
A performance-oriented comparative study of the Chapel
 high-productivity language to conventional programming environments

13th International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM’22)

Guillaume Helbecque1 (speaker), Jan Gmys1, Tiago Carneiro2, Nouredine Melab1, Pascal Bouvry3

1Université de Lille
CNRS/CRIStAL

Inria Lille Nord-Europe
France

3Université du Luxembourg
DCS-FSTM/SnT

Luxembourg

2Université du Luxembourg
FSTM

Luxembourg

PMAM'22, April 2–6, 2022 2

Background

● Heterogeneity (CPU-GPU) and size of modern supercomputers (millions of cores) [1]:

● Emergence of high-productivity programming languages [2]:
➢ Chapel, X10, Fortress, etc.

Top 3 of the Top500 bi-annual ranking (Nov. 2021)

PMAM'22, April 2–6, 2022 3

Motivations and objectives

● Compare Chapel to conventional parallel programming libraries, in terms of
performance...

➢ on both shared- and distributed-memory systems;

● Illustrate the programming effort in each parallel environment... and provide a sense of
"productivity";

● Provide a useful data point using shared- and distributed-memory multi-core systems
for supercomputer programmers…

➢ through a well-known and complete parallel application.

PMAM'22, April 2–6, 2022 4

Outline

● Formulation of the test-case

● Parallel programming environments and implementations
➢ OpenMP
➢ Chapel
➢ MPI
➢ Hybrid MPI+OpenMP

● Experimental evaluation
➢ Testbed
➢ Shared-memory experiments
➢ Distributed-memory experiments
➢ Parallel overheads

● Conclusions and future works

PMAM'22, April 2–6, 2022 5

Test-case: the Mandelbrot set

It is defined as the set of complex numbers such
that the sequence defined by

remains bounded in .
Monochrome Mandelbrot set

Pseudo implementation of the Mandelbrot
set computation

● Embarrassingly parallel application, due to
the independency between pixels;

● Domain decomposition method, along
the lines;

● Static decomposition;
● Lines are mapped in round-robin fashion.

PMAM'22, April 2–6, 2022 6

Open Multi-Processing (OpenMP)

● OpenMP is an application programming interface;

● It is designed for:
➢ Ease of programming;
➢ High performance, and;
➢ Portability;
… only on shared-memory systems;

● OpenMP supports a multithreaded execution,
through a fork-join model;

● It provides simple high-level constructs, for work-
sharing among threads for example;

● For more details [3]: https://www.openmp.org/.

Pseudo OpenMP implementation of the
Mandelbrot set computation

https://www.openmp.org/

PMAM'22, April 2–6, 2022 7

Cascade High Productivity Language (Chapel)

● Chapel is a PGAS-based language;

● It is designed for:
➢ Ease of programming;
➢ High performance, and;
➢ Portability;

● Chapel supports a multithreaded execution
model and allows:

➢ Data/task parallelism;
➢ Locality control, etc;

● Here Chapel follows the SPMD execution model;

● For more details [4]: https://chapel-lang.org/.

Pseudo Chapel implementation of the
Mandelbrot set computation

https://chapel-lang.org/

PMAM'22, April 2–6, 2022 8

Message Passing Interface (MPI)
● Message-passing application programming interface;

● MPI is widely used is the academic and industrial areas:
➢ Portability;
➢ High performance, and;
➢ Standardization;

● MPI defines a communication protocol among
processes running on distributed-systems:

➢ Point-to-point or two-sided;
➢ One-sided;

● Here MPI follows the SPMD execution model;

● For more details [5]: https://www.open-mpi.org/. Pseudo MPI one-sided implementation
of the Mandelbrot set computation

Pseudo MPI two-sided implementation
of the Mandelbrot set computation

https://www.open-mpi.org/

PMAM'22, April 2–6, 2022 9

Hybrid MPI+OpenMP

● OpenMP and MPI are complementary…
➢ OpenMP is used for intranode parallelism;
➢ MPI is used for distribution across nodes (1 MPI process/node).

Hybrid MPI+OpenMP approach

PMAM'22, April 2–6, 2022 10

Experimental environment

● Grid’5000 French national testbed [6]:
➢ 6 computer nodes allocated;
➢ 32 AMD EPYC 7301 CPUs @2.20GHz / nodes;
➢ 25 Gbps Intel Ethernet Controller XXV710 network;

● gcc 10.2.1, Open MPI 4.1.0, OpenMP 4.5, Chapel 1.25.0;

● Compile options:
➢ gcc -O2 optimization flag;
➢ Chapel --fast optimization flag;

● Chapel multi-locale configuration:

PMAM'22, April 2–6, 2022 11

Shared-memory experiments
● Fixed image size : 768x1024 pixels;
● 1 to 32 CPU cores (hyperthreading enabled, 2 threads/core);
● N controls the granularity;
● 5 different implementations.

Speed-up achieved by all five shared-memory implementations

PMAM'22, April 2–6, 2022 12

Distributed-memory experiments
● Fixed image size : 3840x5120 pixels;
● 1 to 192 CPU cores (hyperthreading disabled);
● N controls the granularity;
● 5 different implementations.

Speed-up achieved by all five distributed-memory implementations

PMAM'22, April 2–6, 2022 13

Parallel overheads

● N=1 to highlight the communication overheads;
● Fixed image size: 768x1024 (shared) and 3840x5120 (distributed);
● Chapel relies by default on the qthreads tasking layer [7].

Computational overhead measured by all implementations in shared- (left) and distributed-memory (right) experiments

PMAM'22, April 2–6, 2022 14

Conclusions and future works

● Chapel...
➢ outperforms its counterparts in shared-memory, and;
➢ competes with hybrid MPI+OpenMP in distributed-memory.

● The qthreads default tasking layer of Chapel could explain these performances…
➢ although it seems to suffer from the lack of high-performance network between

nodes.

● We plan to investigate…
➢ more complex benchmarks, involving message aggregation and data replication;
➢ other Chapel features, such as distributed iterators, specific data structures, etc.

PMAM'22, April 2–6, 2022 15

Some references

[1] TOP500 ranking. https://www.top500.org/

[2] E. Lusk and K. Yelick. 2007. Languages for High-Productivity Computing:the DARPA HPCS
Language Project. Parallel Processing Letters 17 (2007), 89–102.

[3] OpenMP API. The OpenMP API specification for parallel programming. https://www.openmp.org

[4] Open MPI. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org

[5] Chapel. The Chapel Parallel Programming Language. https://chapel-lang.org

[6] Grid’5000. https://www.grid5000.fr

[7] K. Wheeler, R. Murphy, D. Stark, and B. Chamberlain. 2011. The Chapel Tasking Layer Over
Qthreads.

http://www.top500.org/
https://www.openmp.org/
https://www.open-mpi.org/
https://chapel-lang.org/
https://www.grid5000.fr/

Any question ? Any remark ?

guillaume.helbecque@univ-lille.fr

Thank you for your attention !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

