
Motivation:

The goal of cosmology is to understand the origin, evolution, and fate of the Universe.
Cosmology relies on modeling observations in their entirety in order to make inferences about the
underlying physics.

Physics:
1. Update particle positions and velocities:

2. Update particle positions and velocities:

Computation:
N-body simulation is performed using the
particle-mesh (PM) algorithm.

A single time step in the N-body simulation:

Cosmological Particle-Mesh
Simulation in Chapel

Chapel

Performance

Ben Albrecht, Nikhil Padmanabhan
Simulating the Universe

Productivity

References:
1. N. Padmanabhan, B. Albrecht, “Cosmological Particle-Mesh Simulations in
Chapel”, Proceedings of the PGAS Application Workshop (PAW), November
2017
2. PM GitLab: https://gitlab.com/bja/pm-paw2017
3. Chapel GitHub: https://github.com/chapel-lang/chapel

Chapel is a modern parallel programming language designed for productivity at scale.

Chapel supports:
General parallelism

A single syntax to describe any flavor of parallelism
Separation of Parallelism and Locality

Better suited for emerging heterogeneous architectures
Multiresolution Design

Parallelism and locality interface spans multiple layers of abstraction

Chapel is:
Open source

Licensed under Apache v2, hosted on GitHub
Portable

Runs on laptops, desktops, to Cray supercomputers
Productive

Includes a wide range of modern language features
Performant

Shared-memory: typically competitive with C+OpenMP
Distributed-memory: varies, but closing in on C+MPI

A PGAS language
Not restricted to static SPMD parallelism

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Multiresolution Design

Conclusions and Next Steps
Productivity
Chapel is usable as a productive language today.
• Hybrid parallel/distributed programming is made easy in Chapel, assuming key abstractions are

in place.
• It was not difficult to implement the PM code, the FFTW-compatible distribution, and skyline

arrays.
• Chapel’s first class C interoperability feature made interfacing with legacy code simple.
• Interoperability with MPI is functional, though performance is not ideal.
• Tooling was the biggest weakness felt during this work, including:

• Debugging
• Profiling
• Compilation times

Performance
• Chapel performance is within factor of 2 of C+MPI performance
• C code is pure MPI vs. Chapel being hybrid Qthreads+MPI

• This caused contention when accumulating onto grid in Chapel
• FFTW transposes are single-threaded, which penalizes Chapel’s performance
• Problem size scaling is largely dominated by FFT
• Chapel code uses atomics for assigning particles to grid points, trading performance for

simplicity

// Task parallelism in Chapel
// This will create ‘numTasks’ tasks to compute each iteration
coforall taskId in 0..#numTasks do

writeln(“Hello, world! from task ” + taskId);

// Data parallelism in Chapel
// This will create a number of tasks proportional to the available hardware
// and the size of the loop
forall msg in 0..#numMessages do

writeln(“Hello, world! from message ” + msg);

// The main loop of particle-mesh

proc main() {
// Initial conditions
makeZeldovichInitialConditions();
slabDecompose(PP);
...

do {
// Stream particles
streamParticles(log(aa), log(ahalf));

// Reshuffle particles across domains
slabDecompose(PP);

// Compute forces
pmforce(aa);

// Kick particles
kickParticles(log(aa),log(aa)+dloga);

// Stream particles
streamParticles(log(ahalf),

log(aa)+dloga);
} while (aa <= afinal);

}

Hardware
Broadwell Intel Xeon 2.2 GHz
44 cores (dual socket) per node
128 GB memory
Aries network

Software
Chapel 1.16.0.1
compiled with intel-17.0.4
ugni communication layer
Qthreads tasking layer
Compiled with: --fast

// Domains & FFTW Distribution

/*
Global view of storage abstracts data
distribution and parallel operations

Block distribution was extended to
support FFTW
*/
var AA,BB: [FFTW_Domain_Ghosted] real;
var PP = initializeParticlesOnGrid(Nc);

// C/MPI Interoperability

// Extern declaration exposes FFTW
extern proc fftw_mpi_plan_dft_r2c_3d(
n0 : c_ptrdiff, n1 : c_ptrdiff,
n2 : c_ptrdiff, ref inarr ,
ref outarr, comm : MPI_Comm,
flags : c_uint) : fftw_plan;

// Calling MPI and FFTW from Chapel
Barrier(CHPL_COMM_WORLD);
fwd = fftw_mpi_plan_dft_r2c_3d(
Ng, Ng,Ng, myElems[idx],
myElems[idx], CHPL_COMM_WORLD,
fftwPlanner);

Strong ScalingScaling with Problem Size

Chapel vs. C+MPI

2.	Use	FFTs	to	solve	the	Poisson	equation	for	the					
gravitational	potential

1.	Deposit	particles	onto	grid	to	define	grid	density

3.	Finite	difference	to	compute	forces	(gradients	of	
potential)

Particle-mesh	algorithm	visualized	in	2D

4.	Galaxy	positions	and	velocities	are	updated

*	C+MPI	implementation	requires	number	
of	ranks	to	be	divisible	by	Ngrid,	therefore	
C+MPI	88	core	timing	assumes	perfect	
scaling

Map of Universe by
Sloan Digital Sky Survey

// Domain slicing

// FFTW-distributed domain
const D : domain(3) dmapped
FFTW3D(Ng, nghosts=nghosts) = DSpace;

/* Domain slicing allows accessing
subdomains, e.g. real and imaginary
parts of FFT split up

*/

// Real space
const Dreal = D[..,..,0..#Ng];

// Real part
const Dre = D[..,..,

0..#(Ng+2) by 2 align 0];

// Imaginary part
const Dim = D[..,..,

0..#(Ng+2) by 2 align 1];

// Frequency
const Dk = D[..,..,0..#(Ng/2+1)];

