
Experiences with Chapel in Cosmology
Data Analysis to Simulations

Nikhil Padmanabhan 1

1Dept. of Physics, Yale Univ.

2022/02/24

Nikhil Padmanabhan Cosmology and Chapel 1/28
1/28

w/ Luna Zagorac (Yale),
Richard Easther (Auckland),
Elliot Ronaghan (HPE)

PAW-ATM, SC 2019
arXiv:2109.01920
Partially supported by NASA, DŒ

Outline

Cosmology Meets Chapel

Example I : Chapel and ULDM
Distributed FFTs

Example II : Data Munging

Conclusions

Nikhil Padmanabhan Cosmology and Chapel 2/28
2/28

A quick introduction to my research

• Observational/Theoretical Cosmologist
• Use large galaxy surveys to constrain underlying physics of

the Universe
◦ The nature of the initial conditions
◦ Evolution
◦ Constituents

• Get only one observation; need to use simulations to
infer/constrain.

Nikhil Padmanabhan Cosmology and Chapel 3/28
3/28

Categories of Problems

• Grids (stencils, spectral codes)
• Monte Carlo methods

◦ Sampling
◦ Ensembles of simulations
◦ Often embarrassingly parallel!

• Miscellany
◦ Numerical quadrature
◦ Fitting; optimization
◦ Linear algebra
◦ …

Nikhil Padmanabhan Cosmology and Chapel 4/28
4/28

Lifecycle of a Research Problem

Process
• Conceiving of the problem
• Mathematical formulation
• Rough draft of codes required to solve
• Data munging
• Make simulated data, run tests on simulations
• Make figures, write paper, repeat as needed.

Nikhil Padmanabhan Cosmology and Chapel 5/28
5/28

Lifecycle of a Research Problem

Process
• Conceiving of the problem
• Mathematical formulation
• Rough draft of codes required to solve
• Data munging
• Make simulated data, run tests on simulations
• Make figures, write paper, repeat as needed.

Character
• These are NOT production codes
• Lifetime usually set by the research project, rarely long-lived.
• Used by a small number of people

Nikhil Padmanabhan Cosmology and Chapel 5/28
5/28

Productivity v. Performance

Productivity
• Time to a completed project is critical.
• Easy for students to adapt.
• Easy to develop on a variety of systems (laptops to HPC

systems).
• Easy to parallelize/distribute.
• Throughput.

Nikhil Padmanabhan Cosmology and Chapel 6/28
6/28

Productivity v. Performance

Productivity
• Time to a completed project is critical.
• Easy for students to adapt.
• Easy to develop on a variety of systems (laptops to HPC

systems).
• Easy to parallelize/distribute.
• Throughput.

Performance
• Absolute performance isn’t critical; fast enough is good

enough.
• Codes need to scale out to characteristic sizes of problems.
• Often running on relatively small systems.

Nikhil Padmanabhan Cosmology and Chapel 6/28
6/28

What drew me to Chapel

• Expressive parallelism
• Arrays as “first-class” objects
• No memory/performance surprises (eg. hidden copies)
• Scriptiness

Nikhil Padmanabhan Cosmology and Chapel 7/28
7/28

Outline

Cosmology Meets Chapel

Example I : Chapel and ULDM
Distributed FFTs

Example II : Data Munging

Conclusions

Nikhil Padmanabhan Cosmology and Chapel 8/28
8/28

Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.

Nikhil Padmanabhan Cosmology and Chapel 9/28
9/28

Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Nikhil Padmanabhan Cosmology and Chapel 9/28
9/28

Motivating Ultralight Dark Matter

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges
• Possible puzzles remain on small scales from the structure of

dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

• We have not detected these in the lab, or at accelerators.

Nikhil Padmanabhan Cosmology and Chapel 9/28
9/28

Dark Matter : A Cartoon

L. Jaramillo & O. Macias/Virginia Tech.

Nikhil Padmanabhan Cosmology and Chapel 10/28
10/28

We’re waaay off to the left!

Nikhil Padmanabhan Cosmology and Chapel 11/28
11/28

https://xkcd.com/2035

Snapshots

Figure: A ULDM “Halo” Figure: Collisions

Nikhil Padmanabhan Cosmology and Chapel 12/28
12/28

The Schrodinger-Poisson Equations

i~
∂ψ

∂t
= − ~2

2m ∇2ψ +mΦψ

∇2Φ = 4πGm|ψ|2

Distributed FFTs are a key component!

Isolated bound-
ary conditions

FFTs

Nikhil Padmanabhan Cosmology and Chapel 13/28
13/28

Why Chapel?

• Efficiency of the Python code relied on the calling out to C for
fast FFTs.

• Isolated boundary conditions required inserting steps between
the various FFT stages
◦ Required going back to Python
◦ Looping in Python was expensive

• Memory usage
• Scaling to multiple nodes

Nikhil Padmanabhan Cosmology and Chapel 14/28
14/28

History of Project
• PyUltraLighta: An initial code in Python, driven by Jupyter

notebook
◦ Easy to use and modify, allowing numerical experiments
◦ Performant and multithreaded (made significant use of eg. numexpr,

FFTW)
• Extending to isolated potentials hit Python bottlenecks
• Attempted a skunkworks (2019/6/22) port to Chapel for a single

node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.

• Distributed Code
◦ Want to run larger Ngrid, can we extend the code?
◦ Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).b

◦ Validating the FFT led to the NAS NPB benchmark.

aEdwards et al, arXiv:1807.04037
bNote that Chapel can also interoperate with MPI.

Nikhil Padmanabhan Cosmology and Chapel 15/28
15/28

Slab Decompositions Are Simple

Figure: Slab Decomposition

Figure: Pencil Decomposition

• Slab decompositions are
simpler (especially for the
end user)

• Slab limits the amount of
parallelism expressed
(especially with pure MPI)

• Use 1 slab per locale/node.
• Limits Ngrid ≥ Nnodes, but in

practice, not limiting.
• Reduce communication

complexity

http://www.2decomp.org/decomp.html

Nikhil Padmanabhan Cosmology and Chapel 16/28
16/28

Chapel Code is Expressive : Pencil and Paper

The Algorithm
1. Decompose array into slabs in the x direction
2. Fourier transform in the y directiona

3. Fourier transform in the z direction
4. Transpose x and y (all to all)
5. Fourier transform in the x direction

aWe use FFTW (www.fftw.org) for 1D serial transforms.

Nikhil Padmanabhan Cosmology and Chapel 17/28
17/28

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {

yPlan.execute(myplane[0, ySrc.first, iz]);
}
// Z-transform
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel

Nikhil Padmanabhan Cosmology and Chapel 18/28
18/28

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {

yPlan.execute(myplane[0, ySrc.first, iz]);
}
// Z-transform
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel

Reduce comm congestion!

Nikhil Padmanabhan Cosmology and Chapel 18/28
18/28

Chapel FFTs : Naive Performance

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 16 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size D) Performance

Chapel (Optimized)
Chapel (Initial)

Nikhil Padmanabhan Cosmology and Chapel 19/28
19/28

Chapel Code is Expressive : A Performant
Implementation

...
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane
copy(Dst[...], myplane[...], myLineSize);
if (ix != xSrc.last) {

copy(myplane[...], Src[...], myLineSize);
}

}
...

low-level comm

overlap computation
and comm

batch FFTW calls (not shown)

Nikhil Padmanabhan Cosmology and Chapel 20/28
20/28

Chapel FFTs Scale Well Across Nodes : F =
64×D

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size F) Performance

Chapel
UPC
MPI

Nikhil Padmanabhan Cosmology and Chapel 21/28
21/28

Outline

Cosmology Meets Chapel

Example I : Chapel and ULDM
Distributed FFTs

Example II : Data Munging

Conclusions

Nikhil Padmanabhan Cosmology and Chapel 22/28
22/28

Scriptiness

config const infile="/aux0/siam/catalog.fits";
config const hdu=2;
config const stringBufSize=1000;
config const iRow=10213;

All of these constants can be changed at runtime (no
recompilation required!)

Nikhil Padmanabhan Cosmology and Chapel 23/28
23/28

Interoperability

extern {
#include "fitsio.h"
}
ffopen(c_ptrTo(fptr), infile.c_str(), READONLY, c_ptrTo(status));

Chapel has much more robust ways to do this, but we’re trying
to do this quickly.

Nikhil Padmanabhan Cosmology and Chapel 24/28
24/28

Reading : In Serial

// Define the array
var zcosmo : [0..#numRows] real(32);

{
ffopen(...);

// Get the column
var templt = "Z_COSMO";
ffgcnn(fptr, CASEINSEN, templt.c_str()...);
...
// Read
ffgcv(fptr, ..., colnum,

1,..., numRows, ..., c_ptrTo(zcosmo), ...)
ffclos(...);

}

// Complicated analysis

Nikhil Padmanabhan Cosmology and Chapel 25/28
25/28

Reading : In Parallel
// Define the array
var zcosmo = newBlockArr(0..#numRows, real(32));

coforall loc in Locales do on loc {
// my piece
var myDom=zcosmo.localSubdomain();

ffopen(...);

// Get the column
var templt = "Z_COSMO";
ffgcnn(fptr, CASEINSEN, templt.c_str()...);
...
// Read
ffgcv(fptr, ..., colnum,

(myDom.low+1),...,myDom.size,..., c_ptrTo(zcosmo[myDom.low]), ...);
ffclos(...);

}

// Complicated analysis

Nikhil Padmanabhan Cosmology and Chapel 26/28
26/28

Outline

Cosmology Meets Chapel

Example I : Chapel and ULDM
Distributed FFTs

Example II : Data Munging

Conclusions

Nikhil Padmanabhan Cosmology and Chapel 27/28
27/28

Summarizing…

• Productive
◦ Expressive when translating algorithms to code.
◦ Grid-heavy codes are easy to write. Domains/arrays are

first-class, and easy to “data-parallelize”.
◦ Scalable across nodes/threads.
◦ Scriptiness
◦ Interoperability

• Expressive parallelism
• Challenges

◦ Interactivity
◦ Size of community/existing codes/inertia.
◦ Tooling

Chapel is an expressive/productive language for research
problems!

Nikhil Padmanabhan Cosmology and Chapel 28/28
28/28

	Cosmology Meets Chapel
	Example I : Chapel and ULDM
	Distributed FFTs

	Example II : Data Munging
	Conclusions

