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A quick introduction to my research

• Observational/Theoretical Cosmologist
• Use large galaxy surveys to constrain underlying physics of

the Universe
◦ The nature of the initial conditions
◦ Evolution
◦ Constituents

• Get only one observation; need to use simulations to
infer/constrain.
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Categories of Problems

• Grids (stencils, spectral codes)
• Monte Carlo methods

◦ Sampling
◦ Ensembles of simulations
◦ Often embarrassingly parallel!

• Miscellany
◦ Numerical quadrature
◦ Fitting; optimization
◦ Linear algebra
◦ …
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Lifecycle of a Research Problem

Process
• Conceiving of the problem
• Mathematical formulation
• Rough draft of codes required to solve
• Data munging
• Make simulated data, run tests on simulations
• Make figures, write paper, repeat as needed.
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Lifecycle of a Research Problem

Process
• Conceiving of the problem
• Mathematical formulation
• Rough draft of codes required to solve
• Data munging
• Make simulated data, run tests on simulations
• Make figures, write paper, repeat as needed.

Character
• These are NOT production codes
• Lifetime usually set by the research project, rarely long-lived.
• Used by a small number of people

Nikhil Padmanabhan Cosmology and Chapel 5/28
5/28



Productivity v. Performance

Productivity
• Time to a completed project is critical.
• Easy for students to adapt.
• Easy to develop on a variety of systems (laptops to HPC

systems).
• Easy to parallelize/distribute.
• Throughput.
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Productivity v. Performance

Productivity
• Time to a completed project is critical.
• Easy for students to adapt.
• Easy to develop on a variety of systems (laptops to HPC

systems).
• Easy to parallelize/distribute.
• Throughput.

Performance
• Absolute performance isn’t critical; fast enough is good

enough.
• Codes need to scale out to characteristic sizes of problems.
• Often running on relatively small systems.
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What drew me to Chapel

• Expressive parallelism
• Arrays as “first-class” objects
• No memory/performance surprises (eg. hidden copies)
• Scriptiness
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Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.
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Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.
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Motivating Ultralight Dark Matter

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges
• Possible puzzles remain on small scales from the structure of

dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

• We have not detected these in the lab, or at accelerators.
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Dark Matter : A Cartoon

L. Jaramillo & O. Macias/Virginia Tech.
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We’re waaay off to the left!
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Snapshots

Figure: A ULDM “Halo” Figure: Collisions
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The Schrodinger-Poisson Equations

i~
∂ψ

∂t
= − ~2

2m ∇2ψ +mΦψ

∇2Φ = 4πGm|ψ|2

Distributed FFTs are a key component!

Isolated bound-
ary conditions

FFTs
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Why Chapel?

• Efficiency of the Python code relied on the calling out to C for
fast FFTs.

• Isolated boundary conditions required inserting steps between
the various FFT stages
◦ Required going back to Python
◦ Looping in Python was expensive

• Memory usage
• Scaling to multiple nodes
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History of Project
• PyUltraLighta: An initial code in Python, driven by Jupyter

notebook
◦ Easy to use and modify, allowing numerical experiments
◦ Performant and multithreaded (made significant use of eg. numexpr,

FFTW)
• Extending to isolated potentials hit Python bottlenecks
• Attempted a skunkworks (2019/6/22) port to Chapel for a single

node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.

• Distributed Code
◦ Want to run larger Ngrid, can we extend the code?
◦ Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).b

◦ Validating the FFT led to the NAS NPB benchmark.

aEdwards et al, arXiv:1807.04037
bNote that Chapel can also interoperate with MPI.
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Slab Decompositions Are Simple

Figure: Slab Decomposition

Figure: Pencil Decomposition

• Slab decompositions are
simpler (especially for the
end user)

• Slab limits the amount of
parallelism expressed
(especially with pure MPI)

• Use 1 slab per locale/node.
• Limits Ngrid ≥ Nnodes, but in

practice, not limiting.
• Reduce communication

complexity

http://www.2decomp.org/decomp.html

Nikhil Padmanabhan Cosmology and Chapel 16/28
16/28



Chapel Code is Expressive : Pencil and Paper

The Algorithm
1. Decompose array into slabs in the x direction
2. Fourier transform in the y directiona

3. Fourier transform in the z direction
4. Transpose x and y (all to all)
5. Fourier transform in the x direction

aWe use FFTW (www.fftw.org) for 1D serial transforms.
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Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {

yPlan.execute(myplane[0, ySrc.first, iz]);
}
// Z-transform
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel
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Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {

yPlan.execute(myplane[0, ySrc.first, iz]);
}
// Z-transform
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel

Reduce comm congestion!
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Chapel FFTs : Naive Performance
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Chapel Code is Expressive : A Performant
Implementation

...
forall iy in offset(ySrc) {

zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane
copy(Dst[...], myplane[...], myLineSize);
if (ix != xSrc.last) {

copy(myplane[...], Src[...], myLineSize);
}

}
...

low-level comm

overlap computation
and comm

batch FFTW calls (not shown)
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Chapel FFTs Scale Well Across Nodes : F =
64×D
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Scriptiness

config const infile="/aux0/siam/catalog.fits";
config const hdu=2;
config const stringBufSize=1000;
config const iRow=10213;

All of these constants can be changed at runtime (no
recompilation required!)
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Interoperability

extern {
#include "fitsio.h"
}
ffopen(c_ptrTo(fptr), infile.c_str(), READONLY, c_ptrTo(status));

Chapel has much more robust ways to do this, but we’re trying
to do this quickly.
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Reading : In Serial

// Define the array
var zcosmo : [0..#numRows] real(32);

{
ffopen(...);

// Get the column
var templt = "Z_COSMO";
ffgcnn(fptr, CASEINSEN, templt.c_str()...);
...
// Read
ffgcv(fptr, ..., colnum,

1,..., numRows, ..., c_ptrTo(zcosmo), ...)
ffclos(...);

}

// Complicated analysis
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Reading : In Parallel
// Define the array
var zcosmo = newBlockArr(0..#numRows, real(32));

coforall loc in Locales do on loc {
// my piece
var myDom=zcosmo.localSubdomain();

ffopen(...);

// Get the column
var templt = "Z_COSMO";
ffgcnn(fptr, CASEINSEN, templt.c_str()...);
...
// Read
ffgcv(fptr, ..., colnum,

(myDom.low+1),...,myDom.size,..., c_ptrTo(zcosmo[myDom.low]), ...);
ffclos(...);

}

// Complicated analysis
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Summarizing…

• Productive
◦ Expressive when translating algorithms to code.
◦ Grid-heavy codes are easy to write. Domains/arrays are

first-class, and easy to “data-parallelize”.
◦ Scalable across nodes/threads.
◦ Scriptiness
◦ Interoperability

• Expressive parallelism
• Challenges

◦ Interactivity
◦ Size of community/existing codes/inertia.
◦ Tooling

Chapel is an expressive/productive language for research
problems!
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