Arkouda (apkouvoda):

Interactive Supercomputing for Data Analytics
Made Possible by Chapel

Michael Merrill

SIAM PP-22
MS34: Achieving Productivity at Scale with Chapel in User Applications
February 24, 2022

Outline

* A quick teaser example of Arkouda to engage people.

* Motivation for something like Arkouda

* Why Chapel?

* Hero result "big sort" graph and why it is important to us.

Arkouda Startup

1) In terminal:

> arkouda_server —nl 96

server listening on hostname:port

2) In Jupyter: —

import arkouda as ak
ak.connect(hostname, port)

4.2.5
psp = tTcp://nid00104:5555
connected to tcp://nid00104:5555

Toy Workflow

In [9]: A = ak.randint(0, 10, 10**11)
B = ak.randint (0, 10, 10**11)
C=A*B MPP
hist = ak.histogram(C, 20) (Arkouda)
Cmax = C.max()
Cmin = C.min()

executed In 3.96s, finished 13:45:28 2019-08-12

In [10]: bins = np.linspace(Cmin, Cmax, 20)
= plt.bar(bins, hist.to ndarray(), width=(Cmax-Cmin)/20)

executed in 193ms, finished 13:45:28 2019-09-12 Logi n Node

1610 (Python/NumPy)

141

12 1

10 1

038 1

06 1

04 -

0.2 1

00

More complex Arkouda example

#!/usr/bin/env python3 # src and dst pdarrays hold the edge Llist
import arkouda as ak # seeds pdarray with starting vertices/seeds
def bfs{src,dst,seeds,printLayers=False):
generate rmat graph edge-list as two pdarrays # holds vertices in the current layer of the bfs
def gen_rmat_edges{lgNv, Ne_per_v, p, perm=False): Z = ak.unique(seeds)
number of vertices # holds the visited vertices
Ny = 2sklghv V = ak.unique(Z) # holds vertices in Z to start with

frontiers
F = [Z]

number of edges
MNe = Ne_per_wv * Nv

probabilities R-MAT [while Z.size != @:

a=p if printLayers:

b= (1.0 - a)/ 3.0 Graph print("Z.size = ",Z.size," Z = ",Z)

c=b fZv = ak.inld(src,Z) # find src vertex edges

d="b ak.unique(dst[fZv]) # compress out dst vertices to match and make them unigque

Generator g

init edge arrays ak.setdiffld(W,V) # subtract out vertices already visited

ii = ak.ones(Ne,dtype=ak. int64) V = ak.unionld(V,Z) # union current frontier into vertices already visited
ji = ak.ones(Ne,dtype=ak.int64) F.append({Z)
guantites to use in edge generation Lloop return (F,V)
ab = a+b
c_norm = ¢ / (c + d)] # src pdarray holding source vertices
a_norm=a / {a + b) # dst pdarray holding destination vertices
generate edges # printCComp flag to print the connected components as they are found
for ib in range(1, lghv): # edges needs to be symmetric/undirected
ii_bit = (ak.randint(@,1,Ne,dtype=ak.float64) > ab) def conn_comp(src, dst, printCComp=False, printlLayers=False):
ji_bit = (ak.randint(@,1,Ne,dtype=ak.float64) = (c_norm * ii_bit + a_norm * (~ ii bit))) unvisited = ak.unigue(src)
ii = ii + ((2#=k(ib-1}) * ii_bit) if printCComp: print("unvisited size = ", unvisited.size, unvisited
i3 = 31 + ((2#=k{ib-1)}) * jj_bit) components = []
su:rl“% aL{]based on ii and jj]asing coargsort whi?e unvisited.size = @: Connected
all edges should be sorted based on both vertices of the edge # use lowest numbered vertex as representative vertex
iv = ak.coargsort({ii,jj)) rep_vertex = unvisited[@] Components
permute into sorted order # bfs from rep_vertex
ii = iiliv] # permute first vertex into sorted order layers,visited = bfs(src,dst,ak.array([rep_vertex]),printLayers)
Jj = jjliv] # permute second vertex into sorted order # add verticies in component to list of components
to premute/rename vertices components.append(visited)
if perm: # subtract out visited from unvisited vertices
generate permutation for new wvertex numbers{names) unvisited = ak.setdiffld{unvisited,visited)
ir = ak.argsort(ak.randint(®,1,Nv,dtype=ak. float6d)) if printCComp: print(" wisited size = ", visited.size, visited)
renumber(rename) vertices if printCComp: print(“unvisited size = ", unvisited.size, unvisited)
ii = ir[ii] # rename first vertex return components
i1 = ir[jjl # rename second vertex
ak.connect(server="1localhost", port=5555)
maybe: remove edges which are self-loops?77 (ii,ji) = gen_rmat_edges (2@, 2, 0.03, perm=True)
src = ak.concatenate((ii,jj))# make graph undirected/symmetric
return pair of pdarrays dst = ak.concatenate((jj,11))# graph needs to undirected for connected components to work
return (ii,jj) components = conn_comp{src, dst, printCComp=False, printlLayers=False) # find components
print("number of components = ", len(components))
print("representative vertices = ",[c[@] for ¢ in components])
ak.shutdown()

-:—— connected_components.py Top (20,24) (Python) —:—— connected_components.py Bot (58,0) (Python)

Why Arkouda?

* Born out of the need to fill some gaps
* We needed agility at scale.
* Huge data set exploration and characterization.

 What was needed that didn’t exist?

* Scalability and performance available from Python
because Python is the “new bash” for data science.

* Speed/Ease of development directed by the needs and
implemented by a very small team.

Chapel Is Unique

Why Chapel? -- How did Chapel benefit Arkouda development?

® Productivity
® Parallelism and locality are first-class citizens
®* Multi-resolution parallelism in code — high level for most of the
code and lower level when you need it for performance
®* Small Development team originally two people
®* Arkouda server = ~18k lines of code
®* Performance
* Single-threaded comparable to NumPy (C/Fortran)
® Parallel, distributed comparable to C/OpenMP/MPI
® Portability
®* Develop on laptop, run on supercomputer

Arkouda Sort/GroupBy

* ak.GroupBy! Underlies almost all analyses we conduct
* A lexicographical sort underpins the GroupBy

* We currently use a Least Significant Digit Radix Sort algorithm which
is data distribution agnostic.

e Our Radix Sort is ~100 lines of Chapel
e Uses Chapel’s multi-resolution parallel approach

* Incremental optimization by “lowering” loops along with the
creation/addition of aggregation capability

* Great scalability!

https://github.com/Bears-R-Us/arkouda/blob/80d9c23ae40f0557513837380272c662efc4b346/src/RadixSortLSD.chpl#L155-L255

GiB/s

500
450
400
350
300
250
200
150
100

50

Arkouda Argsort Performance
HPE Apollo (HDR-100 IB)

73TB sorted
on
73K cores!

128 256
Locales (x 128 cores / locale)

512 576

Arkouda’s vision

Load Terabytes of data...
... into a familiar, interactive Ul ...

.. Where standard data science operations ...
.. execute within the human thought loop ...
.. and interoperate with optimized libraries.

Arkouda: an HPC shell for data science
e Chapel backend (server)

* Jupyter/Python frontend (client)

* NumPy- and Pandas-like API

10

A New (Old) Perspective on HPC

Not Just This But Also This

11

Thanks! Q\/\/{)

* Dr. William (Bill) Reus (primary collaborator)
* Arkouda Team

apkovda
massive scale
data science

* Chapel Team

* Arkouda on GitHub https://github.com/Bears-R-Us/arkouda

