February 12, 2020

Y chapel_info@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

CRAY

a Hewlett Packard Enterprise company

Defining our Terms SR

“Data Science”: human-in-the-loop data analysis using familiar interfaces
“Familiar Interfaces:” NumPy / Pandas operations

“Massive Scales:” dozens of terabytes of data (e.g., 30-90 TB)

“Interactive Rates:” operations complete in seconds to a few minutes

© 2020 Cray, a Hewlett Packard Enterprise company @

Motivation for Arkouda cRas

a Hewlett Packard Enterpris mpany

Motivation: Say you've got...

..a bunch of Python programmers
..HPC-scale problems to solve

. aCCGSS to H PC Svstems - i , https: //ww CScs. ch/comut(a.rélplz alnt/

How will you leverage your Python programmers to get your work done? @::‘.;1

=

© 2020 Cray, a Hewlett Packard Enterprise company Q 3

https://www.cscs.ch/computers/piz-daint/

What is Chapel? e

Chapel: A modern parallel programming language
» portable & scalable

» open-source & collaborative

Goals:

» Support general parallel programming

» Make parallel programming at scale far more productive

3
© 2020 Cray, a Hewlett Packard Enterprise company @ 4

Data Parallelism in Chapel, by example e

dataParallel.chpl

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n} dmapped Cyclic(startIdx = (1,1)),
A: [D] real;

forall (i, j) in D do
Afi,j] =1 + (3 - 0.5)/n;

writeln (A); prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.7 1.3 1.5 1.7 1.9

2.1
3.1
4.1
5.1

2 2.7 2.9
3. 3.7 3.9
4 4.7 4.9
5 5.7 5.9

Recent Notable Chapel Use Cases Smas

3D Computational Fluid
Dynamics

Simon Bourgault-Cété,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

Chapel Hypergraph S,
%/ Library (CHGL)
Louis Jenkins, Marcin Arkouda: NumPy at Scale

Pacific Zalewski, et al. Mike Merrill, Bill Reus, et al.
Northwest pPNNL US DOD 5

NATIONAL LABORATORY

Simulation of Ultralight

5{- ale Dark Matter
Nikhil Padmanabhan et al.

Yale University

© 2020 Cray, a Hewlett Packard Enterprise company Q(_; 6

Data Science Needs
Interactive Supercomputing

Dr. William Reus

US Department of Defense

“Can” Does Not Imply “Should”

Data Science Data Technology

Exploratory Data
Analysis
Advancing human
understanding by
testing hypotheses

against data

Artificial Intelligence
Delegating human
decisions to machines

Analytics

presented at CLSAC 2019, October 9, 2019

Science is critical:

* Technology is not
always the right goal

* Tech. without science
will fail

And yet...

* Technology is what
everyone talks about

* Large-scale tools
favor tech. over
science

(Data) Science is Interactive

“Hypothesis Testing”

Inspect

Fil
Iiter N \N

presente d at CLSAC 2019, October 9, 2019

Implications for Computing

- = ie= -

Stay in memory

Compute in small, reversible steps

Enable introspection (code and state) So, basically Python...
Use other people’s code

Avoid boilerplate

.. Lthinkin
Maximize g ...but fast
Lthinking ttcoding ttwaiting

presented at CLSAC 2019, October 9, 2019

Interactive Computational Ladder
* Goal: Move seamlessly Scale

between tiers

e Same data formats

e Same Ul (Jupyter)

e Same APIs (NumPy/Pandas) SMP
* Lower two tiers are easy

100 cores, 6 TB
Flexibility

Workstatlon
4 cores, 32 GB

presented at CLSAC 2019, October 9, 2019

Interactive Computational Ladder
 We need the upper tier Scale

e Cybersecurity data >> 6 TB
* But hardware is the easy part
* Need serious data engineering
* Need to rethink job scheduling smp
* Need an HPC shell

100 cores, 6 TB
Flexibility

Workstatlon
4 cores, 32 GB

presented at CLSAC 2019, October 9, 2019

Interactive Computational Ladder

 We need the upper tier Scale

e Cybersecurity data >> 6 TB |‘

MPP
10k cores, 100 TB

SMP
100 cores, 6 TB

* But hardware is the easy part
* Need serious data engineering
* Need to rethink job scheduling
* Need an HPC shell

Brad:

Workstation
4 cores, 32 GB

Flexibility

Python Strengths o

Pros:

https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/

RedMonk Q119 Programming Language Rankings

100~

RObJective~&
X X Swi
Visual Basic
* Hugely popular
. - Go
GCC Machine Dggeri
B PLSQL i Groowy .
) & ua
e to CoIdFus‘onArdUino i
* s A%‘da ! Rust
B rolog |) CoffeeScript
; ActionScript Erlang
Mar 2019 Mar 2018 Change Programming Lan: 2 Cucumber Sch%}eM'- b
3 Gnuplot Chl . OCar{]{ma
1 1 Java £ 50 Processing«fmon Lisp
< Protocol Buffer Verilo
7] 9 Racket Smarty
2 2 C 5 XQuery Mathematica s Lisp
< JRRARLGramework Plﬁ)’ﬂ@?
£ AutdRRRRY PLpgSQL
3 4 A Python ['4 NSISFreeMarker Liquid
H SHieRgiplpoy Language Paseal
4 3 v C++ 3 Smalltalk EIm
o N
)) a Objgefive-C++ Perl 6 SaltStack
5 6 N Visual Basic .NET R Vala
Purescfigystal
6 5 v C#
Chapel
Logos VimL
7 8 A JavaScript SQF HCL
4 Roff ASP Vim script Nix
8 7 v PHP 0 .
0 % 50 75 100
9 10 A SQL Popularity Rank on GitHub (by # of Projects)
10 14 A Objective-C

https://www.tiobe.com/tiobe-index/

© 2020 Cray, a Hewlett Packard Enterprise company

14

https://www.tiobe.com/tiobe-index/
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/

Python Strengths i

Pros:
* Hugely popular
« Extremely readable / writeable
« Massive number of libraries
» Strong community and online presence
» Supports interactive programming
« Dynamic typing (convenient!)

=
© 2020 Cray, a Hewlett Packard Enterprise company @/ 15

Python Weaknesses [for HPC] SR

Cons:
» Weak support for parallelism and scalability
» Most performance obtained by calling into C code
» Poor support for large-scale software projects
» Dynamic typing (surprising errors at execution time!)

© 2020 Cray, a Hewlett Packard Enterprise company @ 16

Arkouda’s Key ldea

CRANY

a Hewlett Packard Enterprise company

Motivation for this effort cmas

The Challenge: Say you've got...
...an army of Python programmers
...HPC-scale problems to solve
...access to HPC systems

How should you leverage these Python programmers to get your work done?

Python Weaknesses cmas

Cons:
» Weak support for parallelism and scalability
» Most performance obtained by calling into C code
» Poor support for large-scale projects

» Dynamic typing (surprising errors at execution time!)

Concept: Develop Python libraries that are implemented in Chapel

= get performance, as with C-based libraries, but also parallelism + scalability

Even Better: use familiar interfaces (e.g., NumPy) to make it trivial for users

© 2020 Cray, a Hewlett Packard Enterprise company

C 17

An HPC Shell for Data Science

Load Terabytes of data...
... into a familiar, interactive Ul ...
... Where standard data science operations ...
... execute within the human thought loop ...
... and interoperate with optimized libraries.

presented at CLSAC 2019, October 9, 2019

Arkouda

Load Terabytes of data...
... into a familiar, interactive Ul ...
.. where standard data science operations ...
.. execute within the human thought loop ...

.. and interoperate with optimized libraries.

Arkouda: an HPC shell for data science
* Jupyter/Python frontend (client)

* NumPy-like API

* Chapel backend (server)

based on material presented at CLSAC 2019, October 9, 2019

Arkouda Design

" Jupyter big_add_sum Last Checkpoint: 16 minutes ago. (autosaved) A g
Fle Edt Vew Inset Cel Kemel Widgets Help Tusted | Python3 O
+ 3 @ B 4 ¥ MR B C B Code f =
In (1)

18 = (N4(N-1))/2

+ ak.shutdown()

Chapel-Based Server
Jupyter/Python3

— MPP

ak.startup(server="1localhost" ,port=5555)

4.2.5
Psp = tcp://localhost:5sss

: ak.v = False
N = 10%%8 # 10%+8 = 100M * § == 800MIB # 2#%25 * § == 256MiB

nge (0,N, 1)
nge (0,N, 1)

c =B
print (ak.info(C),C)

name:"id_3" dtype:"int64" size:100000000 ndim:1 shape:(100000000) itemsize:8 C I u Ste r

024 199999994 199999996 199999998)

A Workstation

9999999900000000.0
9999999900000000

presented at CLSAC 2019, October 9, 2019

Arkouda Startup

1) In terminal: > arkouda_server -nl 96

server listening on hostname:port

2) In JUther: In [2]: import arkouda as ak

ak.connect(hostname, port)

4.2.5
psp = tcp://nid00104:5555
connected to tcp://nid00104:5555

presented at CLSAC 2019, October 9, 2019

Data Exploration with Arkouda and NumPy

In [9]:

In [10]:

A = ak.randint(0, 10, 10**11)

B = ak.randint (0, 10, 10**11)

C=A*B MPP
hist = ak.histogram(C, 20)

Cmax = C.max() (ArkOUda)
Cmin = C.min()

axecuted in 3.96s, finished 13:45:28 2019-09-12

bins = np.linspace(Cmin, Cmax, 20)
= plt.bar(bins, hist.to ndarray(), width=(Cmax-Cmin)/20)

execuled in 193ms, linished 13:45:28 2019-09-12 Login Node

Le10 (Python/NumPy)

0 20 40 60 80

presented at CLSAC 2019, October 9, 2019

Arkouda Accomplishments e

By taking this approach, these users were able to:
« interact with a running Chapel program from Python within Jupyter
* run the same back-end program on...
...a Mac laptop
...an Infiniband cluster
...an HPE Superdome X
...a Cray XC
« compute on TB-sized arrays in seconds

SMP

100 cores, 6 TB

» with 1-2 person-months of effort

=
© 2020 Cray, a Hewlett Packard Enterprise company (((_,,/ 23

Hypothesis Testing on 50 Billion Records

Summarize

Filter

Enrich

Transform

Operation Approximate Time
(seconds)

Read from disk
Scalar Reduction
Histogram

Vector Ops
Logical Indexing
Set Membership
Gather

Group by Key
Aggregate per Key
Get Item

Export to NumPy

A = ak.read_hdf()
A.sum()
ak.histogram(A)
A+B,A==B,A&B
A[A ==val]

ak.in1d(A, set)

B = Table[A]

G = ak.GroupBy(A)
G.aggregate(B, ‘sum’)
print(A[42])

A[:10**6].to_ndarray()

presented at CLSAC 2019, October 9,

30-60

<1

<1

<1

30-300

60

15

<1

2019

A, B are 50 billion-
element arrays

Timings measured on
real data

Hardware: Cray XC40
* 96 nodes
* 3072 cores
* 247TB
* Lustre filesystem

Arkouda Scaling: Aries vs. IBV (32 locales, 1152 locales

Arkouda Stream Performance

(3/4 GB per node)

= Cray-CS (FDR IB) —+—
Cray-XC (Aries) —*—

GiB/s

GiB/s

CRANY

a Hewlett Packard Enterprise company

Arkouda Argsort Performance
(3/4 GB per node)

Cray-XC (Aries) —*—
"~ Cray-CS (FDR IB) —+—

Locales (x 36 cores / locale)

© 2020 Cray, a Hewlett Packard Enterprise company

Arkouda Gather Performance
(3/4 GB per node)

Cray-XC (Aries) —»*—
"~ Cray-CS(FDRIB) —¢— "~~~ """ """ oo T

16 32
Locales (x 36 cores / locale)

Locales (x 36 cores / locale)

GiB/s

Arkouda Scatter Performance
(3/4 GB per node)

Cray-XC (Aries) —»*—

* Cray-CS (FDR IB) ——

Locales (x 36 cores / locale)

Arkouda Scaling: Aries at scale (512 locales, 18k cores)

8000
7000
6000
5000
4000
3000
2000
1000

GiB/s

Arkouda Stream Performance
Cray-XC (Aries)

CRANY

a Hewlett Packard Enterprise company

Arkouda Argsort Performance
Cray-XC (Aries)

——— 120 pr--mmmmmm e
R R foo | AasrGedEmm T
,, ®
,, CQ
,,, (O]
I
- %=
X 1 1 1 [
16 64 128 256 512 16 64 128 256 512
Locales (x 36 cores / locale) Locales (x 36 cores / locale)
Arkouda Gather Performance Arkouda Scatter Performance
Cray-XC (Aries) Cray-XC (Aries)
500 [nooooooeoooooooooooooooooooooo- 1400 - ---- oo oooooooooeoooooooooooooos
- L GB/nod —— e - c e e cc et m et e e e e e e - = X —_—
288 R sfiﬁ?(gg esxﬂ&:i; e . e 1200 éﬁ‘,;%?(‘}‘é 85523323 - TTTTTTT T oo
1000
(2] (2]
@ n_n 800
0] O 600 TR
400
200 [T

256
Locales (x 36 cores / locale)

16 64 128

© 2020 Cray, a Hewlett Packard Enterprise company

256
Locales (x 36 cores / locale)

16 64 128

CRANY

Arkouda Scaling: Aries at scale (512 locales, 18k cores) S=2

Arkouda Stream Performance Arkouda Argsort Performance
Cray-XC (Aries)

Cray-XC (Aries)

8000 1™ o (16 GBinotey e PO eeammo —
—_— arge node) —¥*—
7000 [gar iR Ghnodg - : 100 | Smal (78 GBinode) -~ -
B000 |- eI
® 5000 f--vomom oo e T o %
B 4000 [~ T D 60
3000 p-------m oo 40
2000 |- o sr T s
1000 [~ 5o b srsaermmmmmmmm¥anammmmnnnn s 20
[J 0

16 64 128 256 512

-- 1400 =7 - moooeeoooooooooooooooooooos
A50 = Large (16 GB/node) —— ~ - - - =~ = = = = = - - - - - - - - -~ - o 1200 F Large (16 GB/node) —*— _~

Small (.75 GB/node) - -~ _ _ _ _ _ __ _ ____________ - Small (.75 GB/node) - -*- -
1000

800 - T e T

00 |- T

400 |- gpmE e

N R

GiB/s
GiB/s

0
512 16 64 128 256 512
Locales (x 36 cores / locale)

16 64 128 256
Locales (x 36 cores / locale)

C

© 2020 Cray, a Hewlett Packard Enterprise company

Arkouda Design

* Why Chapel?
* High-level language with C-comparable performance
* Parallelism is a first-class citizen
 Great distributed array support
* Portable code: from laptop up to supercomputer

presented at CLSAC 2019, October 9, 2019

Arkouda Design

* Why Chapel?
* High-level language with C-comparable performance
* Parallelism is a first-class citizen
* Great distributed array support
* Portable code: from laptop up to supercomputer

Brad:

13) o
Why not... e

“...Dask?”

 Didn’t want to be stuck in Python / wanted to run closer to the metal
» Found that it didn’t perform / scale well in their experience

© 2020 Cray, a Hewlett Packard Enterprise company @ 30

Arkouda Status

* Now 11,000+ lines of Chapel code, developed in one year
« “without Chapel, we could not have gotten this far this fast”

» Recently open-sourced
 being developed on GitHub: https://github.com/mhmerrill/arkouda

* available via ‘pip install’

« Being used on a daily / weekly basis on real data and problems
» Features being added as requested by users

© 2020 Cray, a Hewlett Packard Enterprise company

a Hewlett Packard Enterprise company

https://github.com/mhmerrill/arkouda

Current Arkouda Focus Areas S

« Permit users to inject newly coded data filters into Arkouda as it's running
« Expand API
« actual dataframes (currently informal collections of arrays)
« sparse matrix computations
» wrapping existing HPC libraries
* Improve performance / scalability
» esp. on non-XC systems (e.g., IBV, Superdome)
* Qutreach / Community development
* e.g., Salishan, DOE, CUG, SciPy, PuPPy...

© 2020 Cray, a Hewlett Packard Enterprise company @

Arkouda Summary cRac

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

A powerful tool and vision

* “NumPy/Pandas on TB-scale arrays in seconds to minutes”
« “a workbench for interactive HPC-scale data science”

A great killer app for Chapel

» productivity: decreased time-to-solution where time was of the essence
 scalability: permits analyzing massive data sets

» performance: supports interactive rates (seconds to minutes)
 portability: across multiple system types and scales

© 2020 Cray, a Hewlett Packard Enterprise company

For More Information e

 Arkouda GitHub: https://github.com/mhmerrill/arkouda
- Arkouda PyPi page: https://pypi.org/project/arkouda/
 Arkouda Gitter Channel: https://qgitter.im/ArkoudaProject/community

Bill Reus’s CLSAC talk: http://www.clsac.org/uploads/5/0/6/3/50633811/2019-reus-arkuda.pdf

N The Chapel Parallel Programming Language

cRas
cHAaPEL
=

J What is Chapel?
- Chapel website: https://chapel-lang.org

What s Chapel? parallel: contains first-class concepts for concurrent and parallel computation
What's New? i i

. designed with and performance in min
Upcoming Events + portable: runs on laptops, clusters, the cloud, and HPC systems
Jot Oppertunities « scalable: supports locality-oriented features for distributed memory systems
+ open-source: hosted on GitHub, permissively licensed
How Can | Learn Chapel?
Contributing fo Chapel
New to Chapel?
Download Chapel
Try Chapel Online
As an introduction to Chapel, you may want to...
Documentation

Release Notes « read a blog article or book chapter
+ watch an overview talk or browse its slides

User Resources

s + download the release

Educator Resources « browse sample programs

Social adia Blog Pasts « view other resources to learn how to trivially write distributed programs like this:
Press

use CyclicDist; // use the Cyclic distribution Library
config const n = 100; // use al> when executing to override this default

Presentations.
Tutorlals

Papers / Publications

forall i in {1..n} dmapped Cycli
writeln("Hello from iteration * running on node *, here.id);

CHIUW
CHUG:

Contributors / Credits

What's Hot?

chapel-ang.org
chapel_info@cray.com

Paper and talk submissions for CHIUW 2020 are due January 31

Chapel 1.20 is now available—download a copy or browse its release notes
0= @ « Read recent papers from HPCS, ICCS, CCGrid, HPEC, CUG, and others
YyEHED « Browse slides from CLSAC'19, NIST, HPCKP'19, SIAM CSE19, and other talks

Watch talks from HPCKP'19, ACCU 2017, CHIUW 2017, and others on YouTube

Also see: What's New?

© 2020 Cray, a Hewlett Packard Enterprise company (Q\

https://github.com/mhmerrill/arkouda
https://pypi.org/project/arkouda/
https://gitter.im/ArkoudaProject/community
http://www.clsac.org/uploads/5/0/6/3/50633811/2019-reus-arkuda.pdf
https://chapel-lang.org/

SAFE HARBOR
STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2020 Cray, a Hewlett Packard Enterprise company

