Experiences with Chapel in Cosmology

Data Analysis to Simulations

Nikhil Padmanabhan !

Dept. of Physics, Yale Univ.

2022/02/24

w/ Luna Zagorac (Yale), PAW-ATM, SC 2019
Richard Easther (Auckland), arXiv:2109.01920
Elliot Ronaghan (HPE) Partially supported by NASA, DCE

1
- /28
Nikhil Padmanabhan Cosmology and Chapel y

Outline

Cosmology Meets Chapel

2/
Nikhil Padmanabhan Cosmology and Chapel 28 y

A quick introduction to my research

e Observational/Theoretical Cosmologist

e Use large galaxy surveys to constrain underlying physics of
the Universe
o The nature of the initial conditions
o Evolution
o Constituents

e Get only one observation; need to use simulations to
infer/constrain.

3
Nikhil Padmanabhan Cosmology and Chapel 28 y

Categories of Problems

* Grids (stencils, spectral codes)
e Monte Carlo methods

o Sampling

o Ensembles of simulations

o Often embarrassingly parallel!

e Miscellany

o Numerical quadrature
o Fitting; optimization

o Linear algebra
o

4/
Nikhil Padmanabhan Cosmology and Chapel 28 y

Lifecycle of a Research Problem

Process
Conceiving of the problem
Mathematical formulation
Rough draft of codes required to solve
Data munging

Make simulated data, run tests on simulations

Make figures, write paper, repeat as needed.

>/
Nikhil Padmanabhan Cosmology and Chapel 28‘

Lifecycle of a Research Problem

Process
Conceiving of the problem
Mathematical formulation
Rough draft of codes required to solve
Data munging
Make simulated data, run tests on simulations

Make figures, write paper, repeat as needed.

Character
These are NOT production codes

Lifetime usually set by the research project, rarely long-lived.
Used by a small number of people

Nikhil Padmanabhan Cosmology and Chapel %

Productivity v. Performance

Productivity

Time to a completed project is critical.
Easy for students to adapt.

Easy to develop on a variety of systems (laptops to HPC
systems).

Easy to parallelize/distribute.
Throughput.

®/2s
Nikhil Padmanabhan Cosmology and Chapel y

Productivity v. Performance

Productivity
Time to a completed project is critical.
Easy for students to adapt.

Easy to develop on a variety of systems (laptops to HPC
systems).

Easy to parallelize/distribute.
Throughput.

Performance

Absolute performance isn't critical; fast enough is good
enough.

Codes need to scale out to characteristic sizes of problems.

Often running on relatively small systems.

Nikhil Padmanabhan Cosmology and Chapel @

What drew me to Chapel

Expressive parallelism

Arrays as “first-class” objects

No memory/performance surprises (eg. hidden copies)

e Scriptiness

"/
Nikhil Padmanabhan Cosmology and Chapel y

Outline

Example | : Chapel and ULDM
Distributed FFTs

8/
Nikhil Padmanabhan Cosmology and Chapel 28‘

Motivating Ultralight Dark Matter

About

In the standard cosmological model, 80% of the matter in the
Universe is “dark” (i.e. non-baryonic).

Form gravitationally bound structures : dark matter halos.

The traditional model is a heavy particle (~ 100x proton),
with weak interactions.

9
/28‘

Nikhil Padmanabhan Cosmology and Chapel

Motivating Ultralight Dark Matter

About
In the standard cosmological model, 80% of the matter in the
Universe is “dark” (i.e. non-baryonic).
Form gravitationally bound structures : dark matter halos.

The traditional model is a heavy particle (~ 100x proton),
with weak interactions.

Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Nikhil Padmanabhan Cosmology and Chapel %

Motivating Ultralight Dark Matter

Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges

Possible puzzles remain on small scales from the structure of
dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

We have not detected these in the lab, or at accelerators.

9
- /28
Nikhil Padmanabhan Cosmology and Chapel y

Dark Matter : A Cartoon

h Dark Matter Halo

Galactic Bulge /4

Galactic Disk

L. Jaramillo & O. Macias/Virginia Tech.

Nikhil Padmanabhan Cosmology and Chapel

DARK. MATTER CANDIDRTES:

uél.-ev eV keV MeV GeV Tev

iO"sk_t,

kg N 10% 0%k
1 1 | I

LITH SPACE. CAMOUFLAGE

https://xkcd.com/2035

" g mg 9
1 1 1 alaal el 1 1 1 1 1
— I L) T
AXIONS Q BALS POLLEN
STERIE
NEUTRAUNCG
NEUTROS No-SEE-UMs
ELECTRONS PANTED

8-BALLS MONOUTHS, RAYS
PYRAMIDS

Lr

0% 10%% 10%;
1 1 1 1 1 1 1
—BLACK HOLES, HJLED our BY..—

nlcm BUZZKILL

LENSING [ﬂmue ASTROMOMERS
OBEUISKS, NEUTRON 50LAR SYSTEM
G STARDATA ~ STRBILITY

MAYBE THOSE 0RBIT LINES IN SPACE

DIRGRAMS ARE REAL AND VERY HEAVY

Nikhil Padmanabhan

Cosmology and Chapel

”/28‘

Figure: A ULDM “Halo”

Nikhil Padmanabhan

100

100

104

105

106

Cosmology and Chapel

Mass Density

Momentum Density

0% 10% 10% 3% 06 % o0% 0% 090%O01% L0% 0% 0w S 0% 90% 0% 90.9%
Cumulative Mass in Soliton Cumulative Potential Energy in Soliton

6 %5 100 T80 200 20 300 Fo 00 T 5 160 150 200 70 300 o 400
Save Numbr Save Number

Figure: Collisions

The Schrodinger-Poisson Equations

” 2 /\ G

V1
Z@t vaw—l—mcbzp

e V20 = 4nGm/|y|?

Isolated bound-
ary conditions

Distributed FFTs are a key component!

13 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Why Chapel?

Efficiency of the Python code relied on the calling out to C for
fast FFTs.

Isolated boundary conditions required inserting steps between
the various FFT stages

o Required going back to Python
o Looping in Python was expensive

e Memory usage

Scaling to multiple nodes

14 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

History of Project

e PyUltraLight? An initial code in Python, driven by Jupyter
notebook
o Easy to use and modify, allowing numerical experiments

o Performant and multithreaded (made significant use of eg. numexpr,
FFTW)

e Extending to isolated potentials hit Python bottlenecks
e Attempted a skunkworks (2019/6/22) port to Chapel for a single
node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.
e Distributed Code
© Want to run larger Ng 4, can we extend the code?
o Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).?
o Validating the FFT led to the NAS NPB benchmark.

9Edwards et al, arXiv:1807.04037
®Note that Chapel can also interoperate with MPI.

15
Nikhil Padmanabhan Cosmology and Chapel /28‘

Slab Decompositions Are Simple

Figure: Pencil Decomposition

Nikhil Padmanabhan

http://www.2decomp.org/decomp.html

Cosmology and Chapel

Slab decompositions are
simpler (especially for the
end user)

Slab limits the amount of
parallelism expressed
(especially with pure MPI)
Use 1 slab per locale/node.
Limits Ngria = Nnodes. but in
practice, not limiting.
Reduce communication
complexity

Chapel Code is Expressive : Pencil and Paper

The Algorithm
Decompose array into slabs in the = direction
Fourier transform in the y direction?

Fourier transform in the z direction

Transpose x and y (all to all)

Fourier transform in the 2 direction

7
/28‘

Nikhil Padmanabhan Cosmology and Chapel

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el
yPlan.execute(myplane[0, ySrc.first, izl); FFTW 1D
}
// Z-transform
forall iy in offset(ySrc) {
zPlan.execute (myplane[0, iy, zSrc.firstl);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();
// X-transform, similar to Y-transform

Nikhil Padmanabhan Cosmology and Chapel

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el

yPlan.execute(myplane[0, ySrc.first

FFTW 1D
}

// Z-transform
forall iy in offsetkfSrc) {
zPlan.execute(myplane [0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();

Reduce comm congestion!

// X-transform, similar to Y-transform

Nikhil Padmanabhan Cosmology and Chapel

Chapel FFTs : Naive Performance

NPB-FT (Size D) Performance

9000 o=~ ===

. Chapel (Optimized) —— - - - - - - - - - ______~=T__
8000 sl (nial) ——

7000 f---- - T T
6000 [-~ T e
5000 [~ == T e
L s EECECECEEEEEEEEEEEEEEs
| SSeee e =ae e
I e E e EEEEE L ECEEEEEE
| s e '

16 64 128 256 512
Locales (x 36 cores / locale)

Gop/s

19 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Chapel Code is Expressive : A Performant
Implementation

overlap computation
and comm

forall iy in offset(ySrc) {
Plan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane

copy(Dst[...], myplane[...], myLineSize);

if (ix != xSrc.last) { low-level comm
copy (myplanel[...], Src[...], myLineSize);

}
}
batch FFTW calls (not shown)

20 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Chapel FFTs Scale Well Across Nodes : F =
64 xD

NPB-FT (Size F) Performance

= Chapel ——
.. UPC ——

10000
9000

Gop/s

64 128 256

Locales (x 36 cores / locale)

21 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Outline

Example Il : Data Munging

22 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Scriptiness

config const infile="/aux0/siam/catalog.fits";

config const hdu=2;

config const stringBufSize=1000;

config const iRow=10213;

All of these constants can be changed at runtime (no

recompilation required!)

23 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Interoperability

extern {

#include "fitsio.h"

}

ffopen(c_ptrTo(fptr), infile.c_str(), READONLY, c_ptrTo(status));

Chapel has much more robust ways to do this, but we're trying
to do this quickly.

24 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Reading : In Serial

// Define the array
var zcosmo : [0..#numRows] real(32);

ffopen(...);
// Get the column
var templt = "Z_COSMO";

ffgenn(fptr, CASEINSEN, templt.c_str()...);

// Read

ffgev(fptr, ..., colnum,
1,..., numRows, ..., c_ptrTo(zcosmo), ...)
ffclos(...);
}

// Complicated analysis

25 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Reading : In Parallel

// Define the array
var zcosmo = newBlockArr(O..#numRows, real(32));

coforall loc in Locales do on loc {
// my piece
var myDom=zcosmo.localSubdomain() ;
ffopen(...);
// Get the column
var templt = "Z_COSMO";

ffgcnn(fptr, CASEINSEN, templt.c_str()...);

// Read

ffgev(fptr, ..., colnum,
(myDom.low+1),...,myDom.size, ..., c_ptrTo(zcosmo[myDom.low]), ...);
ffclos(...);
¥

// Complicated analysis

Nikhil Padmanabhan Cosmology and Chapel

Outline

Conclusions

27 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

Summarizing...

e Productive

o Expressive when translating algorithms to code.

o Grid-heavy codes are easy to write. Domains/arrays are
first-class, and easy to “data-parallelize”.

Scalable across nodes/threads.

Scriptiness

Interoperability

o

@]

o

e Expressive parallelism
e Challenges

o Interactivity
o Size of community/existing codes/inertia.
o Tooling

Chapel is an expressive/productive language for research
problems!

28 /
Nikhil Padmanabhan Cosmology and Chapel 28‘

	Cosmology Meets Chapel
	Example I : Chapel and ULDM
	Distributed FFTs

	Example II : Data Munging
	Conclusions

