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Background

● Heterogeneity (CPU-GPU) and size of modern supercomputers (millions of cores) [1]:

● Emergence of high-productivity programming languages [2]: 
➢ Chapel, X10, Fortress, etc. 

Top 3 of the Top500 bi-annual ranking (Nov. 2021)
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Motivations and objectives

● Compare Chapel to conventional parallel programming libraries, in terms of 
performance...

➢ on both shared- and distributed-memory systems;

● Illustrate the programming effort in each parallel environment... and provide a sense of 
"productivity";

● Provide a useful data point using shared- and distributed-memory multi-core systems 
for supercomputer programmers…

➢ through a well-known and complete parallel application.
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Outline

● Formulation of the test-case

● Parallel programming environments and implementations
➢ OpenMP
➢ Chapel
➢ MPI
➢ Hybrid MPI+OpenMP

● Experimental evaluation
➢ Testbed
➢ Shared-memory experiments
➢ Distributed-memory experiments
➢ Parallel overheads

● Conclusions and future works
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Test-case: the Mandelbrot set

It is defined as the set of complex numbers                      such 
that the sequence                     defined by 

remains bounded in    .
Monochrome Mandelbrot set

Pseudo implementation of the Mandelbrot 
set computation

● Embarrassingly parallel application, due to 
the independency between pixels;

● Domain decomposition method, along 
the lines;

● Static decomposition;
● Lines are mapped in round-robin fashion.
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Open Multi-Processing (OpenMP)

● OpenMP is an application programming interface;

● It is designed for:
➢ Ease of programming;
➢ High performance, and;
➢ Portability;
… only on shared-memory systems;

● OpenMP supports a multithreaded execution, 
through a fork-join model;

● It provides simple high-level constructs, for work-
sharing among threads for example; 

● For more details [3]: https://www.openmp.org/.

Pseudo OpenMP implementation of the 
Mandelbrot set computation

https://www.openmp.org/
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Cascade High Productivity Language (Chapel)

● Chapel is a PGAS-based language;

● It is designed for:
➢ Ease of programming;
➢ High performance, and;
➢ Portability;

● Chapel supports a multithreaded execution 
model and allows:

➢ Data/task parallelism;
➢ Locality control, etc;

● Here Chapel follows the SPMD execution model;

● For more details [4]: https://chapel-lang.org/.

Pseudo Chapel implementation of the 
Mandelbrot set computation

https://chapel-lang.org/
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Message Passing Interface (MPI)
● Message-passing application programming interface;

● MPI is widely used is the academic and industrial areas:
➢ Portability;
➢ High performance, and;
➢ Standardization;

● MPI defines a communication protocol among 
processes running on distributed-systems:

➢ Point-to-point or two-sided;
➢ One-sided;

● Here MPI follows the SPMD execution model;

● For more details [5]: https://www.open-mpi.org/. Pseudo MPI one-sided implementation 
of the Mandelbrot set computation

Pseudo MPI two-sided implementation 
of the Mandelbrot set computation

https://www.open-mpi.org/


PMAM'22, April 2–6, 2022 9

Hybrid MPI+OpenMP

● OpenMP and MPI are complementary…
➢ OpenMP is used for intranode parallelism;
➢ MPI is used for distribution across nodes (1 MPI process/node).

Hybrid MPI+OpenMP approach
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Experimental environment

● Grid’5000 French national testbed [6]:
➢ 6 computer nodes allocated;
➢ 32 AMD EPYC 7301 CPUs @2.20GHz / nodes;
➢ 25 Gbps Intel Ethernet Controller XXV710 network;

● gcc 10.2.1, Open MPI 4.1.0, OpenMP 4.5, Chapel 1.25.0;

● Compile options:
➢ gcc -O2 optimization flag;
➢ Chapel --fast optimization flag;

● Chapel multi-locale configuration:
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Shared-memory experiments
● Fixed image size : 768x1024 pixels;
● 1 to 32 CPU cores (hyperthreading enabled, 2 threads/core);
● N controls the granularity;
● 5 different implementations.

Speed-up achieved by all five shared-memory implementations
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Distributed-memory experiments
● Fixed image size : 3840x5120 pixels;
● 1 to 192 CPU cores (hyperthreading disabled);
● N controls the granularity;
● 5 different implementations.

Speed-up achieved by all five distributed-memory implementations
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Parallel overheads

● N=1 to highlight the communication overheads;
● Fixed image size: 768x1024 (shared) and 3840x5120 (distributed);
● Chapel relies by default on the qthreads tasking layer [7].

Computational overhead measured by all implementations in shared- (left) and distributed-memory (right) experiments
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Conclusions and future works

● Chapel...
➢ outperforms its counterparts in shared-memory, and;
➢ competes with hybrid MPI+OpenMP in distributed-memory.

● The qthreads default tasking layer of Chapel could explain these performances…
➢ although it seems to suffer from the lack of high-performance network between 

nodes.

● We plan to investigate…
➢ more complex benchmarks, involving message aggregation and data replication;
➢ other Chapel features, such as distributed iterators, specific data structures, etc.
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Any question ? Any remark ?
 

guillaume.helbecque@univ-lille.fr

Thank you for your attention !
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