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• Organized into “layers”
• Written in C
• Memory

• jemalloc, cstdlib
• Computation (tasks)

• qthreads, fifo
• Communication ("on", RMA, atomics)

• ofi, gasnet, ugni, none

• GPU
• nvidia, amd, cpu

• Storage
• qio

• Launchers
• slurm-*, pbs-*, gasnet-*, smp, etc.
• OOB: out-of-band communication
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Overview



• HPE Cray EX
• Cray XC
• HPE Apollo (InfiniBand)
• AWS
• Linux
• Mac
• SLURM, PBS
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Popular Platforms Supported



• Build controlled by CHPL_* variables, e.g., CHPL_COMM.

• Compiled and linked into libchpl.a
• Different instances of libchpl.a for different CHPL_* values

• E.g., build/hpe-cray-ex/llvm/x86_64/cpu-x86-rome/loc-flat/comm-ofi-
debug/system/pmi2/tasks-qthreads/launch-slurm-srun/tmr-generic/unwind-
none/mem-jemalloc/atomics-cstdlib/ofi/gmp-bundled/hwloc-bundled/re2-
bundled/llvm-bundled/fs-none/libchpl.a

• Statically-linked with code generated by the Chapel compiler to produce the executable
• Proper libchpl.a selected by CHPL_* variables
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Building the Runtime



• Support memory allocation by tasks and the runtime itself

• Tasks’ heap and stack must be accessible via RMA in a multi-locale program
• requires them to be registered with the network fabric

• some comm layers require allocating them from a fixed, pinned region for the entire locale (process)

• jemalloc
• fast alloc/free, not so good on fragmentation

– fragmentation is an issue for pinned heaps required by some comm layers

– in general, it’s a tradeoff between speed and fragmentation

• Rely on OS "first touch” to map virtual to physical pages
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Managing Memory



• Lightweight user-level thread package from Sandia
• Run to completion (or yield)
• Chapel task == qthread
•coforall, begin, etc.

• Shepherds run qthreads
• One shepherd per thread (pthread)
• Runtime binds each pthread to a core (or hyperthread if desired)
• Shepherd bound to pthread, qthread bound to shepherd
• qthreads assigned to shepherds in round-robin fashion

• they are never re-assigned (no work-stealing)
• this is important to the communication layer

• e.g., 
•chpl_task_addTask

6

Managing Computation w/ qthreads



var A: [0..<10] int;
coforall a in A {
    a += 42;
}
writeln(A);

• The body of the loop is compiled into a function
• A task (qthread) is created for each iteration of the loop

• use forall to limit parallelism

• Each task runs on the same core until it completes
• The main task blocks until all iterations complete
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Computation Example



• HPC network fabrics (InfiniBand, Aries, Slingshot)
• high bandwidth, low latency
• user-level access to NICs

– protection
– address translation

• CPU offload
– RMA, atomics

• Ordering guarantees and/or fences
• E.g., GET after PUT to same address
• either option can be expensive 

• Visibility concerns
• when will a subsequent read from memory see the effect of the write?
• E.g., GET after PUT from a different locale
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Managing Communication



• ”Two-sided” communication
• locales send messages to each other

• Send and Receive
• remote locale specifies a buffer into which messages are received

• Chapel uses messages to implement active messages
• message contains function to invoke and argument bundle, used to implement on statements
• locale allocates buffer for received active messages
• active message handler thread removes messages from buffer

– “fast” active messages it handles itself
– otherwise creates a task to invoke the function

• Remote locale GETs argument bundle if it is too large
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Messages



on Locales[numLocales-1] {
    writeln("Hello World from locale ", here.id);
}

• Body of on is compiled into a function

• Main task sends an active message to last locale specifying which function to invoke and any arguments

• The function sets a “done” flag when it is complete

• Main task waits for the “done” flag to be set
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Active Message Example



var A: [0..<10] int;
coforall loc in Locales {
    on loc {
        A[here.id] = here.id + 42;
    }
}
writeln(A);

• Logically
• Combine last two examples – functions for coforall and on bodies

• Reality
• function for on body
• main task sends active messages asynchronously to all locales
•on function decrements atomic counter when it completes
• main task waits for counter to reach zero
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Complex Active Message Example



• ”One-sided” communication
• remote CPU is not involved
• a locale can PUT to another locale’s memory 
• a locale can GET from another locale’s memory

• Protection via memory registration
• CPU must tell NIC which memory regions are accessible to remote nodes
• remote node must have a key (capability) to access the region
• locales exchange registration keys during startup or on demand depending on comm layer

• NIC must do virtual address translation
• programs refer to virtual addresses
• ultimately, physical memory is accessed
• introduces a lot of complexity
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Remote Memory Access (RMA/RDMA)



var A: [0..<10] int;
coforall loc in Locales {
    on loc {
        A[here.id] = here.id + 42;
    }
}
writeln(A);

• Each locale will do a GET to fetch the initial value its element

• Each locale will do a PUT to write the new value of its element
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RDMA Example



• Atomic operations implemented by the NIC
• e.g., atomically increment a counter without involving the CPU

• Can’t mix processor and network atomics
• currently specified for all atomic variables via CHPL_NETWORK_ATOMICS setting

• Unsupported network atomics are implemented via active messages and processor atomics
• even if only one atomic operation is unsupported
• processor atomics are also used if there is only a single locale, i.e., -nl 1
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Network Atomics



var a: atomic int;
coforall loc in Locales {
    on loc {
        a.add(here.id);
    }
}
writeln(a);

•a.add will result in a network atomic operation to Locale 0 (on which a resides)
• The NIC on Locale 0 will increment a atomically without involving the CPU
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Network Atomics Example



• Multiple cores per process
• single process (locale) per node

• Mixture of one-sided and two-sided communication

• Large memory registrations
• May register (almost) all physical memory

• Memory consistency model requires ordering and visibility guarantees
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How is Chapel Unusual?



• Written in C (!)
• slurm-srun is a good example

• slurm: manages a cluster of nodes
• srun: allocates a set of nodes if necessary and runs a program on them interactively
• salloc: allocates a set of nodes
• sbatch: runs a program in batch mode

• Typically, relies on a shared filesystem to distribute the executable
• Compiling hello.chpl for multi-locale produces two executables:
•hello – invokes the launcher
•hello_real – the real program

•hello invokes srun to launch hello_real:
•PMI_MAX_KVS_ENTRIES=20 PMI_NO_PREINITIALIZE=y HUGETLB_MORECORE=no srun 
--job-name=CHPL-hello --quiet --nodes=2 --ntasks=2 --cpus-per-task=256 
--exclusive --mem=0 --kill-on-bad-exit 
/scratch2/hartman/git/chapel/devel/hello_real -nl 2 -v
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Launchers: Running Multi-locale Programs



• Communication that occurs before communication layer is initialized
• e.g., locales need to exchange addresses to communicate

• Examples of OOB communication:
• locale network addresses
• memory registration keys
• barrier information

• Not unique to Chapel

• Rely on an out-of-band mechanism to share information during initialization
• PMI2 (Process Management Interface)

–  allgather, barrier, broadcast, etc.
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Out-of-Band Communication (OOB)


