wuoversie WL g@risiar /osm—

U N |V E RS | TE D U Centre de Recherche en Informatique,
L U X E M B O U RG Signal et Automatique de Lille

13" International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM’22)

A performance-oriented comparative study of the Chapel

high-productivity language to conventional programming environments

Guillaume Helbecque! (speaker), Jan Gmys?, Tiago Carneiro?, Nouredine Melab?, Pascal Bouvry?

YUniversité de Lille 2Université du Luxembourg 3Université du Luxembourg
CNRS/CRIStAL FSTM DCS-FSTM/SnT
Inria Lille Nord-Europe Luxembourg Luxembourg

France

Background

Heterogeneity (CPU-GPU) and size of modern supercomputers (millions of cores) [1]:

Rmax Rpeak Power
Rank System Cores (TFlop/s) (TFlop/s) (kW)

7,630,848 442,010.0 937,212.0 29,899

1 Supercomputer Fugaku -
AbLLFX 48C 2.2GHz, Tofu int
RIKEN Center for Computa
Japan

2 Summit - IBM Power System AC922,
3.07GHz, NVIDIA Volta GV1
nfiniband, IBM

DOE/SC/0ak Ridge National Laboratory

BM POWER? 22C 2,414,592 148,600.0 200,794.9 10,096

United States 500
3 Sierra - IBM Power System AC922, IBM POWER9 22C 1,572,480 94,640.0 125,712.0 7,438 The |_|$t
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
nfiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL
United States

Top 3 of the Top500 bi-annual ranking (Nov. 2021)

Emergence of high-productivity programming languages [2]:
- Chapel, X10, Fortress, etc.

PMAM'22, April 2-6, 2022

Motivations and objectives

« Compare Chapel to conventional parallel programming libraries, in terms of

performance...
~on both shared- and distributed-memory systems;

* [llustrate the programming effort in each parallel environment... and provide a sense of
"productivity";

* Provide a useful data point using shared- and distributed-memory multi-core systems
for supercomputer programmers...
-~ through a well-known and complete parallel application.

PMAM'22, April 2-6, 2022

Outline

Formulation of the test-case

Parallel programming environments and implementations
> OpenMP
> Chapel
> MPI
~ Hybrid MPI+OpenMP

Experimental evaluation
> Testbed
> Shared-memory experiments
- Distributed-memory experiments
» Parallel overheads

Conclusions and future works

PMAM'22, April 2-6, 2022

Test-case: the Mandelbrot set

It is defined as the set of complex numbers c=a+ib € C such
that the sequence (z»)nen C C defined by

2
zo = 0, Zn+l = 2, + ¢,

remains bounded in C,

1 function Compute_pixel(a, b) :
2 x=y=0;

3 n=20;

4 | whilex*+y* <4andn < N do
5 t=x;

6 x=x-y’+a

7 y=2ty+b;

8 n=n+1;

9 end

10 I(a,b) = n/N;

11 end

Pseudo implementation of the Mandelbrot
set computation

PMAM'22, April 2-6, 2022

(1)

Monochrome Mandelbrot set

Embarrassingly parallel application, due to
the independency between pixels;
Domain decomposition method, along
the lines;

Static decomposition;

Lines are mapped in round-robin fashion.

Open Multi-Processing (OpenMP)

* OpenMP is an application programming interface;

* It is designed for:
- Ease of programming;
~ High performance, and,;
-~ Portability;
... only on shared-memory systems;

* OpenMP supports a multithreaded execution,
through a fork-join model;

* It provides simple high-level constructs, for work-
sharing among threads for example;

* For more details [3]: https://www.openmp.org/.

PMAM'22, April 2-6, 2022

1 function Compute_image_omp() :

2 #pragma omp parallel for schedule(static, 1);
3 for a = 0 to nb_lines do

4 for b = 0 to nb_columns do

5 ‘ Compute_pixel(a, b);

6 end

7

8

end
end

Pseudo OpenMP implementation of the
Mandelbrot set computation

https://www.openmp.org/

Cascade High Productivity Language (Chapel)

* Chapel is a PGAS-based language,;

« Itis designed for: s | eoforall lor = to o5 Toeuten do
g Ease Of prog rammi ng ’ T lcocff((i)(l)‘all rank = 0 to nb_tasks do
- High performance, and; 3
- Portability; st

2
3
4
5

for a = loc.id + rank = nb_locales to
nb_tasks = nb_locales do

6 for b = 0 to nb_columns do
. . 7 Compute_pixel(a, b);
* Chapel supports a multithreaded execution s elnd
model and allows: 2 | end
- Dataltask parallelism,; 1 end
- Locality control, etc; @ | end
. Pseudo Chapel implementation of the

* Here Chapel follows the SPMD execution model; Mandelbrot set computation

* For more details [4]: https://chapel-lang.org/.

PMAM'22, April 2-6, 2022

https://chapel-lang.org/

Message Passing Interface (MPI)

* Message-passing application programming interface;

* MPI is widely used is the academic and industrial areas:
> Portability;
> High performance, and,;
-~ Standardization,;

* MPI defines a communication protocol among
processes running on distributed-systems:
~ Point-to-point or two-sided,;
> One-sided,;
* Here MPI follows the SPMD execution model;

* For more details [5]: https://www.open-mpi.org/.

PMAM'22, April 2-6, 2022

1
2
3
4
5
6

7

8

for [= rank to nb_lines by commsize do
Compute_line(!);
if rank # 0 then
| MPI_Send(/*args*/);
else
| MPI_Recv(/*args®/);
end

end

Pseudo MPI two-sided implementation

of the Mandelbrot set computation

1

2
3

8
9

4
5

'
7

MPI Win_create(win);
MPI Fence();
for [= rank to nb_lines by commsize do
Compute_line(l);
if rank # 0 then
| MPI_Put(/*args*/);
end
MPI_Fence();
end

Pseudo MPI one-sided implementation

of the Mandelbrot set computation

https://www.open-mpi.org/

Hybrid MPI+OpenMP

 OpenMP and MPI are complementary...
> OpenMP is used for intranode parallelism;
~ MPI is used for distribution across nodes (1 MPI process/node).

MPI

Node 2
OpenMP

CPU 2 CPUy

thread 1
threed 2

=
ki
S
e -
n

:

Hybrid MPI+OpenMP approach

PMAM'22, April 2-6, 2022

Experimental environment

Grid’5000 French national testbed [6]:

PMOW

~ 6 computer nodes allocated,; S
> 32 AMD EPYC 7301 CPUs @2.20GHz / nodes;
> 25 Gbps Intel Ethernet Controller XXV710 network;
e gcc 10.2.1, Open MPI1 4.1.0, OpenMP 4.5, Chapel 1.25.0;
* Compile options:
> gcc —02 optimization flag;
- Chapel --fast optimization flag; S o
CHPL_RT_NUM_THREADS_PER_LOCALE 64
° i i i . CHPL_TARGET_CPU native
Chapel multi-locale configuration: CHPL 10T PLATFORM limjxﬂ
CHPL_LLVWM none
CHPL_COMM gasnet
CHPL_COMM_SUBSTRATE udp

GASNET_PSM_SPAWNER

ssh

PMAM'22, April 2-6, 2022

Shared-memory experiments

Fixed image size : 768x1024 pixels;

1 to 32 CPU cores

(hyperthreading enabled, 2 threads/core);

N controls the granularity;
5 different implementations.

N =100

---- Ideal speed-up

| —— chapel

—<— C+OpenMP

501 —e— C+MPI One-sided

—4— C+MPI Two-sided blocking

N = 1000 N = 10000 N = 100000

el

(X
3 401 C+MPI Two-sided non-blocking
o 7
® 30
o
0p] >

201 = 1 =

101 Z | LI L#

= /
148 16 32 64 148 16 32 64 148 16 32 64 148 16 32 64

PMAM'22, April 2-6, 2022

Processing units

Speed-up achieved by all five shared-memory implementations

Distributed-memory experiments

Fixed image size : 3840x5120 pixels;
1 to 192 CPU cores (hyperthreading disabled);

N controls the granularity;

5 different implementations.

200

150+

Speed-up

50+

PMAM'22, April 2-6, 2022

N =100

N = 1000 N = 10000 N = 100000

Ideal speed-up
—— Chapel
—e— C+MPI+OpenMP
—e— C+MPI One-sided
—+— C+MPI Two-sided blocking

C+MPI Two-sided non-blocking

//,‘é%: - _
1 32 64 96 128 192 1 32 64 96 128 192 1 32 64 96 128 192 1 32 64 96 128 192

Processing units

Speed-up achieved by all five distributed-memory implementations

Parallel overheads

* N=1 to highlight the communication overheads;
* Fixed image size: 768x1024 (shared) and 3840x5120 (distributed);
* Chapel relies by default on the gthreads tasking layer [7].

g Chapel 1 MPI Two-sided non-blocking Il MPI One-sided
v OpenMP I MPI Two-sided blocking] MPI + OpenMP
0.008 | §
= ’ @ 2
2 0.006 I I £
£ %9 E 15
-t -t
5 5
S 0.0041 7 S
© ©
-+~ 7 -+~
E 00021 g £
S I I S
0.000, gg, % % % %ﬁ . A o2t]
8 16 32 64 32 64 96
Processing units Processing units

Computational overhead measured by all implementations in shared- (left) and distributed-memory (right) experiments

PMAM'22, April 2-6, 2022

Conclusions and future works

e Chapel...
- outperforms its counterparts in shared-memory, and;
- competes with hybrid MPI+OpenMP in distributed-memory.

* The qgthreads default tasking layer of Chapel could explain these performances...
- although it seems to suffer from the lack of high-performance network between
nodes.

* We plan to investigate...

- more complex benchmarks, involving message aggregation and data replication;
- other Chapel features, such as distributed iterators, specific data structures, efc.

PMAM'22, April 2-6, 2022

Some references

[1] TOP500 ranking. https://www.top500.org/

[2] E. Lusk and K. Yelick. 2007. Languages for High-Productivity Computing:the DARPA HPCS
Language Project. Parallel Processing Letters 17 (2007), 89—-102.

[3] OpenMP API. The OpenMP API specification for parallel programming. https://www.openmp.org
[4] Open MPI. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org
[5] Chapel. The Chapel Parallel Programming Language. https://chapel-lang.org

[6] Grid’5000. https://www.grid5000.fr

[7] K. Wheeler, R. Murphy, D. Stark, and B. Chamberlain. 2011. The Chapel Tasking Layer Over
Qthreads.

PMAM'22, April 2-6, 2022

http://www.top500.org/
https://www.openmp.org/
https://www.open-mpi.org/
https://chapel-lang.org/
https://www.grid5000.fr/

Thank you for your attention !

Any gquestion ? Any remark ?

guillaume.helbecque@univ-lille.fr

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

