeter Pfister, Jeff Lichtman (Harvard

University)

• Using Arkouda, we can covert connectome datasets with
one hundred million rows of JSON objects to distributable
HDF5 files in under two hours.

• Using Arachne, a graph of this size can be queried in
seconds to create smaller subgraphs for deeper analysis.

Dorkenwald et. al 2023 – bioArxiv, Animation by Tyler Sloan26 April 2024 David A. Bader 25

Wiring Diagram of the Brain

Dendrite
Axon

26 April 2024 David A. Bader 26

Spatial Neighborhood Analysis

Video Credit @ Daniel Berger

Using Graph Analytics to Understand the Brain

H01 dataset, [Shapson-Coe et al. 2021]

1 mm3 of brain tissue

Lichtman Lab, Google Research

Slide credit: Jakob Troidl, Hanspeter Pfister

Motifs are recurrent connectivity

patterns of neurons in the brain.

26 April 2024 David A. Bader 28

Image credit: Jakob Troidl, Hanspeter Pfister

Connectome: Requires Exascale Graph Analytics

26 April 2024 David A. Bader 29

~ 1.4 PB image data

~ 57,000 cells

~ 133 Million synapses

Connectome: H01 Dataset

Lichtman Lab, and Google ResearchSlide credit: Jakob Troidl, Hanspeter Pfister
26 April 2024 David A. Bader 30

Slide credit: Jakob Troidl, Hanspeter Pfister

Connectivity motifs

26 April 2024 David A. Bader 31

Slide credit: Jakob Troidl, Hanspeter Pfister

Connectivity motifs

26 April 2024 David A. Bader 32

• Large Networks. ~57,000 nodes and ~130 million
edges.

• Expensive Computation. Verifying the existence of
a motif in a larger network is NP-complete.

• Complex 3D structure. Neurons span long volumes
and form complex branching patterns.

• Algorithms:

• Ullmann (2010) which is a recursive backtracking algorithm
for solving the subgraph isomorphism problem

• Cordella (2004) another algorithm based on Ullmann's, VF2,
which improves the refinement process using different
heuristics and uses significantly less memory.

Motif finding

Image Credit: Amy Sterling @ FlyWire

Slide modified from: Jakob Troidl, Hanspeter Pfister

26 April 2024 David A. Bader 33

Image credit: Jakob Troidl, Hanspeter Pfister

Neuroscientists with to correlate motif
connectivity to neuron morpholog

26 April 2024 David A. Bader 34

Slide credit: Jakob Troidl, Hanspeter Pfister

26 April 2024 David A. Bader 35

Finding Patterns in Clinical Patient Records

26 April 2024 36

EHR
Database

Arachne

Arachne

Arachne

Arachne

Data pre-processed by different
tasks on multicore Arachne server

Louis

Esther

Rose

Vertex: Patient
Edge: Shared clinical features

• Utilize community detection algorithms
to identify groups of vertices.

• These communities may correspond to
subpopulations of patients with similar
clinical characteristics or disease
trajectories.

• The adoption of electronic health record (EHR) systems has simultaneously changed clinical practice.
• In data from 2019 and 2021, 96% of general acute care hospitals had adopted EHR*

* Office of the National Coordinator for Health Information Technology.
Adoption of Electronic Health Records by Hospital Service Type 2019-2021,
Health IT Quick Stat #60. April 2022.

David A. Bader

Contact Tracing Networks (COVID, HIV, etc.)

26 April 2024 David A. Bader

Arachne Arachne

ArachneArachne

Current:
• k-truss
• triangle counting
• triangle centrality
Planned:
• re-implementation of bc
• k-core

Usual characteristics of graphs:
• million+ edges and vertices give

rise to graphs that take more
than 2GB to store in memory

• storage of in-between steps of
certain algorithms like Jaccard
coefficients can exceed 512GB

[Serafino, Monteiro, et al. 2022]

[Cushman, 2020]

37

Population Health Data Analysis

26 April 2024 David A. Bader

Tabular Data

Arkouda Arkouda

ArkoudaArkouda

Analysis on terabytes of tabular data!

Arachne Arachne

ArachneArachne

build (property) graphs

• run graph kernels
• planned: property graph algorithms

• Arachne works with
Arkouda as an add-on
for graph analysis.

• Data can be taken from
Arkouda and created
into graphs by
specifying columns as
edge sources and
destinations.

38

The Arkouda-Arachne Netflow Data Pipeline

IPV4_SRC_ADDR L4_SRC_PORT IPV4_DST_ADDR L4_DST_PORT PROTOCOL L7_PROTO IN_BYTES OUT_BYTES IN_PKTS OUT_PKTS TCP_FLAGS FLOW_DURATION_MS Attack

192.168.100.6 52670 192.168.100.1 53 17 5.21 71 126 1 1 0 4294966 Benign

192.168.100.6 49160 192.168.100.149 444 6 0 217753000 199100 4521 4049 24 4176249 Theft

192.168.100.46 3456 192.168.100.5 80 17 0 8508021 8918372 9086 9086 0 4175916 Benign

192.168.100.3 80 192.168.100.55 8080 6 7 8442138 9013406 9086 9086 0 4175916 Benign

SOURCE DESTINATION

IPV4 source addresses and ports
together make up the source

vertex of the edge and respectively
the same columns for the

destination vertex of the edge.

~

ak.stick()

integer id gen
IPV4_SRC IPV4_SRC_id IPV4_DST IPV4_DST_id

192.168.100.6:52670 3473 192.168.100.1:53 3455

192.168.100.6:49160 4234 192.168.100.149:444 3233
ak.GroupBy()

ak.groupby.broadcast()

To Arachne!

26 April 2024 David A. Bader 39

Back-End Storage and Querying

SRC

0

0

1

1

2

DST

1

2

0

2

2

R
e

la
ti

o
n

sh
ip

s

R-MAP

benign

theft

DDoS

IND

0

1

2

IND

0

1

2

3

4

SETS

{1}

{0}

{1}

{0,2}

{0}

Ed
ge

 P
ro

pe
rt

ie
s

INTS REALS

REF REF

REF REF

REF REF

REF REF

REF REF

IN
T 1 2

VAL VAL

COL-MAP

L7_PROTO

IN_BYTES

OUT_BYTES

IND

0

1

2

TYPE

FLOAT

INT

INT

R
EA

L 0

VAL

• Relationships are stored in sets per edge.
User specifies a query, and we search the
edge set in a massively parallel manner,
probing the sets in amortized constant time.

• Properties are stored split by type and for
each edge-type pair that exists, we store an
associative domain where we extract the data
by simply doing an access edge_prop[col_id].

• All REFS point to arrays that are of the specified column type and that store
the key-value pairs for column identifier to data.

• Query hits are returned in a Boolean array specified which edges matched.

• All searching is guaranteed to be
𝑂(𝑚/𝑝) since it only involves
iterating over the edge set in
parallel with each processor.26 April 2024 David A. Bader 40

Code Example for Python Scripts & Jupyter
1. import arkouda as ak
2. import arachne as ar
3.
4. ## Get src and dst from input file.
5. graph = ar.PropGraph()
6. graph.add_edges_from(src,dst)
7.
8. ## Generate relationships_df and edge_properties_df from input file.
9. graph.add_edge_relationships(relationships_df)
10.graph.add_edge_properties(edge_properties_df)
11.
12.## User generates relationships_to_find and property query.
13.returned_edges_rel = graph.query_relationships(relationships_to_find)
14.returned_edges_prop = graph.query_edge_properties(“COLUMN”, 67, “>”)
15.
16.returned_edges = ak.intersect1d(returned_edges_rel, returned_edges_prop)
17.subgraph_src = returned_edges[0]
18.subgraph_dst = returned_edges[1]
19.
20.subgraph = ar.Graph()
21.subgraph.add_edges_from(subgraph_src, subgraph_dst)
22.bfs = ar.bfs_layers(subgraph)
23.cc = ar.connected_components(subgraph)
24.tris = ar.triangles(subgraph)
25.squares = ar.squares(subgraph)
26.## And more!!!!!

• Line 6 input is generated from input files
from types such as HDF5, CSV, Parquet, etc.

• Lines 9 and 10 input is generated from input
files as well.

• Lines 13 and 14 relationships and properties
to find are generated by the user.

• Lines 16-19 use Arkouda operations and
slicing to get the edges that are returned by
both queries.

• Lines 20 and 21 create a new Arachne
simple graph with the returned edges of the
queries.

• Lines 22-25 run some of the other
algorithms available in Arachne!

• Arachne can also return arrays composing of
the edges which can be converted to Python
lists or NumPy arrays so they can be loaded
into NetworkX for further analysis!

26 April 2024 David A. Bader 41

Arachne DI Data Structure [Du et al. 2021]

26 April 2024

MAP

34

69

89

SRC

0

0

1

1

2

DST

1

2

0

2

2

IND

0

1

2

3

SEG

0

2

4

5

Vertices Edges

IND

0

1

2

3

4

• Allows for simple, compact, distributable storage of vertex and edge sets.
• Given an edge index, all vertices that make up that edge are found in constant time,

avoiding a binary search into SRC (CSR offsets index equivalent).
• MAP allows explicitly storing original vertex labels, returning original graph involves

creating arrays and place values of SRC[MAP] and DST[MAP] into new arrays.

L1

L2

[𝑆𝐸𝐺[𝑢]. . 𝑆𝐸𝐺[𝑢 + 1] − 1]

David A. Bader 42

Property Graph Results

26 April 2024

0

1

2

3

4

5

6

9

10

16L 32L 64L

 uerying Rela onships Scalability

graph5 graph6 graph

0

30

60

90

120

150

1 0

210

240

16L 32L 64L

Adding Rela onships Scalability

graph5 graph6 graph

• Experiments conducted on a cluster where each compute node was
composed of 128 cores (64 per AMD EPYC 7713 CPUs), 1TB DDR4 RAM,
and an Infiniband HDR 200 GB/s node interconnect.
• At time of results, some nodes had performance issues, hence the

weird elbows.
• Fifty random relationships were made and randomly assigned to edge

indices meaning some edges could be picked more than once and
some none at all.

• Querying involved searching for the edges that included three of the fifty
relationships, each list performed a set and operation with the search
space.

𝑛 𝑚

graph5 864,648,454 1,000,000,000

graph6 2,161,664,289 2,500,000,000

graph7 1,408,892,291 5,000,000,000

Takeaway: Building a graph of five billion edges takes under 60 seconds,
running ETL to insert relationships takes under 4 minutes, and querying it
under 10 seconds.

David A. Bader 43

26 April 2024

Graph Algorithms in Arachne

• Breadth-first search (BFS) [Du, Alvarado Rodriguez, Bader 2021]

Returns an array of size 𝑛 with how many hops away some vertex 𝑣 is from an initial vertex 𝑢.

• Connected components
Returns an array of size 𝑛 where all vertices who belong to the same component have the same value 𝑥. The value of 𝑥 is the
label of the largest vertex in the component.

• Triangle counting [Du, Alvarado Rodriguez, Patchett, Bader 2021]

Returns the number of triangles in a graph.

• Truss Analytics [Du, Patchett, Bader 2021][Du, Patchett, Alvarado Rodriguez, Li, Bader 2022]

K-truss returns every edge in the truss where each edge must be a part of 𝑘 − 2 triangles that are made up of nodes in that
truss. Max truss returns the maximum 𝑘. Truss decomposition returns the maximum 𝑘 for each edge.

• Square counting [Burkhardt, Harris 2023]
Returns the number of four-cycles in the graph.

• Triangle centrality [Patchett, Du, Bader 2022][Patchett, 2022]

Returns an array of size 𝑛 with the proportion of triangles centered at a vertex 𝑣.

• Subgraph isomorphism [Dindoost, Bader, 2023, in progress]

Finds instances of a pattern in a larger graph.

David A. Bader 44

Shared-Memory Parallel Breadth-First Search

26 April 2024

0 7

5

3

8

2

4 6

1

9

source

vertex

Input:

Output:

1

1

1

2

2 3 3

4

4

distance from

source vertex

0 7

5

3

8

2

4 6

1

9

source

vertex

Output: D = [0, 4, 1, 2, 3, 1, 3, 1, 2, 4]

C
u

rr
en

t
Fr

on
ti

er

N
ex

t
Fr

o
nt

ie
r

David A. Bader 45

Distributed-Memory Parallel Breadth-First Search

26 April 2024

0 7

5

3

8

2

4 6

1

9

source

vertex

Input:

Output:

1

1

1

2

2 3 3

4

4

distance from

source vertex

0 7

5

3

8

2

4 6

1

9

source

vertex

Output: D = [0, 4, 1, 2, 3, 1, 3, 1, 2, 4]

C
u

rr
en

t
Fr

on
ti

er

N
ex

t
Fr

o
nt

ie
r

Assume our edge list is split down the middle, then the neighborhood of some vertices will live on one
compute node while the rest live on another compute node.

Any cross-color expansions are writes
across the network; fine-grained writes
hold up execution, large coarse-grained

writes are better.

David A. Bader 46

Breadth-First Search Communication Volume Results

26 April 2024

delaunayn20 get put

locale di di-norev di-agg-ls di di-norev di-agg-ls

0 15672640 7873842 639827 5629422 2749193 138070

1 15834332 7939017 687156 1952226 1016946 127936

2 15715554 7722659 226754 1942839 962031 45217

3 15817879 7723971 226880 1951313 962201 45060

4 15964559 7724880 226691 1961552 962199 51217

5 15739226 7726504 230024 1940688 962439 52714

6 15569450 7727678 229096 1925536 962680 51977

7 15341933 7736094 225083 1904757 963418 48413

di: 84 seconds
di-agg-ls: 3.36 seconmds

delaunayn20 is a graph with 3 million edges and a large diameter

Takeaway: Aggregating writes drastically reduces communication volumes, improving
performance, all done easily through Chapel by adapting aggregators for different uses.

David A. Bader 47

Minimum Search Triangle Counting

1. Given an edge (𝑢, 𝑣) we
assume that |𝐴𝑑𝑗(𝑢)| ≤
 |𝐴𝑑𝑗(𝑣)|.

2. Then, for ∀𝑤 ∈ 𝐴𝑑𝑗(𝑢)
we spawn |𝐴𝑑𝑗 𝑢 | - 1
parallel threads to check if
we can form a complete
triangle with 𝑢, 𝑣, 𝑤 .

3. If 𝐴𝑑𝑗 𝑤 < |𝐴𝑑𝑗(𝑣)|
we will check if 𝑣 ∈
𝐴𝑑𝑗(𝑤), else, we check if
𝑤 ∈ 𝐴𝑑𝑗(𝑣).

26 April 2024

u vw1

w2 w3

Thread w1: search for 𝑤1 in 𝐴𝑑𝑗(𝑣), no match, kill.

Thread w2: search for 𝑣 in 𝐴𝑑𝑗(𝑤2), no match, kill.

Thread w3: search for 𝑣 in 𝐴𝑑𝑗(𝑤3), match! Increment count.

Adj(x) Value

Adj(u) 4

Adj(v) 6

Adj(w1) 7

Adj(w2) 2

Adj(w3) 2

David A. Bader 48

Minimum Search Triangle Counting Operation Count
Comparison

• Assume |𝐴𝑑𝑗𝑢| < 𝐴𝑑𝑗𝑣 and we spawn threads for every 𝑤 ∈ |𝐴𝑑𝑗𝑢|

• Minimum search: 𝑤∈𝐴𝑑𝑗𝑢

max log2(min(|𝐴𝑑𝑗𝑤|, |𝐴𝑑𝑗𝑣|))

• List Intersection: log2(|𝐴𝑑𝑗𝑣|)

• Say we have the following information for our vertices:

• 𝐴𝑑𝑗𝑢 = 4 and |𝐴𝑑𝑗𝑣| = 1024

• For every 𝑤 in 𝐴𝑑𝑗𝑢, 𝐴𝑑𝑗𝑤 ≤ 8

• List intersection: 4 threads amounting to log2 1024 = 10 operations each.

• Minimum search: 4 threads amounting to log2 8 = 3 operations each.

26 April 2024 David A. Bader 49

Triangle Counting Results

26 April 2024

• Our method outperforms with the Conte
method with a highest speedup of 385.8 and
an average speedup of 128.

Takeaway: Truss decomposition with
minimum search triangle counting
outperforms a C++ method coded with
OpenMP, with SSE-Acceleration, binary
searching on adjacency list, and no atomic
operations.

Graphs used were a variety of real-world graphs available for view in paper.

David A. Bader 50

Major Contributions

• Arachne, a large-scale graph analysis framework, extends Arkouda for
productive graph analysis. Arachne is built on a novel sparse graph
data structure.

• Arachne leverages productivity through Python with high
performance backed by Chapel.

• Arachne, Arkouda, Chapel are all open-source.
• https://github.com/Bears-R-Us/arkouda-njit

• https://github.com/Bears-R-Us/arkouda

• https://github.com/chapel-lang/chapel

• Experimental results on real-world and synthetic graphs demonstrate
that Arachne works for graphs with billions of edges.

26 April 2024 David A. Bader 51

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Publications

• Oliver Alvarado Rodriguez, Zhihui Du, Joseph Patchett, Fuhuan Li, David Bader (2022). Arachne: An
Arkouda Package for Large-Scale Graph Analytics. IEEE HPEC.

• Oliver Alvarado Rodriguez, Fernando Vera Buschmann, Zhihui Du, David Bader (2023). Property Graphs in
Arachne. IEEE HPEC.

• Soroush Vahidi, Baruch Schieber, Zhihui Du, David Bader (2023). Parallel Longest Common SubSequence
Analysis In Chapel. IEEE HPEC.

• Joseph Patchett, Zhihui Du, Fuhuan Li, David Bader (2022). Triangle Centrality in Arkouda. IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, David Bader (2021). Large Scale String Analytics In Arkouda. IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, David Bader (2021). Enabling Exploratory Large Scale Graph Analytics
through Arkouda. IEEE HPEC.

• Joseph Patchett, Zhihui Du, David Bader (2021). K-Truss Implementation in Arkouda (Extended Abstract).
IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, David Bader (2021). Interactive Graph Stream
Analytics in Arkouda. Algorithms.

• Zhihui Du, Oliver Alvarado Rodriguez, David A. Bader, Michael Merrill, William Reus (2021). Exploratory Large
Scale Graph Analytics in Arkouda. CHIUW.

26 April 2024 David A. Bader 52

Conclusions & Further Work

• We can design and develop high performance graph analysis
algorithms using Arkouda/Chapel quickly and efficiently.

• We plan to work on optimizing all current methods to work as
efficiently as possible in single locale and multi locale environments.

• We plan to implement new novel algorithms such as stringology, a
communication-efficient triangle counting, large-scale community
detection, and machine learning.

26 April 2024 David A. Bader 53

26 April 2024 David A. Bader

Massive Graph Analytics
Edited By David A. Bader
Copyright Year 2022
ISBN 9780367464127
Published July 20, 2022 by Chapman & Hall
616 Pages 207 B/W Illustrations

54

Chapters

Algorithms: Search and Paths
A Work-Efficient Parallel Breadth-First Search Algorithm (or How to Cope With
the Nondeterminism of Reducers
Charles E. Leiserson and Tao B. Schardl
Multi-Objective Shortest Paths
Stephan Erb, Moritz Kobitzsch, Lawrence Mandow , and Peter Sanders

Algorithms: Structure
Multicore Algorithms for Graph Connectivity Problems
George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri
Distributed Memory Parallel Algorithms for Massive Graphs
Maksudul Alam, Shaikh Arifuzzaman, Hasanuzzaman Bhuiyan, Maleq Khan, V.S.
Anil Kumar, and Madhav Marathe
Efficient Multi-core Algorithms for Computing Spanning Forests and Connected
Components
Fredrik Manne, Md. Mostofa Ali Patwary
Massive-Scale Distributed Triangle Computation and Applications
Geoffrey Sanders, Roger Pearce, Benjamin W. Priest, Trevor Steil

Algorithms and Applications
Computing Top-k Closeness Centrality in Fully-dynamic Graphs
Eugenio Angriman, Patrick Bisenius, Elisabetta Bergamini, Henning Meyerhenke
Ordering Heuristics for Parallel Graph Coloring
William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson
Partitioning Trillion Edge Graphs
George M. Slota, Karen Devine, Sivasankaran Rajamanickam, Kamesh Madduri
New Phenomena in Large-Scale Internet Traffic
Jeremy Kepner, Kenjiro Cho, KC Claffy, Vijay Gadepally, Sarah McGuire, Peter
Michaleas, Lauren Milechin
Parallel Algorithms for Butterfly Computations
Jessica Shi and Julian Shun

Models
Recent Advances in Scalable Network Generation
Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz
Computational Models for Cascades in Massive Graphs: How to Spread a
Rumor in Parallel
Ajitesh Srivastava, Charalampos Chelmis, Viktor K. Prasanna
Executing Dynamic Data-Graph Computations Deterministically Using
Chromatic Scheduling
Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson

Frameworks and Software
Graph Data Science Using Neo4j
Amy E. Hodler, Mark Needham
The Parallel Boost Graph Library 2.0
Nicholas Edmonds and Andrew Lumsdaine
RAPIDS cuGraph
Alex Fender, Bradley Rees, Joe Eaton
A Cloud-based approach to Big Graphs
Paul Burkhardt and Christopher A. Waring
Introduction to GraphBLAS
Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluc, Franz Franchetti, John
Gilbert, Dylan Hutchinson, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillian, Jose Moreira, John D. Owens, Carl Yang, Marcin
Zalewski, and Timothy G. Mattson
Graphulo: Linear Algebra Graph Kernels
Vijay Gadepally, Jake Bolewski, Daniel Hook, Shana Hutchison, Benjamin A
Miller, Jeremy Kepner
Interactive Graph Analytics at Scale in Arkouda
Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A. Bader

26 April 2024 David A. Bader 55

85 Contributors
Peter Aaltonen
Maksudul Alam
Md. Mostofa Ali Patwary
Eugenio Angriman
V.S. Anil Kumar
William Arcand
Shaikh Arifuzzaman
Elisabetta Bergamini
William Bergeron
David Bestor
Hasanuzzaman Bhuiyan
Patrick Bisenius
Ulrik Brandes
Aydin Buluc
Paul Burkhardt
Chansup Byun
Charalampos Chelmis
Kenjiro Cho
K.C. Claffy
Karen Devine
Zhihui Du

Joe Eaton
Nicholas Edmonds
Stephan Erb
Alex Fender
Franz Franchetti
Vijay Gadepally
John Gilbert
Michael Hamann
William Hasenplaugh
Amy E. Hodle
Michael Houle
Matthew Hubbell
Shana Hutchison
Hayden Jananthan
Michael Jones
Tim Kaler
Jeremy Kepner
Maleq Khan
Moritz Kobitzsch
Manoj Kumar
Sebastian Lamm

Charles E. Leiserson
Andrew Lumsdaine
Kamesh Madduri
Lawrence Mandow
Fredrik Manne
Madhav V. Marathe
Timothy G. Mattson
Sarah McGuire
Scott McMillan
Ulrich Meyer
Henning Meyerhenke
Peter Michaleas
Lauren Milechi
Jose Moreira
Mark Needham
John D. Owens
Joseph Patchett
Roger Pearce
Manuel Penschuck
Viktor K. Prasanna
Benjamin W. Priest

Andrew Prou
Sivasankaran Rajamanickam
Bradley Rees
Albert Reuther
Oliver Alvarado Rodriguez
Antonio Rosa
Ilya Safro
Siddharth Samsi
Geoffrey Sanders
Peter Sanders
Tao B. Schardl
Christian Schulz
Jessica Shi
Julian Shun
George M. Slota
Ajitesh Srivastava
Trevor Steil
Christopher A. Waring
Carl Yang
Charles Yee
Marcin Zalewski

26 April 2024 David A. Bader 56

Bader Research Lab

Vanshika
Agrawal

Undergraduates:

Tanima
Majumder

Palina
Paulichenka

Current & Past High School Interns:

Anya
Ganeshan

Antonita
Rachael

Zhihui Du

Research Faculty: PhD Students:

Oliver Alvarado
Rodriguez

Fuhuan Li Mohammad
Dindoost

Pranhav
Sundararajan

Fatemeh
Ramezani

Khozestani

Fernando
Vera

Buschmann
(Fulbright
Scholar)

26 April 2024 David A. Bader

Asha Saxena

Davor Petrovikj Naren
Khatwani Sounak Bagchi

57

M.S. students:

Soroush Vahidi
(co-advised with
Baruch Schieber)

26 April 2024 David A. Bader 58

Community Detection
• In complex networks, nodes

cluster and form relatively dense
groups – often called communities.

• Community detection is a
fundamental graph algorithm with
practical applications like fraud
detection in Fintech and identity
and access management in social
networks

Vertices are Facebook users and edges represent Facebook
friendships. Communities, represented by different colors.

Image credit: Fortunato, S., Newman, M.E.J. 20 years of
network community detection. Nat. Phys. 18, 848–850
(2022).

26 April 2024

Open-Source Massive-Scale (Property) Graph Analytics in Python with Arachne+Arkouda powered by Chapel

query_node_labels()

query_edge_relationships()

query_node_properties()

query_edge_properties()

Load in terabytes-sized CSVs, HDF5s,
Parquets, etc.

Convert tabular data to graph format with all
data closely maintained with vertex and edges.

Extract (multiple)
subgraphs by querying on

attributes.

bfs_layers()

subgraph_isomorphism()

square_counting()

and more…..!

Perform further analysis!
Convert to NetworkX (if

small enough).

1. import arkouda as ak
2. import arachne as ar
3.
4. ## Get src and dst from input file.
5.
6. graph = ar.PropGraph()
7. graph.add_edges_from(src,dst)
8.
9. ## Generate label_df and relationships_df from input file.
10.
11. graph.add_node_labels(label_df)
12. graph.add_edge_relationships(relationships_df)
13.
14. ## User generates labels_to_find and relationships_to_find.
15. returned_nodes = graph.query_labels(labels_to_find)
16. returned_edges = graph.query_relationships(relationships_to_find)
17.
18. subgraph_src = ak.in1d(returned_edges[0], returned_nodes)
19. subgraph_dst = ak.in1d(returned_edges[1], returned_nodes)
20.
21. kept_edges = subgraph_src & subgraph_dst
22.
23. subgraph_src = subgraph_src[kept_edges]
24. subgraph_dst = subgraph_dst[kept_edges]
25.
26. subgraph = ar.Graph()
27. subgraph.add_edges_from(subgraph_src, subgraph_dst)
28. ## Run some new operations on subgraph! Reference our HPEC22 paper ☺

Easily usable through NetworkX-like API. Data exchangeable between
NetworkX, NumPy, SciPy, etc.

MPP, SMP, Cluster, Laptop, etc.

Meta

Meta

Meta Distributed Strings

Distributed Graphs

Distributed Arrays

Runs on any hardware, data stays in the back-end,
user calls API through Pythpm: powerful and

productive. Server can run on supercomputers,
Python API usable locally.

Kernel Time(s)

Loading graph into memory 5.4

Node label ETL and storage 1.87

Edge label ETL and storage 80.29

Node querying 1.01

Edge querying 1.39

Subgraph building 1.22

Breadth-first search 2.45

Performance analyzing a 10-billion edge graph on 16 compute nodes with 128
cores each and 1TB memory. Subgraph generated contained 1-million edges.
BFS executed from the 5 highest degree vertices and the average was taken.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit
PUBLICATIONS: https://davidbader.net/publication/ filter with “Arkouda” or “Arachne”

David A. Bader 60

https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://github.com/Bears-R-Us/arkouda-njit
https://davidbader.net/publication/

Modules of Arachne

26 April 2024 David A. Bader

graph_file_read()

graph_file_read_mtx()

stream_file_read()

graph_file_preprocessing()

graph_bfs()

graph_cc()

graph_tri_cnt()

graph_tri_ctr()

stream_tri_cnt()

graph_truss()

graph_jaccard()

benchmarks

graph_query()

file
DI

pdarray | integer

edge | vertex arrays

timings across trials, correctness

61

Graphs for Testing

26 April 2024 David A. Bader

Real-world

Synthetic

delaunayn10 - delaunayn19

few vertices, outperforms
some algorithms less
edges but more vertices.

values found by our algorithms

Experiments were

conducted on a high-

performance server

with 2 x Intel Xeon E5-

2650 v3 @ 2.30GHz CPUs

with 10

cores per CPU and a RAM

capacity of 512GB.

62

Arachne Results – Real-World Graphs
[Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]

26 April 2024 David A. Bader

Key Points:
1. Graph construction is time consuming

but once the graph is built into memory
all the algorithms can use it in a highly
efficient way.

2. The structural properties of graphs can
significantly affect execution times even
for the same algorithm.

63

Arachne Results – Synthetic Graphs
[Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]

26 April 2024 David A. Bader

Key Points:
1. Synthetic graphs demonstrate the

scalability of our algorithms as the
number of edges in a graph increase.

2. The memory requirements for each
algorithm differ, hence the Jaccard
coefficient algorithm encounters out of
memory errors when the graph gets too

big. Jaccard requires
𝑁×𝑁

2
 memory and

𝑁

𝑃

2
×

𝑀

𝑃
 calculations.

64

Breadth-First Search Improvements

26 April 2024 David A. Bader 65

Graph num_vertices num_edges di (original) di-norev speedup

as-caida 26,475 53,381 2.22 1.22 1.82

delaunayn10 2,048 3,056 0.11 0.05 2.11

delaunayn20 1,058,576 3,145,686 90.49 47.61 1.90

Execution time in seconds on eight locales with 512GB memory and twenty processing units each.

Performed twice in di(original)
while iterating over the edges in
(SRC,DST) and in (SRCr, DSTr) to

get the full neighborhoods which
can lead to twice the number of

remote reads and writes!

• About 50% improvement in number of
PUTs and GETs with di-norev by
including full neighborhoods of each
vertex contiguously in one array instead
of maintaining reversed edges.

• No change in storage volume, 2m edges
still stored.

• Similar changes could optimize the rest
of our graph kernels.

STING Initiative: Focusing on
Globally Significant Grand Challenges

• Many globally-significant grand challenges can be modeled by Spatio-Temporal
Interaction Networks and Graphs (or “STING”).

• Emerging real-world graph problems include:
• Detecting community structure in large social networks

• Defending the nation against cyber-based attacks

• Discovering insider threats (e.g. Ft. Hood shooter, WikiLeaks)

• Improving the resilience of the electric power grid

• Detecting and preventing disease in human populations.

• Unlike traditional applications in computational science and engineering, solving these
problems at scale often raises new research challenges due to:
• Sparsity and the lack of locality in the massive data

• Design of parallel algorithms for massive, streaming data analytics

• The need for new exascale supercomputers that are energy-efficient, resilient, and easy-to-program

26 April 2024 David A. Bader 66

STINGER – Time Frame

26 April 2024 David A. Bader 67

Streaming graph need
arises (over a decade
ago)

Pre-1999

STINGER is officially
proposed. May 2009

2009

Structure tracking of
streaming social
networks. Apr 2011

2011

High Performance Data
Structure for Streaming
Graphs. Sep 2012
HPEC BEST PAPER AWARD

Dynamic betweenness
centrality algorithm.
Sep 2012

2012

Streaming connected
component, Dec 2013

2013

Performance evaluation
of open-source graph
data-bases. Feb 2014

2014

First prototype, clustering
coefficients. Apr 2010

2010

Community detection in
dynamic networks. Sep
2015

2015

PageRank for Streaming
Graphs. May 2016

2016

Hornet (GPU only) – Time Frame

26 April 2024 David A. Bader 68

2016

cuSTINGER for the GPU
is released

2016

Quickly finding
KTrusses using dynamic
graph algorithm

Dynamic Katz Centrality

2018

Faster triangle counting
with Logarithm Radix
Binning

Finding maximal K-core
and K-core
decomposition

Dynamic graph triangle
counting – using two
graphs

2017

Anti-Section Transitive
Closure

2020

Multi-GPU Breadth First
Search

Hornet is integrated with
cuGraph

2019

STING Extensible Representation (STINGER)

• Enable algorithm designers to implement dynamic graph
algorithms with ease.

• Portable semantics for various platforms

• Good performance for all types of graph problems and algorithms
- static and dynamic.

• Assumes globally addressable memory access

• Support multiple, parallel readers and a single writer
• One server manages the graph data structures
• Multiple analytics run in background with read-only permissions.

26 April 2024 David A. Bader 69

Design goals

STING Extensible Representation (STINGER)

26 April 2024 David A. Bader 70

• Semi-dense edge list blocks
with free space

• Compactly stores
timestamps, types, weights

• Maps from application IDs to
storage IDs

• Deletion by negating IDs,
separate compaction

STING: High-level architecture

26 April 2024 David A. Bader 71

◮ Server: Graph storage, kernel orchestration

◮ OpenMP + sufficiently POSIX-ish

◮ Multiple processes for resilience

STINGER as an analysis package

26 April 2024 David A. Bader 72

Streaming edge insertions and deletions:
New edge insertions, updates, and deletions in batches or individually.

Optimized to update at rates of over 3 million edges per second on graphs

of one billion edges.

Streaming clustering coefficients:
Tracks the local and global clustering coefficients of a graph.

Streaming connected components:
Real time tracking of the connected components.

Streaming Betweenness Centrality:
Find the key points within information flows and structural vulnerabilities.

Streaming community detection:
Track and update the community structures within the graph as they

change.

http://www.stingergraph.com/

Anything that a static graph package
can do (and a whole lot more):

Parallel agglomerative clustering:
Find clusters that are optimized for a user-
defined edge scoring function.

K-core Extraction:
Extract additional communities and filter noisy
high-degree vertices.

Classic breadth-first search:
Performs a parallel breadth-first search of the
graph starting at a given source vertex to find
shortest paths.

Parallel connected components:
Finds the connected components in a static
network.

AND…

Why not existing technologies?
• Traditional SQL databases

• Not structured to do any meaningful graph queries with any level of efficiency or
timeliness

• Graph databases - mostly on-disk
• Distributed disk can keep up with storing / indexing, but is simply too slow at random

graph access to process on as the graph updates

• Hadoop and HDFS-based projects
• Not really the right programming model for many structural queries over the entire

graph, random access performance is poor

• Smaller graph libraries, processing tools
• Can't scale, can't process dynamic graphs, frequently leads to impossible visualization

attempts

26 April 2024 David A. Bader 73

AI Lab (NVAIL) 2019, PI: Bader
Building the Future of Graph Analytics with RAPIDS

26 April 2024 David A. Bader 74

“Prof. David Bader and his lab … are leaders in high performance computing algorithms, with a focus on
both static and dynamic graph algorithms. With Prof. Bader and his lab, we will work on the design and
implementation of scalable graph algorithms and graph primitives for integrating into cuGRAPH,
leveraging their Hornet framework.” – Sandra Skaff, NVIDIA, April 2019

2019 Facebook AI Systems Award:
Scalable Graph Learning Algorithms

26 April 2024 David A. Bader 75

Deep Learning (DL) has significantly impacted the tasks of speech recognition,
image classification, object detection and recommendation
Complex tasks: self-driving, super-human image recognition, recommendation
engines, machine natural language translation, content selection, learning
patterns of life
Techniques used in DL: convolutional neural networks (CNNs) → applicable for
Euclidean data types and does not apply for Graphs
Solution: embedding graphs into a lower dimensional Euclidean space,
generating a regular structure

1. developing a scalable high performance graph learning system based on
GCNs algorithms, like GraphSage, by improving the workflow on shared-
memory NUMA machines balancing computation between threads,
optimizing data movement, and improving memory locality

2. investigate graph learning algorithm: specific decompositions and develop
new strategies for graph learning that can inherently scale well while
maintaining high accuracy

• Explore decomposition results from graph theory, for example forbidden graphs
and the Embedding Lemma and determine how to apply such results into the
field of graph learning

• Investigate whether these decompositions could assist in a dynamic graph
setting

Project Aim: Develop scalable graph learning algorithms and implementations
that open the door for learned graph models on massive graphs

Image: http://snap.stanford.edu/graphsage/
Inductive Representation Learning on Large Graphs. W.L. Hamil ton, R. Ying, and J. Leskovec arXiv:1706.02216 [cs.SI], 2017.

http://snap.stanford.edu/graphsage/

Graphs are pervasive in large-scale data analysis

• Sources of massive data: peta- and exa-scale simulations, experimental devices, the Internet,
scientific applications.

• New challenges for analysis: data sizes, heterogeneity, uncertainty, data quality.

26 April 2024 David A. Bader 76

Astrophysics
Problem: Outlier detection.
Challenges: massive datasets,

temporal variations.
Graph problems: clustering,
matching.

Bioinformatics
Problem: Identifying drug target
proteins.

Challenges: Data heterogeneity,
quality.
Graph problems: centrality,

clustering.

Social Informatics
Problem: Discover emergent
communities, model spread of

information.
Challenges: new analytics routines,
uncertainty in data.

Graph problems: clustering,
shortest paths, flows.

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg

(2,3) www.visualComplexity.com

http://physics.nmt.edu/images/astro/hst_starfield.jpg

Characterizing Graph-theoretic computations

26 April 2024 David A. Bader 77

• graph sparsity (m/n ratio)

• static/dynamic nature

• weighted/unweighted, weight

distribution

• vertex degree distribution

• directed/undirected

• simple/multi/hyper graph

• problem size

• granularity of computation at

nodes/edges

• domain-specific characteristics

• paths

• clusters

• partitions

• matchings

• patterns

• orderings

Input: Graph

abstraction

Problem: Find ***

Factors that influence

choice of algorithmGraph

algorithms

• traversal

• shortest path

algorithms

• flow algorithms

• spanning tree

algorithms

• topological sort

 …..

Graph problems are often recast as sparse

linear algebra (e.g., partitioning) or linear

programming (e.g., matching) computations

Streaming Analytics move us from reporting the news to predictive analytics

Traditional HPC

• Great for “static” data sets.

• Massive scalability at the cost of
programmability.

• Great for dense problems.
• Sparse problems typically

underutilize the system.

Streaming Analytics

• Requires specialized analytics and
data structures.

• Rapidly changing data.

• Low data re-usage.
• Focused on memory operations and

not FLOPS.

26 April 2024 David A. Bader 78

Graph Data Science

• Are there new graph techniques? Do they scale? Can the computational systems
(algorithms, machines) handle massive networks with billions to trillions of items? Can
the techniques tolerate noisy data, massive data, streaming data, etc. …

• Communities may overlap, exhibit different properties and sizes, and be
driven by different models

• Detect communities (static or emerging)

• Identify important individuals

• Detect anomalous behavior

• Given a community, find a representative member of the community

• Given a set of individuals, find the best community that includes them

• Find congestion, weak points, anomalies, surprises, …

26 April 2024 David A. Bader 79

Massive Streaming Graph Analytics

26 April 2024 David A. Bader 80

(A, B, t1, poke)

(A, C, t2, msg)

(A, D, t3, view wall)

(A, D, t4, post)

(B, A, t2, poke)

(B, A, t3, view wall)

(B, A, t4, msg)

Analysts

Q1?
Q2?Q3?

Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?
What are the important vertices at time T?

Use persistent queries to monitor properties.
Does the path between s and t shorten drastically?
Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.
Does a small community stay independent rather than merge with
larger groups?
When does a vertex jump between communities?

New types of queries, new challenges...

26 April 2024 David A. Bader 81

Modeling Pandemic Spread

82

[Alguliyev, Aliguliyev, Yusifov, 2020]

• The graph represents the contact patterns
between individuals in a population.

• Various graph algorithms can be used to
simulate the spread of a pandemic.
• Centrality measures such as

eigenvector centrality can identify the
most important vertices in the
network

• Visualization of the spread of the
pandemic can be created to check the
effects of intervention and control
strategies.

• The dataset can be a million or even a
trillion vertices.

R. Alguliyev, R. Alguliyev, and F. Yusifov, “Graph
modelling for tracking the COVID-19 pandemic spread.”
Infectious disease modelling, 6, 2021: 112-122

26 April 2024 David A. Bader

Using Arachne with Arkouda (1/3)

26 April 2024 David A. Bader 83

Using Arachne with Arkouda (2/3)

26 April 2024 David A. Bader

max degree! (also 8, but 6 is the first occurrence)

84

Using Arachne with Arkouda (3/3)

26 April 2024 David A. Bader

6

1

9

8

4

5

7

3

0

2

0

1

2

3

85

	Slide 1: Arachne: An Open-Source Framework for Interactive Massive-Scale Graph Analytics
	Slide 2: David A. Bader Distinguished Professor and Director, Institute for Data Science
	Slide 3: Today’s talk is dedicated to my uncle
	Slide 4: 2021 IEEE Sidney Fernbach Award
	Slide 5: 1998: Bader Invents the Linux Supercomputer
	Slide 6: Impact: Top500 Supercomputers Running Linux
	Slide 7
	Slide 8: New Jersey Institute of Technology
	Slide 9
	Slide 10: Data-Quad
	Slide 11: Graph Data Science: Real-world challenges
	Slide 12: Massive Data Analytics: Infrastructure
	Slide 13: Network Analysis for Intelligence and Surveillance
	Slide 14: Massive Data Analytics: Public Health
	Slide 15: Mining Twitter for Social Good
	Slide 16: Arachne: Interactive Property Graph Analytics at Scale
	Slide 17
	Slide 18: Arkouda: Dedication to Michael H. Merrill (June 2, 1964 ~ November 8, 2022)
	Slide 19: Productivity + Performance
	Slide 20: Connect with Chapel: the parallel programming language powering Arkouda
	Slide 21: Arkouda + Arachne Framework
	Slide 22: Arkouda + Arachne Framework
	Slide 23
	Slide 24: The Connectome Project
	Slide 25
	Slide 26: Wiring Diagram of the Brain
	Slide 27: Spatial Neighborhood Analysis
	Slide 28: Using Graph Analytics to Understand the Brain
	Slide 29: Connectome: Requires Exascale Graph Analytics
	Slide 30: Connectome: H01 Dataset
	Slide 31: Connectivity motifs
	Slide 32: Connectivity motifs
	Slide 33: Motif finding
	Slide 34: Neuroscientists with to correlate motif connectivity to neuron morpholog
	Slide 35
	Slide 36: Finding Patterns in Clinical Patient Records
	Slide 37: Contact Tracing Networks (COVID, HIV, etc.)
	Slide 38: Population Health Data Analysis
	Slide 39: The Arkouda-Arachne Netflow Data Pipeline
	Slide 40: Back-End Storage and Querying
	Slide 41: Code Example for Python Scripts & Jupyter
	Slide 42: Arachne DI Data Structure [Du et al. 2021]
	Slide 43: Property Graph Results
	Slide 44: Graph Algorithms in Arachne
	Slide 45: Shared-Memory Parallel Breadth-First Search
	Slide 46: Distributed-Memory Parallel Breadth-First Search
	Slide 47: Breadth-First Search Communication Volume Results
	Slide 48: Minimum Search Triangle Counting
	Slide 49: Minimum Search Triangle Counting Operation Count Comparison
	Slide 50: Triangle Counting Results
	Slide 51: Major Contributions
	Slide 52: Publications
	Slide 53: Conclusions & Further Work
	Slide 54
	Slide 55: Chapters
	Slide 56: 85 Contributors
	Slide 57: Bader Research Lab
	Slide 58
	Slide 59
	Slide 60: Open-Source Massive-Scale (Property) Graph Analytics in Python with Arachne+Arkouda powered by Chapel
	Slide 61: Modules of Arachne
	Slide 62: Graphs for Testing
	Slide 63: Arachne Results – Real-World Graphs [Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]
	Slide 64: Arachne Results – Synthetic Graphs [Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]
	Slide 65: Breadth-First Search Improvements
	Slide 66: STING Initiative: Focusing on Globally Significant Grand Challenges
	Slide 67: STINGER – Time Frame
	Slide 68: Hornet (GPU only) – Time Frame
	Slide 69: STING Extensible Representation (STINGER)
	Slide 70: STING Extensible Representation (STINGER)
	Slide 71: STING: High-level architecture
	Slide 72: STINGER as an analysis package
	Slide 73: Why not existing technologies?
	Slide 74: AI Lab (NVAIL) 2019, PI: Bader Building the Future of Graph Analytics with RAPIDS
	Slide 75: 2019 Facebook AI Systems Award: Scalable Graph Learning Algorithms
	Slide 76: Graphs are pervasive in large-scale data analysis
	Slide 77: Characterizing Graph-theoretic computations
	Slide 78: Streaming Analytics move us from reporting the news to predictive analytics
	Slide 79: Graph Data Science
	Slide 80: Massive Streaming Graph Analytics
	Slide 81: Hierarchy of Interesting Analytics
	Slide 82: Modeling Pandemic Spread
	Slide 83: Using Arachne with Arkouda (1/3)
	Slide 84: Using Arachne with Arkouda (2/3)
	Slide 85: Using Arachne with Arkouda (3/3)

