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Abstract—We investigated a software cache for PGAS PUT
and GET operations. The cache is implemented as a software
write-back cache with dirty bits, local memory consistency
operations, and programmer-guided prefetch. This cache sup-
ports programmer productivity while enabling communication
aggregation and overlap. We evaluated an implementation of
this cache for remote data within the Chapel programming lan-
guage. The cache provides a 2x speedup for several distributed
memory application benchmarks written in Chapel across a
variety of network configurations. In addition, we observed
that improvements to compiler optimization did not remove
the benefit of the cache.
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I. INTRODUCTION

Partitioned Global Address Space (PGAS) languages and
libraries often support communication overlap and aggrega-
tion. Such support can include explicit user calls, compiler
optimizations, or runtime support. Each approach includes
trade-offs between program complexity, mechanism applica-
bility, and resulting performance.

The PGAS programming model is built upon the idea
of one-sided PUT and GET operations. A PUT is a pos-
sibly hardware-supported message that writes to a memory
location on another node in a distributed memory system.
Similarly, a GET reads from a memory location in another
node. Communication overlap and aggregation are key to
reducing the impact of the latency of these PUT and GET
operations. PGAS systems have primarily used three tech-
niques to support communication overlap and aggregation:
relaxed memory models, explicit non-blocking PUT and
GET calls, and compiler optimization. However, each of
these approaches has drawbacks (see Section IV).
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At the same time, the existing Chapel compiler and run-
time produce programs with too much fine-grained commu-
nication. While we expect the Chapel compiler to improve in
this regard, fine-grain communication is in inherent to many
PGAS programs. These fine-grain PUT and GET operations
can really limit performance if the communication is not op-
timized. At the same time, a compiler alone cannot optimize
these operations in some common situations (see Section
IV-B). In order to address this problem, we implemented a
runtime cache for remote data.

This paper provides the following contributions: a descrip-
tion of the new cache, a discussion of different methods
to overlap and aggregate PUTs and GETs, and an initial
experimental evaluation of the cache. In addition, we show
that such a cache has value even with improved compiler
optimization. While we worked with the Chapel language,
this cache could offer benefits to other PGAS languages and
libraries including UPC [1], UPC++ [2], Fortran 2008 [3],
and OpenSHMEM [4] to name a few.

II. CHAPEL BACKGROUND

Chapel [5], [6] is a parallel programming language de-
signed for productive scalable computing. It supports paral-
lelism within and across nodes via high-level abstractions for
data parallelism and task parallelism. Chapel was designed
from first principles rather than by extending an existing
language. It is imperative and uses block-structured syntax
like C, C++, Fortran, Java, and Python.

As a PGAS language, Chapel allows programmers to
specify the placement of both data and computation. Chapel
programs can run across many nodes in a compute cluster
or supercomputer. These nodes are called locales in Chapel.
One important feature of Chapel is distributed arrays [7],
[8]. Array distributions can be specified when an array
is declared. Code working with the distributed array will
perform implicit communication to access the array. In this
way, a parallel algorithm can be separated from potentially
platform-specific communication details. In cases where this
separation of concerns strategy breaks down, Chapel’s multi-
resolution design philosophy allows developers to incremen-
tally add architectural detail to realize full performance.



A. Chapel Memory Consistency

When adding communication overlap — which can take
the form of prefetch and write behind — it is important
to understand the memory consistency model in order to
know when these optimizations can be applied. Although
Chapel’s memory model is a work in progress [9], it is
similar to the memory models of CI11 [10], C++11 [11],
and UPC [1]. These memory models all use the idea of
sequential consistency for data-race-free programs. This
model is robust enough to apply in a distributed memory
context. In particular, the rules for loads and stores can be
straightforwardly extended into rules for GETs and PUTs.

The Chapel, C11, and C++11 memory models provide
some lower-level features in addition to sequential consis-
tency for data-race-free programs. In particular, they support
acquire, and release operations. An acquire indicates that
any read or write that is requested after the acquire cannot be
started before the acquire. A release indicates that any read
or write that is started before the release cannot complete
after the release. Note that programs in Chapel, C11, and
C++11 do not typically require explicit acquire or release
operations. Instead, operations such as acquiring a lock,
starting a thread, or using an aromic variable imply acquire
and/or release semantics. See the article by Boehm [12] for
an introduction to memory consistency models.

As a concrete example, consider the psuedo-code in
Listing 1 which contains two tasks that are run in parallel.
Without acquire and release, there is nothing to prevent the
compiler or the processor from reordering these instructions.
Task A could initiate the write to the notify variable
before the write to x has completed. Task B could prefetch
the value of x and use a value from before the while loop.
Or, task B could read notify into a register once and
loop forever since the register will not change in the while
loop. The fundamental problem is that the compiler and
processor have no way to know that the notify variable
is actually being used for inter-task communication. These
systems are trying to improve performance with prefetch and
write-behind. These issues come up for programs in many
PGAS languages whether or not the relevant variables are
remote.

To prevent the problematic optimization, this program
must indicate that notify is being used to synchronize
the two threads. Listing 2 shows the acquire and release
operations that will ensure correctness. Under Chapel’s
memory model, adding acquire and release will ensure
correct execution even when task A, task B, notify, and x
are on different locales. The release operation in task A will
cause the write to x to occur before notify is updated. At
the same time, the acquire operation in task B will cause
the value of x to be read after notify is read. Note that a
Chapel program would typically use sync or atomic vari-
ables to communicate between these two tasks. The sync

Listing 1 Racy program with incorrect synchronization

// global variables
var x=0;
var notify=0;

begin { // task A: a producer task
x=42;
notify=1;
}
begin { // task B: a consumer task
// INCORRECT synchronization!
while 0 == notify {
/% wait #*/
}
compute_with (x);

}

// INCORRECT synchronization!

Listing 2 Correct synchronization

// global variables
var x=0;
var notify:atomic int;

begin { // task A: a producer task
x=42
notify.write (1,
order=memory_order_release);
}
begin { // task B: a consumer task
// walit for notification from A
while 0 == notify.read(
memory_order_acquire) {
/% wait */
}
compute_with (x);

}

and atomic variables default to sequential consistency and
so imply both acquire and release. We used explicit acquire
and release operations here in order to introduce these ideas
since our cache will need to differentiate between acquire
and release. As long as our optimization respects acquire
and release, the memory model allows prefetch and write-
behind for local and remote memory locations.

III. IMPLEMENTATION

This section describes the cache for remote data that we
have designed and implemented. Source code is available in
the open-source Chapel project repository'. It is a software
write-back cache with automatic sequential prefetch and
optional programmer-guided prefetch.

A. Implementation Overview

At a high level, the cache for remote data works by adding
a layer between Chapel statements that refer to remote data

IThe open source Chapel repository is available at
http://github.com/chapel-lang/chapel.
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and the underlying PGAS library that handles the network
requests. The cache stores cache pages that contain cache
lines. GETs are always rounded up to whole cache lines.
Data structures keep track of valid or dirty areas inside
each cache page. Valid regions are those that have been
read and dirty regions are those that have been written to
but for which a network PUT operation has not yet started.
Thus, it is a write-back cache. This design allows the cache
to aggregate writes. Besides PUT and GET operations, the
cache supports acquire and release operations, programmer-
guided prefetch, and automatic sequential read-ahead.

Where Chapel statements would cause a GET to occur, the
cache for remote data rounds up the size of the GET to whole
cache lines and stores the fetched data in the cache. This
approach works with spatial and temporal locality: accesses
to nearby memory or repeated accesses to the same memory
can often be completed without communication.

Where Chapel statements would cause a PUT to occur,
the cache for remote data stores the new value in the cache
and records which bytes were written (by marking those
bytes as dirty) so that adjacent memory locations are not
inadvertently updated when the PUT completes. It then
defers initiating the PUT until it either encounters a release
or the number of dirty pages is greater than a configurable
maximum. By putting off starting the PUT, the cache is able
to aggregate PUTs to adjacent memory locations. Note that
in order for sequential programs to work correctly when
these PUTSs are deferred, the PUT value must be stored in
the cache and returned when the same task reads the value it
just wrote. Note that unlike GETs, PUTs do not round up to
cache lines since without a traditional concurrency protocol
(such as those described in [13]) we cannot safely overwrite
any memory other than what the programmer requested.

The cache supports a prefetch hint and automatic sequen-
tial prefetch. These prefetch operations are implemented
with non-blocking GETs. If the prefetched region of the
cache is read, the implementation will wait for these non-
blocking operations. The automatic prefetch is triggered
when two cache lines within the same cache are separately
read. In that case, the implementation reads the rest of
the cache page and marks that cache page with a prefetch
trigger. When a page with the prefetch trigger is read, an
asynchronous prefetch for the next region needing prefetch
is started. Note that neither form of automatic prefetch
requires that the prefetched data be valid memory from
the application’s point of view. The implementation avoids
prefetching memory that might be outside of addressable
memory. For the GASNet fast segment configuration,
the implementation considers any address within the pre-
allocated heap to be addressable. For the everything
segment, the implementation does not prefetch data outside
of a requested system page.

We chose a conservative memory consistency protocol
that does not add messages beyond the original PUTs and

GETs. An acquire has the effect of invalidating everything
in the cache and a release causes the implementation to
complete any pending operations.

B. Cache Data Structures

We implemented a 2Q cache since they are reported to
perform better than LRU under real work loads [14]. Cache
entries are organized in a pointer tree: a two-level hashtable
with distinct hashing functions that select disjoint parts of
the remote address at each of the two levels. Each hash table
bucket stores a linked list of cache entries. Each cache entry
points to a cache page, which stores 1024 bytes. The cache
lines within that page are 64 bytes each. Since network GETs
are rounded up to fill entire cache lines, all GETs are aligned
to the cache line size. Each cache entry stores 1 bit per cache
line to record which cache lines are valid. Each cache entry
also records which areas have pending writes using dirty
bits. It uses one bit per byte to record the modified addresses
with a byte-level granularity. In order to minimize the size
of each cache entry, the cache entry contains a pointer to a
dirty bits structure. The implementation supports a limited
number of dirty pages at a time.

Since several tasks might be executed by the same OS
thread and all share a cache, each task stores a sequence
number that indicates last time an acquire was run on that
task. We also keep track of the sequence numbers for the first
and last read and write to each cache page. These sequence
numbers allow the implementation to detect an acquire in
the requesting task that occurred after the cache page was
populated. We also use these sequence numbers to handle
conflicting accesses to the same cache page.

This cache was initially developed on a small cluster with
an InfiniBand network, and the sizes of the cache elements
were determined experimentally using this network. We
chose 64 bytes for the size of a cache line for two reasons.
First, it is the largest request size which has no significant
increase in latency from an 8 byte request. Second, it is a
typical cache line size in current microprocessors, and so
data structures that are designed to work well with 64-byte
cache lines to better use L1 and L2 cache will also work
well in a distributed memory setting. We chose 1024 bytes
for the size of a cache page because it is the smallest request
size that allows close to peak bandwidth. A larger page size
enables larger contiguous network transfers and thus higher
bandwidth, but larger cache pages also increase the memory
overhead of the cache in situations where just a few bytes
per page are accessed.

Our implementation uses fixed size and pre-allocated
memory for all cache structures. For the experiments re-
ported in Section V, each thread-local cache can store up to
IMiB of data and consumes about 1.75MiB of memory. We
used a maximum of 32 dirty pages in the experiments.



C. Cache Operations

Having described the structures used by the remote cache
to perform its bookkeeping, let us now turn our attention to
exactly how the cache for remote data handles GET, PUT,
release, and acquire operations.

When processing a GET, the implementation first checks
to see if the needed cache page already has the relevant
data from a PUT or GET operation after the task’s last
acquire. If so, it returns the cached data. If not, it will start
by waiting for any conflicting operations such as a pending
write or prefetch to the same cache page. If no cache page
was found, it will find an unused cache page, evicting one
if necessary. Then it will immediately start a non-blocking
GET to read the relevant cache lines. While the GET is
ongoing, the implementation adjusts the pointer tree and the
2Q queues as necessary and marks the relevant cache lines
as valid. Finally, it waits for the GET to complete and returns
the requested data.

When processing a PUT, the implementation searches the
pointer tree for the relevant cache page. If none is found,
it finds an unused cache page, evicting one if necessary.
Since PUTs also require dirty bits, it finds an unused dirty
bits entry if the cache entry does not already have one,
cleaning a dirty page if necessary (as described below). The
implementation invalidates the relevant cache lines if they
were read before the task’s last acquire. Then it waits for
any network operation that could overlap with regions of the
cache page that it is about to overwrite. Finally, it copies the
data into the appropriate part of the cache page and updates
the dirty bits accordingly.

Note that the technique of waiting for conflicting cache
operations will cause a write to a cache page followed by
a read to a different portion of a cache page to wait for
the write to complete and then do a new GET of the read
region. In the case that the read is to the same values that
were written, the written values are returned without delay.

To clean a dirty page, the cache needs only to start PUTs
for any region marked dirty. It is not necessary to wait for
those PUTs to complete to clean a page. To start the PUTs,
the implementation finds each contiguous section of dirty
memory locations within a single cache page and creates
a request for it. In this manner, PUTs to adjacent memory
locations are aggregated into fewer and larger PUTs, up to
the cache page size.

On a release operation, the implementation cleans all dirty
pages and then waits for all operations to complete.

On an acquire operation, the cache conceptually flushes
all data. It sets the task-local acquire sequence number to
the cache’s current sequence number. Cache data will be
refreshed when the task accesses any existing cache page.

There are Chapel communication operations that do not
reduce to simple blocking put or get, such as strided get
and put operations. In our implementation, we handle those
by wrapping them with release and acquire fences. Chapel

Listing 3 Allocation, freeing, and the cache

// global variables
class Point { var x,y: int; }
p = new Point (1,2);
on Locales[1] {
p.x = 5; p.y = 10;
free(p);
}

also supports network atomic operations for read-modify-
write activity, which are supported by the fences added by
the compiler as described in the next section.

D. Memory Consistency

Acquire and release are necessary for correct program
behavior and in some cases are implied by the Chapel
memory model for sequential programs. We modified the
Chapel compiler to add acquire and release fences to the on
statement, task creation, task join operations, sync variable
use, and atomic variable use. The task operations need a
fence in our implementation because we chose to create one
cache per OS thread. In contrast, if there were one cache
per locale, the task creation and join operations would not
require fences. However, different tasks performing fences
on the global cache could cause significant interference.

The on statement requires a fence since each locale has
a separate cache. The concept of the on statement is to
migrate a sequential execution context to another locale. In
other words, the on statement is not a parallel operation:
a serial Chapel program can use on statements. A fence
ensures that program order is preserved even as the program
moves to another locale and starts to work with a different
cache.

Let us consider two example programs to illustrate the
memory model we are supporting and to explain the im-
plications of the cache. Recall the corrected program in
Listing 2. When notify is atomic and written to with a
release in task A, the cache will complete all operations —
including the write to x — before updating notify. In
task B, reading notify with acquire causes the cache to
discard any cached values, including any cached value of x
from before the acquire operation.

The second example program, shown in Listing 3, will
help to demonstrate how the cache interacts with the memory
allocator. First, after the Point p is allocated, the fence
implied by the on statement causes the current value of p
to be communicated to the portion of the program running
on Locale 1. For the portion of the program deallocating
the memory, the writes setting the point value to (5,10)
will be completed before the memory is freed because the
free function is implemented with an on statement and
thus implies a fence. Note that if Chapel supported remote
heap allocation and deallocation without an on statement, it
would be necessary to include fences in those operations.



E. Implementation Challenges

It took significant effort to implement this cache effi-
ciently enough to see improved performance. The implemen-
tation described in this paper is the fourth design we tried.
The basic challenge is that the network is already very fast.
For a low-latency network, a small PUT or GET completes
in approximately 2 ps. That provides roughly enough time
for 1 call to malloc; 20 processor synchronizations; 20
processor cache misses; or 2000 machine instructions.

These numbers strongly influenced our implementation.
All memory needed by the cache is pre-allocated. The cache
starts a non-blocking GET as soon as possible and performs
bookkeeping while the GET is underway. Using one cache
per OS thread avoids processor synchronization. We did
our best to minimize the memory reads and writes while
processing a GET or PUT by avoiding repeated enqueuing
and dequeuing of pending operations.

IV. DISCUSSION

In this section, we will compare our approach to four
other strategies: weak memory consistency, compiler opti-
mization, explicit non-blocking communication, and explicit
communication aggregation.

First, note that it is not necessary to modify Chapel
programs to take advantage of the cache. To achieve good
performance with the cache, a Chapel program needs to have
fairly long running tasks without too much synchronization.
The most common idiom for parallelism in Chapel, the
forall loop, typically creates such tasks.

A. Preserving Program Order

Our cache for remote data provides Chapel programs
with some of the performance benefits normally limited to
programming models with a weaker memory consistency
model. We will use OpenSHMEM [4] as a concrete ex-
ample in order to understand the benefits and drawbacks
of weaker memory consistency. OpenSHMEM is a PGAS
programming library that requires explicit fences in order
to guarantee that two PUTs complete in program order.
See Listing 4 for an example sequential program in which
an OpenSHMEM implementation could reorder the PUTs.
Note that it would not matter if all of the PUTs and GETs
were implemented with OpenSHMEM atomics (such as
shmem_int_fadd for example) since the OpenSHMEM
atomics guarantee only atomicity and do not have any
implication for the order of operations.

The weak ordering in OpenSHMEM is attractive because
it can easily be implemented to achieve high performance.
There are two reasons for this property. First, OpenSHMEM
programs can take advantage of networks that reorder mes-
sages in order to achieve higher performance. An example
might be a network that load balances across multiple
network links. PUTs can be buffered and load balanced
across the different network links even if that will result

Listing 4 Example of OpenSHMEM’s weak memory consis-
tency. Without an explicit fence, the PUT operations on lines
2 and 3 can be reordered. As a result, when this program
completes, y could have any of the values 0, 2, or 3.

1 x is a global variable initialized to O
2 PUT 2 into x

3 PUT 3 into x

4 yv = GET x

in a change in delivery order. Second, an implementation
is free to buffer PUTs and send them off in a “fire and
forget” manner. When remote completion of PUT operations
is important, programmers must use an OpenSHMEM fence
or quiet operation. Note that this weak memory model does
not help overlap GETs with computation since the result of
the GET must be returned. To enable overlap, OpenSHMEM
extensions provide non-blocking GET operations such as
shmemx_int_get_nb that use explicit handles. We will
discuss this explicit handle approach in Section IV-C.

The performance benefits of OpenSHMEM PUTSs come at
the cost of weak memory consistency semantics. This trade-
off might not be appropriate for a PGAS language. We have
already discussed a totally sequential program that can have
potentially misleading outcomes in Listing 4. These mislead-
ing outcomes are an acceptable trade-off for OpenSHMEM
because the C or Fortran program calling the OpenSHMEM
library will still have reasonable memory consistency for
local and sequential operations. PGAS languages like UPC
and Chapel seek to unify programming for local and remote
data, so that the same algorithm can operate on distributed
or local arrays, depending on variable declarations. Since
the expression of the algorithm is meant to be the same
whether or not the data is local, these languages need to
have the same consistency semantics for local and remote
data. At the same time, it would be confusing not to have
program order semantics for sequential and local programs.
Therefore, these languages need to extend program order
semantics to operations on remote data.

A cache for remote data allows a PGAS language im-
plementation to have both the performance benefits of
the OpenSHMEM approach and a more understandable
memory consistency model. In particular, the cache can
distinguish between conflicting and non-conflicting oper-
ations. The cache handles two conflicting operations by
explicitly waiting for the completion of the first operation.
Any non-conflicting operations can be freely reordered by
the network.

B. Interaction with Compiler Optimization

The cache for remote data is not a replacement for
good compiler optimization. Instead, it enhances the reach
of compiler optimizations that might otherwise be limited



in applicability by the need to preserve program order
semantics. Consider the case of compiler optimizations for
UPC programs targeting a network that performs better if
it can reorder messages. Suppose a UPC program contains
a loop that contains a PUT. We would like the compiler
to produce a program that performs many PUTs at a time.
However, if the compiler’s alias analysis infrastructure is
unable to prove that each PUT will go to a different memory
location, the compiler will have to arrange for the PUTs to
be ordered. That might mean waiting a network round-trip
for each PUT to complete. A cache for remote data improves
the situation. In the case that the PUTs overlap, the cache
itself will ensure memory consistency. Even for a network
that reorders messages, it will not be necessary to wait for
each PUT unless the cache identifies a conflicting access.

In addition, the cache for remote data makes easier it for
a compiler to optimize GETs. Prefetch hints are much easier
for a compiler to emit than non-blocking GET calls since
the non-blocking calls would require buffer management,
completion handles, and possibly successful alias analysis.
Alias analysis is necessary to ensure that that any PUTs
in the loop do not overlap with the remote address of the
GETs. In contrast, prefetch hints allow the compiler to
overlap communication while ignoring the possibility that
PUTs or GETs alias since the the cache correctly handles
the conflicting accesses at run-time.

Lastly, our experiments show that significant improve-
ments to compiler optimization did not remove the perfor-
mance benefit of the cache. See Section V-C.

C. Communication Overlap

With support for explicit non-blocking GETs and PUTs, a
Chapel programmer could manually arrange communication
overlap. However, this manual optimization increases pro-
gram complexity. Using the prefetch hint provided by the
cache offers a promising alternative that should be familiar
to performance-minded programmers. At the same time, the
cache will automatically overlap PUT operations with no
intervention from the programmer.

Suppose we have a program that adds values from a com-
puted index in an array but where the function computing
the indices does not depend on previous array values. Listing
5 shows such a program in Chapel. Here we assume that £
is computationally lightweight and has no side effects.

The access of A[f (i) ] will become a GET request for
8 bytes. The Chapel runtime will issue each of these GET
requests in a blocking manner. Thus, the program will spend
a lot of time waiting for each GET request to complete.
While there are many ways to improve upon the Chapel
compiler and runtime, this irregular access pattern would
make compiler-based communication optimization unlikely.
At the same time, even though the computation could be
parallelized, each task would still wait for each GET.

Listing 5 Reading from a computed index

var A:[1..n] int;
on Locales[1] {
var sum:int;
for i in 1..n do sum += A[f (1)]

}

Listing 6 Using non-blocking GET

var A:[1..n] int;
on Locales[1] {
var sum:int;
var h: [0..k] handles;
var bufs: [0..k] int;
// Warm up loop
for i in 1..k {
// nonblocking GET A[f(1)]
// into bufs[i%k]
h[i%k] = get_nb(bufs[i%k], A[f(1)])
}
for i in 1..n {
wait (h[i%k]);
sum += bufs[i%k];
if i+k <= n {
// nonblocking GET A[f (i+k)]
// into bufs[(i+k)%k]
h[ (i+k)%k] =
get_nb (bufs[ (i+k)%k],A[f (i+k)])

Listing 6 shows an example implementation using explicit
non-blocking calls. Our loop now has a startup loop and
a more complicated loop body that explicitly performs the
non-blocking GETs k loop accesses before they are used.
We needed to introduce two new arrays: an array of handles
to manage the completion of the nonblocking operations and
an array of buffer space in which to store the result of these
nonblocking operations.

Since the Chapel language aspires to separate concerns of
communication and data distribution from the description of
an algorithm, explicit communication calls are not desirable
because they embed the communication into the algorithm.

Listing 7 Using prefetch

var A:[1..n] int;
on Locales[1l] {
var sum:int;
// Optional warm up
for i in 1..k do prefetch(A[f(i)]);

for i in 1..n {
if i+k <= n then prefetch(A[f(i+k)]);
sum += A[f (i)]




Listing 8 Sequential PUTs

Listing 9 Sequential GETs

for i in 1..n do B[i] = compute (i);

for i in 1..n do consume (A[i1]);

In addition, they reduce portability since the non-blocking
calls will not help with non-distributed programs.

Compare with the version using a prefetch hint shown in
Listing 7. This program is much simpler because it does not
need to keep track of buffers or communication handles. It is
more portable because the prefetch hint is relevant whether
or not the A array is distributed since it can prefetch into
processor cache when the data is local. One issue is that the
prefetch distance k might depend on the distribution of the
array A, the network, and upon the runtime. We believe that
future work enabling adaptive prefetch or auto-tuning could
vary k at runtime to find the optimal value.

Communication overlap for PUTs is also easier with
the cache. The cache automatically overlaps PUTs using
write-behind without any program changes. In contrast,
explicit non-blocking PUTs would have similar complexity
to Listing 6 and suffer from the same portability problems.

D. Communication Aggregation

Besides overlapping communication, a Chapel program-
mer might want to aggregate communications. We will
explore the issues around performing aggregation in Chapel
with two example programs.

In our first example, shown in Listing 8, B is a distributed
array of integers, and compute is a computationally-
intensive procedure. It might be more important to the
program’s performance to control where compute is run
and so this program writes to B stored remotely. In the
current Chapel implementation, the running task will wait
for the network round-trip latency for each PUT to B[1i]
to complete.

Similarly, we might have a distributed array A that
we wish to read to provide inputs for a computationally-
intensive procedure consume, Listing 9 shows such an
example. The read of A[1i] performs a blocking GET and
so waits for a network round-trip.

Both of these programs could straightforwardly be opti-
mized using whole-array assignment as shown in Listing 10
and Listing 11. Although whole-array assignment aggregates
communication in both cases, there are two problems with
this approach. First, the solution listed here is not completely
general since it might run out of memory. In particular, if A
is a large distributed array, a copy of it may not fit on a single
locale. Second, it detracts from the Chapel goal of separating
algorithm from data distribution since this modification must
be made in the algorithm code itself. We would prefer to
have algorithm code that could perform well whether or not
the arrays A and B are distributed.

Note that it is also possible to write versions of these
programs using array slices to work with a subset of the

Listing 10 Optimizing Sequential PUTs

var localB:[1..n] int;
for i in 1..n do localB[i] = compute(i);
B = localB;

array at a time, but such a modification significantly in-
creases the complexity. It presents portability problems since
the programmer has to specify what size chunk should be
communicated at a time. Lastly, in our experiments, the array
slice approach did not improve performance because slices
are relatively heavyweight in the current implementation.

The cache for remote data is able to perform commu-
nication aggregation for the original programs in Listing
8 and Listing 9. It provides these simpler programs with
communication optimization so that the increased complex-
ity shown in Listing 10 and Listing 11 is not required to
improve network performance.

V. EXPERIMENTAL EVALUATION

In our experiments with the cache, we sought the answers
to several questions. What impact does the cache have to the
overhead of GET operations? How effective are the write-
behind and prefetch supported by the cache? How does
the cache impact the performance of applications? Have
improvements to compiler optimizations reduced the benefits
of the cache?

We studied the performance of the cache on three systems.
One is a Cray XC30™ system with approximately 50 nodes
connected with the Aries network. Each node in this Cray
XC system 128 GB of memory and dual 2.7 GHz Ivy
Bridge E5-2697 processors. Each processor has 12 cores
and 24 hardware threads. The second is a Cray CS400™
cluster system with approximately 200 nodes connected
with an FDR InfiniBand network. Each node in the Cray
CS400 system has 128 GB of memory and dual 2.3 GHz
Haswell E5-2698 processors. Each processor has 16 cores
and 16 hardware threads. The third system is a small cluster
consisting of 10 nodes with dual 6-core Xeon X5670 at
2.93 GHz and 24 GiB of memory, connected with 1 Gigabit
Ethernet and 10 Gigabit Ethernet.

Table I shows the evaluated GASNet [15] network config-
urations, including the GASNet GET and PUT Ilatency for
8-byte blocking requests and the bandwidth for single 1024-
byte blocking requests. On the Cray XC, we also measured
performance with Chapel’s native uGNI communication
support [16]. This Cray uGNI support works very closely
with the Aries network and is only available in the pre-built
Chapel module for Cray XC and XE series systems. It is
an alternative to GASNet configured with the Aries conduit.



Listing 11 Optimizing Sequential GETs

var localA:[1..n] int = A;
for i in 1..n do consume (localA[i]);

Table 1
NETWORKS STUDIED

Network (conduit) latency bandwidth
s for 8b MB/s for 1024b
GET [ PUT | GET [ PUT
1 Gb Ethernet (udp) 49 49 11 11
10 Gb Ethernet (udp) 16 16 52 53
56 Gb FDR InfiniBand (ibv) 2.1 1.6 405 430
90+ Gb Aries [17, p. 21] (aries) 1.7 1.3 415 632

Lastly, while we studied 4 different networks, we focus here
on the high performance InfiniBand and Aries networks.

All benchmarks were compiled with the ——fast flag to
the Chapel compiler and we compared performance with and
without the ——cache-remote compiler flag.

To help understand the impact of compiler improvement
on the cache, we evaluated two software versions in these
experiments: v1.9+ is revision 5ba6639 which includes
GASNet 1.22.0; v1.11+ is revision 6c635al which in-
cludes GASNet 1.24.0. The cache itself did not change sig-
nificantly over this time period. Experiments with Ethernet
were done with the older version. The cache initially only
supports Chapel’s £ifo tasking layer and so we used that
in these experiments. We used the fast segment in the
GASNet configurations.

A. Synthetic Benchmarks

We measured four synthetic benchmarks. The first of
these benchmarks, copy, measures the performance of GETs
and PUTs with a sequential access pattern. It sequentially
copies 10,000 integers stored contiguously in arrays, using
a loop making individual array accesses. The second and
third benchmarks, rand-puts and rand-gets use low-level
routines to perform PUTs or GETs to unpredictable loca-
tions. In particular, each is hand optimized and performs
30,000 GET or PUT operations within a remote array
storing 10, 000, 000 64-bit integers. The fourth benchmark,
prefetch, studies the impact of varying the prefetch distance
k in the prefetch example described in Section IV-C. All four
of these benchmarks were run with two locales.

The left-hand side of Figure 1 shows the impact of the
cache on the copy benchmark. This benchmark compiles
down to at least 1 GET and 1 PUT per loop iteration.
Since this benchmark represents a best-case scenario for
the cache, enabling the cache gives good performance.
Speedups range from 26 for the Cray uGNI configuration
to 98x for the latest InfiniBand configuration. Note that the
speedup is lower for the GASNet Aries and the Cray uGNI
configurations because they were already more efficient:
with the cache disabled, benchmark ran 1.7x and 3x faster
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than the InfiniBand in these configurations. In addition,
we observed 350x speedup for 1 Gb Ethernet and 480X
speedup with 10 Gb Ethernet.

We created the rand-gets benchmark to measure the GET
overhead of the cache. Since this benchmark is performing
reads to random addresses, each access is not likely to be
cached. Thus, we expect the cache to add overhead. We
measured the cache hit rate at less that 0.1% which indicates
that this benchmark does in fact measure the overhead
of the cache. In the worst case, the cache added close
to 10% overhead in the Cray uGNI and 1 Gb Ethernet
configurations.

With the rand-puts benchmark, we sought to measure the
performance benefit of write-behind without aggregation. If
the cache is enabled, the task can perform PUTs without
waiting for each one. We see about 3x speedup on Infini-
Band and only modest speedups with the GASNet Aries and
Cray uGNI configurations. Note that both of these Aries
networking layers are currently performing more network
ordering than is necessary: the PUTs with GASNet are
ensuring local completion and the PUTs with Cray uGNI
are currently blocking. For the Ethernet configurations, we
observed significant speedup as with InfiniBand: 3.7x for 1
Gb Ethernet and 2.0x for 10 Gb Ethernet.

Figure 2 shows how performance of the prefetch example
(Listing 7) varies with the prefetch distance k. Recall that
this program accesses computed indices of an array. Here, it
performed 30,000 reads into a remote array of 10,000, 000
64-bit integers. This benchmark gains 2-3x performance
when the cache is enabled but the prefetch hint is not
used (shown in the graph as prefetch distance 0) because
array header accesses no longer require communication.
We observed additional speedup for optimizing the prefetch
distance. On InfiniBand, the best prefetch distance of 14
was approximately 4 x faster than having the cache enabled
and not prefetching at all. With GASNet on Aries, the
best prefetch distance of 12 was 1.3x faster, and with
Cray uGNI, the best distance of 12 was 1.9x faster. These
improvements combine to make the program about 10x
faster on InfiniBand and 4 x faster with Aries. The Ethernet
configurations were similar to InfiniBand for this benchmark
and also showed a total 10x speedup.

B. Application Benchmarks

To understand how the cache impacts the perfor-
mance of applications, we experimented with four bench-
mark programs. We chose these benchmarks because
they are well-known benchmarks that already existed
as Chapel programs. They are available in the Chapel
examples/benchmarks directory. We did not modify
or tune these benchmarks. We ran all of the configurations
with 8 locales and in addition measured the GASNet Aries
configuration with 32 locales. Figure 3 shows the result. In
this section, we will discuss only the results for v1.11+. We

will discuss the impact of compiler improvement in the next
section.

LULESH is the Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics benchmark [18]. We ran
LULESH with the sedov15oct. lmesh input. LULESH
showed good performance improvements from enabling the
cache, including a 4.9 speedup in the Cray uGNI configu-
ration, 3.5x for GASNet Aries, and 1.3x with InfiniBand.
The 32-locale run still showed a 1.2x speedup.

MiniMD is a proxy application for molecular dynamics
from Sandia’s Mantevo group [19]. We compiled miniMD

with —snoRefCount —-suseStencilDist=true
—-sdefaultDoRADOpt=false
—-sdisableAliasedBulkTransfer=false and

ran it with a problem size of 10. In most configurations,
MiniMD had about a 3x speedup. That speedup continued
when scaling to 32 locales. However, the Cray uGNI
configuration showed less improvement - only 1.6x -
because the Cray uGNI configuration was much faster than
the other configurations: 3.2x faster than the GASNet
Aries configuration. For the Cray uGNI configuration, the
communication was already more efficient, and so there
was less benefit to optimizing it.

PTRANS is a parallel matrix transpose benchmark
[20]. We ran PTRANS with ——numrows=500
——rowBlkSize=3 --colBlkSize=5. This benchmark
showed good speedups around 2x in all configurations. As
with miniMD, the Cray uGNI configuration ran significantly
faster than the GASNet Aries configuration and so less
speedup was available.

SSCA2 is from one of the HPCS benchmarks, Scalable
Synthetic Compact Applications [21]. We analyzed kernel 4,
which computes the betweenness centrality for all vertices.
We used flags to disable the torus versions, to make the
runs reproducible, and to enable timing statistics. We ran
it with scale 8. SSCA2 kernel 4 is fundamentally different
from the other applications we studied because it performs
many atomic operations without doing much other work.
Performance suffers in the InfiniBand, Cray uGNI, and 32
locales configurations because of the overhead of flushing
the cache with each atomic operation. Work remains in
optimizing the cache for such applications. In addition, it
would help to use relaxed atomic operations to avoid the
cache flushes.

C. Impact of Compiler Improvements

The Chapel compiler improved significantly between
v1.9+ and vl.11+. We used these improvements to try to
understand the value of the cache even as the compiler
performs better communication optimization.

First, note that the performance of the rand-puts and
rand-gets benchmarks did not change significantly between
v1.9+ and vl.11+. These benchmarks are hand-optimized
and so do not leave much room for compiler optimization.



Figure 1 shows that the cache had a consistent impact for
these benchmarks across these versions.

In contrast, the copy benchmark leaves quite a lot avail-
able for compiler optimization. Without the cache enabled,
this benchmark became about 2.5x faster for the InfiniBand
configuration and 3.5x faster for the GASNet Aries config-
uration between the studied compiler versions. The cache
enabled large speedups for both versions.

For LULESH, the cache improved application run times
even more after optimization improvements to the Chapel
compiler between the tested versions. We ran the newest
version of the LULESH benchmark with both versions of
the compiler. The run-time without ——cache-remote
improved by about 3.2x for the GASNet Aries configuration
between v1.9+ and v1.11+. Improvements in applying loop
invariant code motion in Chapel version 1.10 are the pri-
mary reason. As Figure 3 shows, the improved optimization
allowed the cache to be even more effective: the speedup
went from 1.2X to 3.5x.

Lastly, we investigated how enabling experimental LLVM
communication optimizations with --1lvm-wide-opt
changed the performance impact of enabling the cache.
With the cache disabled, these LLVM optimizations gave
LULESH a 1.2x speedup, miniMD a 1.4x speedup, and
PTRANS a 1.7x speedup in the GASNet Aries configura-
tion. Even though the speedup from the cache was reduced,
the cache still offered 3.5, 2.5, and 1.7x speedups for
LULESH, miniMD, and PTRANS respectively. In all of
these cases, the fastest configuration combined the improved
compiler optimization with the cache.

VI. RELATED WORK

Previous work with UPC includes HP UPC and MuPC
(described by Zhang [22], [23]) and a class prototype for
Berkeley UPC described in [24]. Like our work, these
systems do not use explicit coherency messages but instead
complete pending operations and invalidate the cache on a
fence. However, our system caches both reads and writes
(unlike HP UPC) and can support hardware RDMA (unlike
MuPC).

The present work with Chapel allows for more latency
hiding than other implementations with UPC. Zhang sug-
gested that a major reason that the cache systems for
UPC did not achieve wider adoption is that they increased
throughput but did not help with latency [22]. Since Chapel
supports tasks, the runtime can overlap communication with
task execution. The Grappa [25] and GMT [26] projects have
investigated this kind of latency hiding. In addition, the pre-
built Chapel module available on Cray systems has some
capabilities in this regard [16].

Besides using write-behind to hide PUT latency, our work
also includes an alternative means for GET latency hiding: a
prefetch hint similar to processor prefetch instructions. For

some applications with a programmer predictable access pat-
tern, hints of what to prefetch can improve performance and
cover the latency of the GET requests. To our knowledge,
our work is the first time a PGAS language supported a
prefetch hint for remote memory.

Several previous works make use of a cache in a PGAS li-
brary. DeSouza and Kalé describe Multiphase Shared Arrays
which make use of programmer demarcated access patterns
[27]. For example, in one phase of computation a distributed
array is read-only; while in a second phase it is write-only.
The MSA implementation takes advantage of these phases to
avoid all cache invalidations and to buffer all writes. Mem-
ory consistency is handled during the large-scale barriers
indicating phase change between parts of the computation.
Larkins et al. discuss Global Trees which includes a caching
strategy for tree nodes, with strict and relaxed consistency
modes [28]. Lastly, Niu et al. investigated how a Global
Arrays Read-Only Cache can improve the the scalability of
quantum Monte Carlo applications [29]. In contrast to these
approaches, our work focuses on a PGAS language and does
not require program modification.

Marc Snir has proposed an alternative PGAS system
with a cache. In his work, programs specify explicitly to
which variables they will have exclusive, shared read-only,
or transactional access [30]. In this way, a cache coherence
protocol is embedded into the program itself. In contrast,
the present work does not require that the original PGAS
program be written with a caching system in mind.

Distributed shared memory research, including Dash,
Plus, Munin, and TreadMarks [31], [32] include caches for
remote data but have a more aggressive coherency protocol
and do not have PGAS language integration.

Lastly, a compiler-supported software cache has been
studied for the Cell processor in [33]. This work included
compiler integration like our work, but had different con-
straints since it was working within a processor.

VII. FUTURE WORK

There are many ways to build upon this work in order to
improve communication performance of PGAS languages.
First, there are many cache parameters that would benefit
from further study, including the number of dirty pages, the
number of intermediate nodes in the pointer tree, the size of
each of the 2Q queues, the cache line size, the cache page
size, and the size of the cache overall.

The implementation could be optimized further to reduce
the overhead of repeated acquire and release operations and
to improve the performance of large PUTs and GETs. In
addition, the cache could be optimized for specific networks.

There are several ways that the prefetch capability could
be improved. In some cases, compile-time optimizations
could automatically add a prefetch hint in order to hide
the latency of GET requests. In addition, the prefetch hint
would benefit greatly from an adaptive prefetch mechanism.



Adaptive prefetch would automatically choose k in Listing
7.

Finally, it would be interesting to evaluate this cache in the
context of other PGAS languages and libraries that preserve
sequential program order such as UPC [1], UPC++ [2], or
Fortran 2008 [3].

VIII. CONCLUSION

We have created a system that caches remote data for
Chapel programs. We believe that this cache is a useful tool
for programmers seeking good performance and productivity
for applications in a distributed memory setting.

There are several ways in which the cache for remote
data supports programmer productivity. First, programs do
not need to be modified to take advantage of this cache
since it works with Chapel’s memory consistency semantics.
Second, the design supports communication aggregation and
overlap for straightforward programs, and it does not require
that programs include explicit aggregation, or nonblocking
communication calls. Lastly, we included a prefetch hint that
functions in a manner similar to processor cache prefetch
instructions and so should be familiar to performance-
minded programmers. Programs using the prefetch hint are
simpler than those using non-blocking GETs with operation
handles.

Our evaluation of the of this cache shows that it has a
promising impact on performance. It provided solid perfor-
mance improvements on the order of 2x or better for most
of the benchmarks. Lastly, the cache still provided these
speedups after optimization significantly improved within
the Chapel compiler.
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