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Today’s talk is dedicated to my uncle

Elliot Norman Ashrey

• B: 23 Sep 1931 in New York City, New York, USA

• D: 26 Apr 2024 in New York City, New York, USA
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2021 IEEE Sidney Fernbach Award
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David Bader cited for the 
development of Linux-based 
massively parallel production 
computers and for pioneering 
contributions to scalable discrete 
parallel algorithms for real-world 
applications.

2022 IEEE Computer Society President Bill Gropp presents 
David Bader with the Sidney Fernbach Award at SC21



1998: Bader Invents the Linux Supercomputer
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Roadrunner

“This effort of yours has enormous historic resonance,”
 – Larry Smarr, Distinguished Professor Emeritus, UC San Diego

Founding Director of NCSA, Founding Director of Calit2

Source: UC San Diego
https://ucsdnews.ucsd.edu/pressrelease/pioneering-scientist-and-innovator-larry-smarr-retires

David A. Bader



Impact: Top500 Supercomputers Running Linux
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“Today, 100% of  the Top 500 supercomputers in the 

world are Linux HPC systems, based on Bader’s technical 
contributions and leadership.  This is one of  the most 
significant technical foundations of  HPC.”
– Steve Wallach is a guest scientist for Los Alamos National Laboratory and 2008 IEEE 
CS Seymour Cray Computer Engineering Award recipient.

Photo credit:  Information Week, 2008
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New Jersey Institute of Technology
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“NJIT Named As One of Nation's 'Best 
Colleges' for 2022, The Princeton Review Says”
 – 6 Sep 2021

“NJIT Climbs the Rankings of U.S. News & 
World Report, A Top 50 Public University”
 – 13 Sep 2021

“Wall Street Journal/College Pulse Ranks 
NJIT No. 2 Public University in the US”
 – 6 Sep 2023



Launched in July 2019, with inaugural director
David A. Bader

(~40 faculty in current centers)

• Big Data Analytics, Systems, and Tools

• Cyberinfrastructure
Center for Big Data

• Practical encryption

• Privacy technologies

• Information Assurance

Cybersecurity 
Research Center

• Medical Informatics

• NIH / National Cancer Institute

The Structural 
Analysis of Biomedical 

Ontologies Center

• Financial Services

• Insurance IndustryFinTech Group

• Real-world technologies

• Industrial partnerships

Machine Learning & 
AI
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• Urban sustainability
• Healthcare analytics
• Trustworthy, Free and Fair Elections
• Insider threat detection
• Utility infrastructure protection
• Cyberattack defense
• Disease outbreak and epidemic monitoring

Solving
real-world 
challenges



Data-Quad
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Graph Data Science: Real-world challenges

All involve exascale streaming graphs:

• Health care → disease spread, detection and prevention of epidemics/pandemics (e.g. SARS, Avian 
flu, H1N1 “swine” flu)

• Massive social networks → understanding communities, intentions, population dynamics, 
pandemic spread, transportation and evacuation

• Intelligence → business analytics, anomaly detection, security, knowledge discovery from massive 
data sets

• Systems Biology → understanding complex life systems, drug design, microbial research, unravel 
the mysteries of the HIV virus; understand life, disease,

• Electric Power Grid → communication, transportation, energy, water, food supply

• Modeling and Simulation → Perform full-scale economic-social-political simulations
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REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME  AT SCALE



Massive Data Analytics: Infrastructure

• The U.S. high-voltage transmission 
grid has >150,000 miles of line.

• Real-time detection of changes and anomalies in the grid is 
a large-scale problem.

• May mitigate impact of widespread blackouts due to 
equipment failure or intentional damage.
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Network Analysis for Intelligence and Surveillance

• [Krebs ’04] Post 9/11 Terrorist Network 
Analysis from public domain information

• Plot masterminds correctly identified from 
interaction patterns: centrality

• A global view of entities is often more 
insightful

• Detect anomalous activities by 
exact/approximate graph matching
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Image Source: http://www.orgnet.com/hijackers.html

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies 

for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47



Massive Data Analytics: Public Health

• CDC/national-scale surveillance of public health

• Cancer genomics and drug design
• Computed Betweenness Centrality of Human Proteome
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Human Genome core protein interactions
Degree vs. Betweenness Centrality
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Mining Twitter for Social Good
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ICPP 2010 Twitter

Image credit: bioethicsinstitute.org

http://twitter.com/


Arachne:
Interactive Property Graph Analytics at Scale

Image Credit: Matias Del Carmen
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https://news.njit.edu/institute-data-science-aims-democratize-supercomputing-nsf-grant

High Performance Algorithms 
for Interactive Data Science at 
Scale
(PI: Bader) 
$2.2M
3/2021 – 6/2024
NSF CCF-2109988



Arkouda: Dedication to Michael H. Merrill
(June 2, 1964 ~ November 8, 2022)
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“Mike was a dedicated civil servant. He was a Computer Scientist 

at the Department of Defense for 34 years and was recognized in 

2022 with a Distinguished Civilian Service Medal. He loved 

computers and technology, especially high performance 

computing. Mike was a problem solver and innovative thinker; he 

was recognized for inspiring and leading numerous large 

projects over the course of his career. He loved to share his 

knowledge and mentored many colleagues over the years—

sometimes calling them his kids, sometimes his minions, but 

always calling them his friend.”
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Productivity + Performance
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ChapelCon – free virtual event 
• June 5th – Tutorial Day
• June 6th – Coding Day
• June 7th – Conference Day

Come code or chat with us!
• GitHub - https://github.com/chapel-lang/chapel
• Gitter - https://gitter.im/chapel-lang/chapel
• Discourse - https://chapel.discourse.group
• StackOverflow - https://stackoverflow.com/questions/tagged/chapel

Follow us on social media
• LinkedIn - https://www.linkedin.com/company/chapel-programming-language
• YouTube - https://www.youtube.com/@ChapelLanguage
• Twitter/X - https://x.com/ChapelLanguage
• Facebook - https://www.facebook.com/ChapelLanguage

Connect with Chapel: the parallel programming language powering Arkouda

REGISTER FOR CHAPELCON

TAKE THE CHAPEL 
COMMUNITY SURVEY
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Arkouda + Arachne Framework

Arkouda
• an existing open-source Python 

framework that allows for array 
and dataframe operations on 
data that is terabytes in size but 
lacks graph processing 
operations.

Arachne
• an open-source extension to 

Arkouda to convert massive-
scale dataframes to graphs with 
high-performance graph kernels 
and property graph capabilities 
while maintaining a NetworkX-
like API for new Python users to 
easily transition to utilizing it.
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Arkouda + Arachne Framework
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Original image source: https://chapel-lang.org/CHIUW/2020/Reus.pdf was modified for this presentation

User
• Arkouda has NumPy- and Panda-like operations on arrays that are parallel and 

distributed (pdarrays).
• Arachne extends Arkouda with graph capabilities.
• This work extends Arachne to store massive-scale graphs. 
• Arachne can be thought of as a wrapper that creates a logical graph.

about:blank
about:blank
about:blank


Transit data from the 
Arkouda data frame
into an Arachne graph

Results after running
community detection
using Arachne

Karate Club Graph Example
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Drosophila Hemibrain Dataset, [Scheffer et al. 2020] 

Drosophila Auditory Circuit [Baker et al. 2022] 

Video: Amy Sterling, FlyWire 

The Connectome Project

Slide credit: Jakob Troidl, Hanspeter Pfister, Jeff Lichtman (Harvard 

University)

• Using Arkouda, we can covert connectome datasets with 
one hundred million rows of JSON objects to distributable 
HDF5 files in under two hours.

• Using Arachne, a graph of this size can be queried in 
seconds to create smaller subgraphs for deeper analysis. 



Dorkenwald et. al 2023 – bioArxiv, Animation by Tyler Sloan26 April 2024 David A. Bader 25



Wiring Diagram of the Brain

Dendrite
Axon
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Spatial Neighborhood Analysis

Video Credit @ Daniel Berger



Using Graph Analytics to Understand the Brain

H01 dataset, [Shapson-Coe et al. 2021] 

1 mm3 of brain tissue

Lichtman Lab, Google Research

Slide credit: Jakob Troidl, Hanspeter Pfister

Motifs are recurrent connectivity 

patterns of neurons in the brain. 
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Image credit: Jakob Troidl, Hanspeter Pfister

Connectome: Requires Exascale Graph Analytics
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~ 1.4 PB image data

~ 57,000 cells

~ 133 Million synapses

Connectome: H01 Dataset

Lichtman Lab, and Google ResearchSlide credit: Jakob Troidl, Hanspeter Pfister
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Slide credit: Jakob Troidl, Hanspeter Pfister

Connectivity motifs
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Slide credit: Jakob Troidl, Hanspeter Pfister

Connectivity motifs
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• Large Networks. ~57,000 nodes and ~130 million 
edges.

• Expensive Computation. Verifying the existence of 
a motif in a larger network is NP-complete.

• Complex 3D structure. Neurons span long volumes 
and form complex branching patterns.

• Algorithms:

• Ullmann (2010) which is a recursive backtracking algorithm 
for solving the subgraph isomorphism problem

• Cordella (2004) another algorithm based on Ullmann's, VF2, 
which improves the refinement process using different 
heuristics and uses significantly less memory.

Motif finding

Image Credit: Amy Sterling @ FlyWire

Slide modified from: Jakob Troidl, Hanspeter Pfister
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Image credit: Jakob Troidl, Hanspeter Pfister

Neuroscientists with to correlate motif 
connectivity to neuron morpholog

26 April 2024 David A. Bader 34



Slide credit: Jakob Troidl, Hanspeter Pfister

26 April 2024 David A. Bader 35



Finding Patterns in Clinical Patient Records
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EHR
Database

Arachne

Arachne

Arachne

Arachne

Data pre-processed by different
tasks on multicore Arachne server

Louis

Esther

Rose

Vertex: Patient
Edge: Shared clinical features

• Utilize community detection algorithms
to identify groups of vertices.

• These communities may correspond to
subpopulations of patients with similar
clinical characteristics or disease
trajectories.

• The adoption of electronic health record (EHR) systems has simultaneously changed clinical practice.
• In data from 2019 and 2021, 96% of general acute care hospitals had adopted EHR*

* Office of the National Coordinator for Health Information Technology.
Adoption of Electronic Health Records by Hospital Service Type 2019-2021,
Health IT Quick Stat #60. April 2022.

David A. Bader



Contact Tracing Networks (COVID, HIV, etc.)

26 April 2024 David A. Bader

Arachne Arachne

ArachneArachne

Current:
• k-truss
• triangle counting
• triangle centrality
Planned:
• re-implementation of bc
• k-core

Usual characteristics of graphs:
• million+ edges and vertices give 

rise to graphs that take more 
than 2GB to store in memory

• storage of in-between steps of 
certain algorithms like Jaccard 
coefficients can exceed 512GB

[Serafino, Monteiro, et al. 2022]

[Cushman, 2020]
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Population Health Data Analysis
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Tabular Data

Arkouda Arkouda

ArkoudaArkouda

Analysis on terabytes of tabular data!

Arachne Arachne

ArachneArachne

build (property) graphs

• run graph kernels
• planned: property graph algorithms

• Arachne works with 
Arkouda as an add-on 
for graph analysis. 

• Data can be taken from 
Arkouda and created 
into graphs by 
specifying columns as 
edge sources and 
destinations.
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The Arkouda-Arachne Netflow Data Pipeline

IPV4_SRC_ADDR L4_SRC_PORT IPV4_DST_ADDR L4_DST_PORT PROTOCOL L7_PROTO IN_BYTES OUT_BYTES IN_PKTS OUT_PKTS TCP_FLAGS FLOW_DURATION_MS Attack

192.168.100.6 52670 192.168.100.1 53 17 5.21 71 126 1 1 0 4294966 Benign

192.168.100.6 49160 192.168.100.149 444 6 0 217753000 199100 4521 4049 24 4176249 Theft

192.168.100.46 3456 192.168.100.5 80 17 0 8508021 8918372 9086 9086 0 4175916 Benign

192.168.100.3 80 192.168.100.55 8080 6 7 8442138 9013406 9086 9086 0 4175916 Benign

SOURCE DESTINATION

IPV4 source addresses and ports 
together make up the source 

vertex of the edge and respectively 
the same columns for the 

destination vertex of the edge.

~

ak.stick()

integer id gen
IPV4_SRC IPV4_SRC_id IPV4_DST IPV4_DST_id

192.168.100.6:52670 3473 192.168.100.1:53 3455

192.168.100.6:49160 4234 192.168.100.149:444 3233
ak.GroupBy()

ak.groupby.broadcast()

To Arachne!
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Back-End Storage and Querying
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• Relationships are stored in sets per edge. 
User specifies a query, and we search the 
edge set in a massively parallel manner, 
probing the sets in amortized constant time.

• Properties are stored split by type and for 
each edge-type pair that exists, we store an 
associative domain where we extract the data 
by simply doing an access edge_prop[col_id].

• All REFS point to arrays that are of the specified column type and that store 
the key-value pairs for column identifier to data.

• Query hits are returned in a Boolean array specified which edges matched.

• All searching is guaranteed to be 
𝑂(𝑚/𝑝) since it only involves 
iterating over the edge set in 
parallel with each processor.26 April 2024 David A. Bader 40



Code Example for Python Scripts & Jupyter
1. import arkouda as ak
2. import arachne as ar
3.  
4. ## Get src and dst from input file.
5. graph = ar.PropGraph()
6. graph.add_edges_from(src,dst)
7.  
8. ## Generate relationships_df and edge_properties_df from input file.
9. graph.add_edge_relationships(relationships_df)
10.graph.add_edge_properties(edge_properties_df)
11. 
12.## User generates relationships_to_find and property query.
13.returned_edges_rel = graph.query_relationships(relationships_to_find)
14.returned_edges_prop = graph.query_edge_properties(“COLUMN”, 67, “>”)
15. 
16.returned_edges = ak.intersect1d(returned_edges_rel, returned_edges_prop)
17.subgraph_src = returned_edges[0]
18.subgraph_dst = returned_edges[1]
19. 
20.subgraph = ar.Graph()
21.subgraph.add_edges_from(subgraph_src, subgraph_dst)
22.bfs = ar.bfs_layers(subgraph)
23.cc = ar.connected_components(subgraph)
24.tris = ar.triangles(subgraph)
25.squares = ar.squares(subgraph)
26.## And more!!!!!

• Line 6 input is generated from input files 
from types such as HDF5, CSV, Parquet, etc. 

• Lines 9 and 10 input is generated from input 
files as well.

• Lines 13 and 14 relationships and properties 
to find are generated by the user.

• Lines 16-19 use Arkouda operations and 
slicing to get the edges that are returned by 
both queries.

• Lines 20 and 21 create a new Arachne 
simple graph with the returned edges of the 
queries.

• Lines 22-25 run some of the other 
algorithms available in Arachne! 

• Arachne can also return arrays composing of 
the edges which can be converted to Python 
lists or NumPy arrays so they can be loaded 
into NetworkX for further analysis!
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Arachne DI Data Structure [Du et al. 2021]

26 April 2024
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• Allows for simple, compact, distributable storage of vertex and edge sets.
• Given an edge index, all vertices that make up that edge are found in constant time, 

avoiding a binary search into SRC (CSR offsets index equivalent).
• MAP allows explicitly storing original vertex labels, returning original graph involves 

creating arrays and place values of SRC[MAP] and DST[MAP] into new arrays.

L1

L2

[𝑆𝐸𝐺[𝑢]. . 𝑆𝐸𝐺[𝑢 + 1] − 1]
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Property Graph Results
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• Experiments conducted on a cluster where each compute node was 
composed of 128 cores (64 per AMD EPYC 7713 CPUs), 1TB DDR4 RAM, 
and an Infiniband HDR 200 GB/s node interconnect. 
• At time of results, some nodes had performance issues, hence the 

weird elbows. 
• Fifty random relationships were made and randomly assigned to edge 

indices meaning some edges could be picked more than once and 
some none at all.

• Querying involved searching for the edges that included three of the fifty 
relationships, each list performed a set and operation with the search 
space.

𝑛 𝑚

graph5 864,648,454 1,000,000,000

graph6 2,161,664,289 2,500,000,000

graph7 1,408,892,291 5,000,000,000

Takeaway: Building a graph of five billion edges takes under 60 seconds, 
running ETL to insert relationships takes under 4 minutes, and querying it 
under 10 seconds. 
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Graph Algorithms in Arachne

• Breadth-first search (BFS) [Du, Alvarado Rodriguez, Bader 2021]

Returns an array of size 𝑛 with how many hops away some vertex 𝑣 is from an initial vertex 𝑢.

• Connected components
Returns an array of size 𝑛 where all vertices who belong to the same component have the same value 𝑥. The value of 𝑥 is the 
label of the largest vertex in the component. 

• Triangle counting [Du, Alvarado Rodriguez, Patchett, Bader 2021]

Returns the number of triangles in a graph.

• Truss Analytics [Du, Patchett, Bader 2021][Du, Patchett, Alvarado Rodriguez, Li, Bader 2022]

K-truss returns every edge in the truss where each edge must be a part of 𝑘 − 2 triangles that are made up of nodes in that 
truss. Max truss returns the maximum 𝑘. Truss decomposition returns the maximum 𝑘 for each edge.

• Square counting [Burkhardt, Harris 2023] 
Returns the number of four-cycles in the graph.

• Triangle centrality [Patchett, Du, Bader 2022][Patchett, 2022]

Returns an array of size 𝑛 with the proportion of triangles centered at a vertex 𝑣.

• Subgraph isomorphism [Dindoost, Bader, 2023, in progress]

Finds instances of a pattern in a larger graph.
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Shared-Memory Parallel Breadth-First Search
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Distributed-Memory Parallel Breadth-First Search
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Assume our edge list is split down the middle, then the neighborhood of some vertices will live on one 
compute node while the rest live on another compute node.

Any cross-color expansions are writes 
across the network; fine-grained writes 
hold up execution, large coarse-grained 

writes are better.
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Breadth-First Search Communication Volume Results
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delaunayn20 get put

locale di di-norev di-agg-ls di di-norev di-agg-ls

0 15672640 7873842 639827 5629422 2749193 138070

1 15834332 7939017 687156 1952226 1016946 127936

2 15715554 7722659 226754 1942839 962031 45217

3 15817879 7723971 226880 1951313 962201 45060

4 15964559 7724880 226691 1961552 962199 51217

5 15739226 7726504 230024 1940688 962439 52714

6 15569450 7727678 229096 1925536 962680 51977

7 15341933 7736094 225083 1904757 963418 48413

di: 84 seconds
di-agg-ls: 3.36 seconmds

delaunayn20 is a graph with 3 million edges and a large diameter

Takeaway: Aggregating writes drastically reduces communication volumes, improving 
performance, all done easily through Chapel by adapting aggregators for different uses.
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Minimum Search Triangle Counting

1. Given an edge (𝑢, 𝑣)  we 
assume that |𝐴𝑑𝑗(𝑢)|  ≤
 |𝐴𝑑𝑗(𝑣)|. 

2. Then, for ∀𝑤 ∈ 𝐴𝑑𝑗(𝑢) 
we spawn |𝐴𝑑𝑗 𝑢 | - 1 
parallel threads to check if 
we can form a complete 
triangle with 𝑢, 𝑣, 𝑤 .

3. If 𝐴𝑑𝑗 𝑤 < |𝐴𝑑𝑗(𝑣)| 
we will check if 𝑣 ∈
𝐴𝑑𝑗(𝑤), else, we check if 
𝑤 ∈ 𝐴𝑑𝑗(𝑣).

26 April 2024

u vw1

w2 w3

Thread w1:  search for 𝑤1 in 𝐴𝑑𝑗(𝑣), no match, kill. 

Thread w2:  search for 𝑣 in 𝐴𝑑𝑗(𝑤2), no match, kill.

Thread w3:  search for 𝑣 in 𝐴𝑑𝑗(𝑤3), match! Increment count.

Adj(x) Value

Adj(u) 4

Adj(v) 6

Adj(w1) 7

Adj(w2) 2

Adj(w3) 2
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Minimum Search Triangle Counting Operation Count 
Comparison

• Assume |𝐴𝑑𝑗𝑢| < 𝐴𝑑𝑗𝑣  and we spawn threads for every 𝑤 ∈ |𝐴𝑑𝑗𝑢|

• Minimum search: 𝑤∈𝐴𝑑𝑗𝑢

max log2(min(|𝐴𝑑𝑗𝑤|, |𝐴𝑑𝑗𝑣|))

• List Intersection: log2(|𝐴𝑑𝑗𝑣|)

• Say we have the following information for our vertices: 

• 𝐴𝑑𝑗𝑢 =  4     and       |𝐴𝑑𝑗𝑣| = 1024 

• For every 𝑤 in 𝐴𝑑𝑗𝑢, 𝐴𝑑𝑗𝑤 ≤  8

• List intersection: 4 threads amounting to log2 1024 = 10 operations each.

• Minimum search: 4 threads amounting to log2 8 = 3 operations each. 
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Triangle Counting Results

26 April 2024

• Our method outperforms with the Conte 
method with a highest speedup of 385.8 and 
an average speedup of 128.

Takeaway: Truss decomposition with 
minimum search triangle counting 
outperforms a C++ method coded with 
OpenMP, with SSE-Acceleration, binary 
searching on adjacency list, and no atomic 
operations. 

Graphs used were a variety of real-world graphs available for view in paper.
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Major Contributions

• Arachne, a large-scale graph analysis framework, extends Arkouda for 
productive graph analysis. Arachne is built on a novel sparse graph 
data structure.

• Arachne leverages productivity through Python with high 
performance backed by Chapel.

• Arachne, Arkouda, Chapel are all open-source.
• https://github.com/Bears-R-Us/arkouda-njit

• https://github.com/Bears-R-Us/arkouda

• https://github.com/chapel-lang/chapel

• Experimental results on real-world and synthetic graphs demonstrate 
that Arachne works for graphs with billions of edges.
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Publications

• Oliver Alvarado Rodriguez, Zhihui Du, Joseph Patchett, Fuhuan Li, David Bader (2022). Arachne: An 
Arkouda Package for Large-Scale Graph Analytics. IEEE HPEC.

• Oliver Alvarado Rodriguez, Fernando Vera Buschmann, Zhihui Du, David Bader (2023). Property Graphs in 
Arachne. IEEE HPEC.

• Soroush Vahidi, Baruch Schieber, Zhihui Du, David Bader (2023). Parallel Longest Common SubSequence 
Analysis In Chapel. IEEE HPEC.

• Joseph Patchett, Zhihui Du, Fuhuan Li, David Bader (2022). Triangle Centrality in Arkouda. IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, David Bader (2021). Large Scale String Analytics In Arkouda. IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, David Bader (2021). Enabling Exploratory Large Scale Graph Analytics 
through Arkouda. IEEE HPEC.

• Joseph Patchett, Zhihui Du, David Bader (2021). K-Truss Implementation in Arkouda (Extended Abstract). 
IEEE HPEC.

• Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, David Bader (2021). Interactive Graph Stream 
Analytics in Arkouda. Algorithms.

• Zhihui Du, Oliver Alvarado Rodriguez, David A. Bader, Michael Merrill, William Reus (2021). Exploratory Large 
Scale Graph Analytics in Arkouda. CHIUW.
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Conclusions & Further Work

• We can design and develop high performance graph analysis 
algorithms using Arkouda/Chapel quickly and efficiently.

• We plan to work on optimizing all current methods to work as 
efficiently as possible in single locale and multi locale environments. 

• We plan to implement new novel algorithms such as stringology, a 
communication-efficient triangle counting, large-scale community 
detection, and machine learning. 
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Chapters
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A Work-Efficient Parallel Breadth-First Search Algorithm (or How to Cope With 
the Nondeterminism of Reducers
Charles E. Leiserson and Tao B. Schardl
Multi-Objective Shortest Paths
Stephan Erb, Moritz Kobitzsch, Lawrence Mandow , and Peter Sanders

Algorithms: Structure
Multicore Algorithms for Graph Connectivity Problems
George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri
Distributed Memory Parallel Algorithms for Massive Graphs
Maksudul Alam, Shaikh Arifuzzaman, Hasanuzzaman Bhuiyan, Maleq Khan, V.S. 
Anil Kumar, and Madhav Marathe
Efficient Multi-core Algorithms for Computing Spanning Forests and Connected 
Components
Fredrik Manne, Md. Mostofa Ali Patwary
Massive-Scale Distributed Triangle Computation and Applications
Geoffrey Sanders, Roger Pearce, Benjamin W. Priest, Trevor Steil

Algorithms and Applications 
Computing Top-k Closeness Centrality in Fully-dynamic Graphs
Eugenio Angriman, Patrick Bisenius, Elisabetta Bergamini, Henning Meyerhenke
Ordering Heuristics for Parallel Graph Coloring
William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson
Partitioning Trillion Edge Graphs
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Jessica Shi and Julian Shun

Models
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Meyer, Ilya Safro, Peter Sanders, and Christian Schulz
Computational Models for Cascades in Massive Graphs: How to Spread a 
Rumor in Parallel
Ajitesh Srivastava, Charalampos Chelmis, Viktor K. Prasanna
Executing Dynamic Data-Graph Computations Deterministically Using 
Chromatic Scheduling
Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson

Frameworks and Software
Graph Data Science Using Neo4j
Amy E. Hodler, Mark Needham
The Parallel Boost Graph Library 2.0
Nicholas Edmonds and Andrew Lumsdaine
RAPIDS cuGraph
Alex Fender, Bradley Rees, Joe Eaton
A Cloud-based approach to Big Graphs
Paul Burkhardt and Christopher A. Waring
Introduction to GraphBLAS
Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluc, Franz Franchetti, John 
Gilbert, Dylan Hutchinson, Manoj Kumar, Andrew Lumsdaine, Henning 
Meyerhenke, Scott McMillian, Jose Moreira, John D. Owens, Carl Yang, Marcin 
Zalewski, and Timothy G. Mattson
Graphulo: Linear Algebra Graph Kernels
Vijay Gadepally, Jake Bolewski, Daniel Hook, Shana Hutchison, Benjamin A 
Miller, Jeremy Kepner
Interactive Graph Analytics at Scale in Arkouda
Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A. Bader
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Community Detection
• In complex networks, nodes

cluster and form relatively dense
groups – often called communities.

• Community detection is a
fundamental graph algorithm with
practical applications like fraud
detection in Fintech and identity
and access management in social
networks

Vertices are Facebook users and edges represent Facebook
friendships. Communities, represented by different colors.

Image credit: Fortunato, S., Newman, M.E.J. 20 years of 
network community detection. Nat. Phys. 18, 848–850 
(2022).
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Open-Source Massive-Scale (Property) Graph Analytics in Python with Arachne+Arkouda  powered by Chapel

query_node_labels()

query_edge_relationships()

query_node_properties()

query_edge_properties()

Load in terabytes-sized CSVs, HDF5s, 
Parquets, etc. 

Convert tabular data to graph format with all 
data closely maintained with vertex and edges.

Extract (multiple) 
subgraphs by querying on 

attributes.

bfs_layers()

subgraph_isomorphism()

square_counting()

and more…..!

Perform further analysis! 
Convert to NetworkX (if 

small enough).

1. import arkouda as ak
2. import arachne as ar
3.  
4. ## Get src and dst from input file.
5.  
6. graph = ar.PropGraph()
7. graph.add_edges_from(src,dst)
8.  
9. ## Generate label_df and relationships_df from input file.
10.  
11. graph.add_node_labels(label_df)
12. graph.add_edge_relationships(relationships_df)
13.  
14. ## User generates labels_to_find and relationships_to_find.
15. returned_nodes = graph.query_labels(labels_to_find)
16. returned_edges = graph.query_relationships(relationships_to_find)
17.  
18. subgraph_src = ak.in1d(returned_edges[0], returned_nodes)
19. subgraph_dst = ak.in1d(returned_edges[1], returned_nodes)
20.  
21. kept_edges = subgraph_src & subgraph_dst
22.  
23. subgraph_src = subgraph_src[kept_edges]
24. subgraph_dst = subgraph_dst[kept_edges]
25.  
26. subgraph = ar.Graph()
27. subgraph.add_edges_from(subgraph_src, subgraph_dst)
28. ## Run some new operations on subgraph! Reference our HPEC22 paper ☺

Easily usable through NetworkX-like API. Data exchangeable between 
NetworkX, NumPy, SciPy, etc.

MPP, SMP, Cluster, Laptop, etc.

Meta

Meta

Meta Distributed Strings

Distributed Graphs

Distributed Arrays

Runs on any hardware, data stays in the back-end, 
user calls API through Pythpm: powerful and 

productive. Server can run on supercomputers, 
Python API usable locally.

Kernel Time(s)

Loading graph into memory 5.4

Node label ETL and storage 1.87

Edge label ETL and storage 80.29

Node querying 1.01

Edge querying 1.39

Subgraph building 1.22

Breadth-first search 2.45

Performance analyzing a 10-billion edge graph on 16 compute nodes with 128 
cores each and 1TB memory. Subgraph generated contained 1-million edges. 
BFS executed from the 5 highest degree vertices and the average was taken.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit
PUBLICATIONS: https://davidbader.net/publication/ filter with “Arkouda” or “Arachne”
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Modules of Arachne
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graph_file_read()

graph_file_read_mtx()

stream_file_read()

graph_file_preprocessing()

graph_bfs()

graph_cc()

graph_tri_cnt()

graph_tri_ctr()

stream_tri_cnt()

graph_truss()

graph_jaccard()

benchmarks

graph_query()

file
DI

pdarray | integer

edge | vertex arrays

timings across trials, correctness
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Graphs for Testing
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Real-world

Synthetic

delaunayn10 - delaunayn19

few vertices, outperforms 
some algorithms less 
edges but more vertices.

values found by our algorithms

Experiments were 

conducted on a high-

performance server

with 2 x Intel Xeon E5-

2650 v3 @ 2.30GHz CPUs 

with 10

cores per CPU and a RAM 

capacity of 512GB.
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Arachne Results – Real-World Graphs 
[Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]
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Key Points:
1. Graph construction is time consuming 

but once the graph is built into memory 
all the algorithms can use it in a highly 
efficient way. 

2. The structural properties of graphs can 
significantly affect execution times even 
for the same algorithm. 
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Arachne Results – Synthetic Graphs 
[Alvarado Rodriguez, Du, Patchett, Li, Bader 2022]
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Key Points:
1. Synthetic graphs demonstrate the 

scalability of our algorithms as the 
number of edges  in a graph increase. 

2. The memory requirements for each 
algorithm differ, hence the Jaccard 
coefficient algorithm encounters out of 
memory errors when the graph gets too 

big. Jaccard requires
𝑁×𝑁

2
 memory and

𝑁

𝑃

2
×

𝑀

𝑃
 calculations. 
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Breadth-First Search Improvements
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Graph num_vertices num_edges di (original) di-norev speedup

as-caida 26,475 53,381 2.22 1.22 1.82

delaunayn10 2,048 3,056 0.11 0.05 2.11

delaunayn20 1,058,576 3,145,686 90.49 47.61 1.90

Execution time in seconds on eight locales with 512GB memory and twenty processing units each.

Performed twice in di(original) 
while iterating over the edges in 
(SRC,DST) and in (SRCr, DSTr) to 

get the full neighborhoods which 
can lead to twice the number of 

remote reads and writes!

• About 50% improvement in number of 
PUTs and GETs with di-norev by 
including full neighborhoods of each 
vertex contiguously in one array instead 
of maintaining reversed edges.

• No change in storage volume, 2m edges 
still stored. 

• Similar changes could optimize the rest 
of our graph kernels.



STING Initiative: Focusing on
Globally Significant Grand Challenges

• Many globally-significant grand challenges can be modeled by Spatio-Temporal 
Interaction Networks and Graphs (or “STING”).  

• Emerging real-world graph problems include:
• Detecting community structure in large social networks 

• Defending the nation against cyber-based attacks

• Discovering insider threats (e.g. Ft. Hood shooter, WikiLeaks)

• Improving the resilience of the electric power grid

• Detecting and preventing disease in human populations.  

• Unlike traditional applications in computational science and engineering, solving these 
problems at scale often raises new research challenges due to: 
• Sparsity and the lack of locality in the massive data

• Design of parallel algorithms for massive, streaming data analytics

• The need for new exascale supercomputers that are energy-efficient, resilient, and easy-to-program
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STINGER – Time Frame
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Streaming graph need 
arises (over a decade 
ago)

Pre-1999

STINGER is officially 
proposed. May 2009

2009

Structure tracking of 
streaming social 
networks. Apr 2011

2011

High Performance Data 
Structure for Streaming 
Graphs. Sep 2012
HPEC BEST PAPER AWARD 

Dynamic betweenness 
centrality algorithm. 
Sep 2012

2012

Streaming connected 
component, Dec 2013

2013

Performance evaluation 
of open-source graph 
data-bases. Feb 2014

2014

First prototype, clustering 
coefficients. Apr 2010

2010

Community detection in 
dynamic networks.  Sep 
2015

2015

PageRank for Streaming 
Graphs. May 2016

2016



Hornet (GPU only) – Time Frame
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2016

cuSTINGER for the GPU 
is released

2016

Quickly finding 
KTrusses using dynamic 
graph algorithm

Dynamic Katz Centrality

2018

Faster triangle counting 
with Logarithm Radix 
Binning

Finding maximal K-core 
and K-core 
decomposition

Dynamic graph triangle 
counting – using two 
graphs

2017

Anti-Section Transitive 
Closure

2020

Multi-GPU Breadth First 
Search

Hornet is integrated with 
cuGraph

2019



STING Extensible Representation (STINGER)

• Enable algorithm designers to implement dynamic graph 
algorithms with ease.

• Portable semantics for various platforms

• Good performance for all types of graph problems and algorithms 
- static and dynamic.

• Assumes globally addressable memory access

• Support multiple, parallel readers and a single writer
• One server manages the graph data structures
• Multiple analytics run in background with read-only permissions. 
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STING Extensible Representation (STINGER)
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• Semi-dense edge list blocks 
with free space

• Compactly stores 
timestamps, types, weights

• Maps from application IDs to 
storage IDs

• Deletion by negating IDs, 
separate compaction



STING: High-level architecture
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◮ Server: Graph storage, kernel orchestration

◮ OpenMP + sufficiently POSIX-ish

◮ Multiple processes for resilience



STINGER as an analysis package
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Streaming edge insertions and deletions: 
New edge insertions, updates, and deletions in batches or individually. 

Optimized to update at rates of over 3 million edges per second on graphs 

of one billion edges.

Streaming clustering coefficients: 
Tracks the local and global clustering coefficients of a graph.

Streaming connected components: 
Real time tracking of the connected components.

Streaming Betweenness Centrality: 
Find the key points within information flows and structural vulnerabilities.  

Streaming community detection: 
Track and update the community structures within the graph as they 

change.

http://www.stingergraph.com/

Anything that a static graph package  
can do (and a whole lot more):

Parallel agglomerative clustering: 
Find clusters that are optimized for a user-
defined edge scoring function. 

K-core Extraction: 
Extract additional communities and filter noisy 
high-degree vertices.

Classic breadth-first search: 
Performs a parallel breadth-first search of the 
graph starting at a given source vertex to find 
shortest paths.

Parallel connected components: 
Finds the connected components in a static 
network.

AND…



Why not existing technologies?
• Traditional SQL databases

• Not structured to do any meaningful graph queries with any level of efficiency or 
timeliness

• Graph databases - mostly on-disk
• Distributed disk can keep up with storing / indexing, but is simply too slow at random 

graph access to process on as the graph updates

• Hadoop and HDFS-based projects
• Not really the right programming model for many structural queries over the entire 

graph, random access performance is poor

• Smaller graph libraries, processing tools
• Can't scale, can't process dynamic graphs, frequently leads to impossible visualization 

attempts
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AI Lab (NVAIL) 2019, PI: Bader
Building the Future of Graph Analytics with RAPIDS
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“Prof. David Bader and his lab … are leaders in high performance computing algorithms, with a focus on 
both static and dynamic graph algorithms. With Prof. Bader and his lab, we will work on the design and 
implementation of scalable graph algorithms and graph primitives for integrating into cuGRAPH, 
leveraging their Hornet framework.” – Sandra Skaff, NVIDIA, April 2019



2019 Facebook AI Systems Award:
Scalable Graph Learning Algorithms
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Deep Learning (DL) has significantly impacted the tasks of speech recognition, 
image classification, object detection and recommendation
Complex tasks: self-driving, super-human image recognition, recommendation 
engines, machine natural language translation, content selection, learning 
patterns of life
Techniques used in DL: convolutional neural networks (CNNs) → applicable for 
Euclidean data types and does not apply for Graphs
Solution: embedding graphs into a lower dimensional Euclidean space, 
generating a regular structure

1. developing a scalable high performance graph learning system based on 
GCNs algorithms, like GraphSage, by improving the workflow on shared-
memory NUMA machines balancing computation between threads, 
optimizing data movement, and improving memory locality 

2. investigate graph learning algorithm: specific decompositions and develop 
new strategies for graph learning that can inherently scale well while 
maintaining high accuracy

• Explore decomposition results from graph theory, for example forbidden graphs 
and the Embedding Lemma and determine how to apply such results into the 
field of graph learning 

• Investigate whether these decompositions could assist in a dynamic graph 
setting

Project Aim: Develop scalable graph learning algorithms and implementations 
that open the door for learned graph models on massive graphs

Image: http://snap.stanford.edu/graphsage/
Inductive Representation Learning on Large Graphs. W.L. Hamil ton, R. Ying, and J.  Leskovec arXiv:1706.02216 [cs.SI], 2017.

http://snap.stanford.edu/graphsage/


Graphs are pervasive in large-scale data analysis

• Sources of massive data: peta- and exa-scale simulations, experimental devices, the Internet, 
scientific applications.

• New challenges for analysis: data sizes, heterogeneity, uncertainty, data quality.
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Astrophysics 
Problem: Outlier detection. 
Challenges: massive datasets, 

temporal variations.
Graph problems: clustering, 
matching. 

Bioinformatics
Problem: Identifying drug target 
proteins.

Challenges: Data heterogeneity, 
quality.
Graph problems: centrality, 

clustering.

Social Informatics
Problem: Discover emergent 
communities, model spread of 

information.
Challenges: new analytics routines, 
uncertainty in data.

Graph problems: clustering, 
shortest paths, flows. 

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg 

(2,3) www.visualComplexity.com

http://physics.nmt.edu/images/astro/hst_starfield.jpg


Characterizing Graph-theoretic computations
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• graph sparsity (m/n ratio)

• static/dynamic nature

• weighted/unweighted, weight 

distribution

• vertex degree distribution

• directed/undirected

• simple/multi/hyper graph

• problem size

• granularity of computation at 

nodes/edges

• domain-specific characteristics

• paths

• clusters

• partitions

• matchings

• patterns

• orderings

Input: Graph 

abstraction

Problem: Find ***

Factors that influence 

choice of algorithmGraph 

algorithms

• traversal

• shortest path 

algorithms

• flow algorithms

• spanning tree 

algorithms

• topological sort

  …..

Graph problems are often recast as sparse 

linear algebra (e.g., partitioning) or linear 

programming (e.g., matching) computations 



Streaming Analytics move us from reporting the news to predictive analytics

Traditional HPC

• Great for “static” data sets.

• Massive scalability at the cost of 
programmability.

• Great for dense problems.
• Sparse problems typically 

underutilize the system.

Streaming Analytics

• Requires specialized analytics and 
data structures.

• Rapidly changing data.

• Low data re-usage.
• Focused on memory operations and 

not FLOPS. 
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Graph Data Science

• Are there new graph techniques? Do they scale? Can the computational systems 
(algorithms, machines) handle massive networks with billions to trillions of items?  Can 
the techniques tolerate noisy data, massive data, streaming data, etc. …

• Communities may overlap, exhibit different properties and sizes, and be 
driven by different models

• Detect communities (static or emerging)

• Identify important individuals

• Detect anomalous behavior

• Given a community, find a representative member of the community

• Given a set of individuals, find the best community that includes them

• Find congestion, weak points, anomalies, surprises, …
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Massive Streaming Graph Analytics
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(A, B, t1,  poke)

(A, C, t2, msg)

(A, D, t3, view wall)

(A, D, t4, post)

(B, A, t2, poke)

(B, A, t3, view wall)

(B, A, t4, msg)

Analysts

Q1?
Q2?Q3?



Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?
What are the important vertices at time T?

Use persistent queries to monitor properties.
Does the path between s and t shorten drastically?
Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.
Does a small community stay independent rather than merge with 
larger groups?
When does a vertex jump between communities?

New types of queries, new challenges...
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Modeling Pandemic Spread

82

[Alguliyev, Aliguliyev, Yusifov, 2020]

• The graph represents the contact patterns
between individuals in a population.

• Various graph algorithms can be used to
simulate the spread of a pandemic.
• Centrality measures such as

eigenvector centrality can identify the
most important vertices in the
network

• Visualization of the spread of the
pandemic can be created to check the
effects of intervention and control
strategies.

• The dataset can be a million or even a 
trillion vertices.

R. Alguliyev, R. Alguliyev, and F. Yusifov, “Graph
modelling for tracking the COVID-19 pandemic spread.”
Infectious disease modelling, 6, 2021: 112-122
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max degree! (also 8, but 6 is the first occurrence)
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