
Cray User Group (CUG)
May 10, 2023

Michelle Strout with Scott Bachman, Brad Chamberlain, Ben McDonald, and Elliot Ronaghan

ARKOUDA: A HIGH-PERFORMANCE
DATA ANALYTICS FRAMEWORK

Motivation: Say you have…
…a bunch of Python programmers
…HPC-scale data science problems to solve
…access to HPC systems

How can you enable your Python programmers to solve large problems?

MOTIVATION FOR ARKOUDA

https://www.cscs.ch/computers/piz-daint/

2

https://www.cscs.ch/computers/piz-daint/

ARKOUDA’S HIGH-LEVEL APPROACH

Writes Python code in Jupyter
Invoking NumPy operations

Arkouda Server (written in Chapel)

3

Arkouda Client
(written in Python)

Summing numbers similar to how one would do with NumPy
>>> N = 10**6
>>> A = ak.arange(1, N+1, 1) # creating a large array on server
>>> print(A.sum()) # compute sum and returning result to the Python client

Keeping arrays and results on the server
Generate two (server-side) arrays of random integers 0-9
>>> B = ak.randint(0, 10, N)
>>> C = ak.randint(0, 10, N)
>>> D = B * C # multiply them on the server

Print a small representation of the array
This does NOT move the array to the client
>>> print(D)
>>> minVal = D.min() # compute min and max and bring over to Python
>>> maxVal = D.max()
>>> print(minVal, maxVal)

4

EXAMPLE ARKOUDA CODE

5

Arkouda Design

22

Python3 Client Chapel ServerZMQ
Socket

Dispatcher

In
de

xin
g

So
rt

in
g

Ar
ith

m
et

ic

...

Meta

MPP, SMP, Cluster, Laptop, etc.

Distributed Array

Ge
ne

ra
tio

n

I/OCode Modules

Distributed
Object Store

Platform
presented at CHIUW 2020, May 22, 2020

ARKOUDA BLOCK DIAGRAM

presented by Bill Reus at CHIUW 2020 on May 22, 2020

• A Python library supporting data science operations at massive scales and interactive rates
• massive scales = dozens of terabytes
• interactive rates = operations that run within the human thought loop (i.e., seconds to small numbers of minutes)
• implemented using a Client-Server model

• Arkouda client library:
• a normal Python library, written natively in Python

– available to Python programmers in standard ways (e.g., Jupyter notebooks, Python interpreter)

• supports a key subset of operations from the standard NumPy and Pandas libraries
– e.g., numerical operations, reductions, histograms, sorting, groupby, gather/scatter, …

• Arkouda server back-end:
• implemented in Chapel
• key datatype: 1D distributed arrays

6

ARKOUDA DETAILS

Arkouda is a framework for interactive, high performance data analytics
• Users can and have created more complex computations in Python with Arkouda
• Modular configuration and build
• Server written in Chapel, thus can be extended to any parallel/distributed computations
• Open-source: https://github.com/Bears-R-Us/arkouda

Creators, maintainers, and users
• Mike Merrill, Bill Reus, et al., US DOD, created it within about 9 months of part time work in

consultation with Brad Chamberlain at Cray/HPE in 2019
• Elliot Ronaghan and Ben McDonald from the Chapel team help support it
• Scott Bachman is a visiting climate scientist from NCAR who has been experimenting with it

Systems it has and is being run on
• ~360 node Cray XC (11,320 cores)
• 576 nodes of an HPE Apollo with HDR-100 IB (73,728 cores of AMD Rome)
• 896 nodes of an HPE Cray EX with Slingshot 11 (114,688 cores of AMD Milan)
• Other systems: 12TB HPE Superdome X, Cheyenne (SGI ICE XA and IB), Summit (IBM

Power 9 and Nvidia Tesla)

7

ARKOUDA: WHAT, WHO, AND ON WHAT
Arkouda is the word for "bear" in Greek

https://github.com/Bears-R-Us/arkouda

• Some of the reasons given for picking the Chapel programming language
• High-level language with C-comparable performance
• Parallelism is a first-class citizen
• Great distributed array support
• Portable code: from laptop up to supercomputer
• Integrates with [distributed] numeric libraries
• Close to Pythonic (for a statically typed language)

– provides a gateway for data scientists ready to go beyond Python

ARKOUDA’S DESIGN

var D = {1..1000, 1..1000} dmapped Block(...),
A: [D] real;

forall (i,j) in D do
A[i,j] = i + (j - 0.5)/1000;

8

9

DATA SCIENCE DEMANDS INTERACTIVITY

presented by Bill Reus at CHIUW 2020 on May 22, 2020

10

DATA SCIENCE DEMANDS SCALING: REAL WORKFLOW (LATE 2019)

Data Science on 50 Billion Records

• A, B are 50 billion-
element arrays of 32-
bit values
• Timings measured on

real data
• Hardware: Cray XC40

• 96 nodes
• 3072 cores
• 24 TB
• Lustre filesystem

29

Operation Example Approx. Time
(seconds)

Read from disk A = ak.read_hdf() 30-60

Scalar Reduction A.sum() < 1

Histogram ak.histogram(A) < 1

Vector Ops A + B, A == B, A & B < 1

Logical Indexing A[B == val] 1 - 10

Set Membership ak.in1d(A, set) 1

Gather B = Table[A] 4 - 120

Get Item print(A[42]) < 1

Sort Indices by Value I = ak.argsort(A) 15

Group by Key G = ak.GroupBy(A) 30

Aggregate per Key G.aggregate(B, ‘sum’) 10

Enrich

Summarize

Filter

Transform

Inspect

I/O

Model

presented at CHIUW 2020, May 22, 2020

presented by Bill Reus at CHIUW 2020 on May 22, 2020

ARKOUDA PERFORMANCE COMPARED TO NUMPY ON CRAY XC (MAY 2020)

benchmark

NumPy
0.75 GB

Arkouda (serial)
0.75 GB

1 core, 1 node

Arkouda (parallel)
0.75 GB

36 cores x 1 node

Arkouda (distributed)
384 GB

36 cores x 512 nodes

argsort
0.03 GiB/s

--
0.05 GiB/s

1.66x
0.50 GiB/s

16.7x
55.12 GiB/s

1837.3x

coargsort
0.03 GiB/s

--
0.07 GiB/s

2.3x
0.50 GiB/s

16.7x
29.54 GiB/s

984.7x

gather
1.15 GiB/s

--
0.45 GiB/s

0.4x
13.45 GiB/s

11.7x
539.52 GiB/s

469.1x

reduce
9.90 GiB/s

--
11.66 GiB/s

1.2x
118.57 GiB/s

12.0x
43683.00 GiB/s

4412.4x

scan
2.78 GiB/s

--
2.12 GiB/s

0.8x
8.90 GiB/s

3.2x
741.14 GiB/s

266.6x

scatter
1.17 GiB/s

--
1.12 GiB/s

1.0x
13.77 GiB/s

11.8x
914.67 GiB/s

781.8x

stream
3.94 GiB/s

--
2.92 GiB/s

0.7x
24.58 GiB/s

6.2x
6266.22 GiB/s

1590.4x

• May 2021 hero run performed on large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

12

ARKOUDA ARGSORT: HERO RUN ON HPE APOLLO SYSTEM WITH IB

fa
st
er

• In April 2023, a large HPE Cray EX system with Slingshot-11 set a new record for Arkouda argsort
• 28 TiB of 8-byte values
• 1200 GiB/s (24 seconds elapsed time)
• used 114,688 cores of AMD Milan
• similar ~100 lines of Chapel code

• Not an apples-to-apples comparison
• Different network rates

– Older one was 100 Gbps IB
– Newer one was 200 Gbps SS-11

• Different software versions
– Aggregator optimizations
– Improvements to the sort: bucket exchange

13

ARKOUDA ARGSORT: HERO RUN ON HPE EX SYSTEM WITH SS-11

0
200
400
600
800
1000
1200

64 128 256 512 896
G
iB
/s

Nodes (128 cores/node)

HDR-IB May 2021, 128 GiB/node
SS-11 April 2023, 32 GiB/node

Arkouda Argsort Performance

fa
st
er

1414

• Many of Arkouda’s capabilities also exist in NumPy and Dask
• Dask implements many NumPy functions to run in distributed memory
• The “go-to” library for HPC calculations in Python
• Not necessarily straightforward to program

– Manual control of tasks / workers

• Small problems done fast – Numpy; Big problems (usually) done fast – Dask

• Problems at any scale done fast – Arkouda

• Some of Arkouda’s most powerful algorithms do not have analogues in Dask (e.g., parallel argsort)

• The following slides show timing comparisons for several key functions
• Weak scaling (variable node count, variable input size)
• Chapel 1.27; Dask 2.30.0

Hardware: SGI ICE XA
(Cheyenne)
• 4,032 nodes
• 145,152 cores
• 64 GB memory/node
• Infiniband

VISITING SCHOLAR BENCHMARKING VS DASK/NUMPY (FALL 2022)

15

faster

DASK VS. ARKOUDA: STREAM TRIAD BENCHMARK

16

faster

DASK VS. ARKOUDA: LOAD HDF5 BENCHMARK

17

faster

DASK VS. ARKOUDA: REDUCE BENCHMARK

18

faster

NUMPY VS. ARKOUDA: GATHER BENCHMARK ON UP TO 30 GB DATASETS

19

faster

NUMPY VS. ARKOUDA: GATHER BENCHMARK ON UP TO 2000 GB DATASETS

20

faster

NUMPY VS. ARKOUDA: SCATTER BENCHMARK ON UP TO 30 GB DATASETS

21

faster

NUMPY VS. ARKOUDA: SCATTER BENCHMARK ON UP TO 2000 GB DATASETS

22

faster

NUMPY VS. ARKOUDA: ARGSORT ON UP TO 8 GB DATASETS

23

faster

NUMPY VS. ARKOUDA: ARGSORT ON UP TO 500 GB DATASETS

A Python data analytics framework
• massive scales = dozens of terabytes
• interactive rates = operations that run within the human thought loop (i.e., seconds to small numbers of minutes)
• crucial operations: argsort, gather, scatter, reading from HDF5 and Parquet files
• started with performance and built towards interactivity using a client-server model

High-Performance Highlights
• Great performance and scalability on HPE Apollo and HPE Cray EX
• Faster than Dask at scale
• Outperforms NumPy on a single node

Next Steps
• Enable use in Climate Science by implementing the Python Array API
• Accelerate with GPUs, Josh Milthorpe and others working on at ORNL
• Persistence of data store across and between server sessions

24

SUMMARY FOR ARKOUDA

Thank you!
https://github.com/Bears-R-Us/arkouda
https://chapel-lang.org

https://data-apis.org/array-api/
https://github.com/Bears-R-Us/arkouda
https://chapel-lang.org/

