
14th IEEE Workshop Parallel / Distributed Combinatorics and Optimization

GPU-Accelerated Tree Search in Chapel
versus CUDA and HIP

G. Helbecque1,2, E. Krishnasamy1, N. Melab2, P. Bouvry1

1University of Luxembourg, DCS-FSTM/SnT, Luxembourg
2Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de l’Université de Lille, France

31 May, 2024
San Francisco, USA

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Motivation
Exascale era of computation;

Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.), and
less and less reliable (Mean Time Between Failures – MTBF < 1h) systems1;

"Evolutionary approaches" (MPI+X) vs. "revolutionary approaches" (e.g.,
Partitioned Global Address Space (PGAS) -based environments).

1Bi-annual TOP500 ranking, https://www.top500.org/.
1 / 17

https://www.top500.org/

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Motivation

Focus on GPU-accelerated tree search methods for
solving combinatorial problems, e.g., Backtracking
and Branch-and-Bound (B&B).

→ Large and irregular trees

Motivating example: Permutation Flowshop
Scheduling Problem (PFSP). Search trees for hard
PFSP instances contain up to 1015 explored nodes.

We first provide a proof-of-concept based on the
Backtracking method.

2 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Related work

Most of existing GPU-accelerated tree search
algorithms, e.g. [1, 2, 3], ...

focus only on performance;
combine low-level programming environments.

Emergence of GPU supports for PGAS-based environments [4, 5, 6].

Few works explore GPU-accelerated PGAS-based tree search approaches [7].
3 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

About Chapel

Portable & scalable;
High-level abstractions for data parallelism, task parallelism, concurrency, and
nested parallelism;
Open-source & collaborative.

GPU-native support:
CPU parallelism features also target GPUs;
Vendor-neutral, through the LLVM compiler framework:

PTX for Nvidia GPUs;
AMDGCN for AMD GPUs.

See more at: https://chapel-lang.org/.
4 / 17

https://chapel-lang.org/

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

GPU programming in Chapel
Data placement: the on-clause

Code sample

1 var A: [1..10] int; // memory allocation on host
2 on here.gpus[0] {
3 var A_d: [1..10] int; // memory allocation on device
4 A_d = A; // host-to-device copy
5 }

GPU-eligible loops → GPU kernels

Code sample

1 on here.gpus[0] {
2 forall i in 0..#N {
3 // do something ...
4 }
5 }

5 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Algorithm in single-GPU setting

Parallel evaluation of nodes:

1 GPU device;

Single work pool;

Parameters:
m;
q = min(Q, M).

6 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Algorithm in multi-GPU setting

Parallel evaluation of nodes + parallel tree exploration:

D GPU devices;

D work pools
→ load balancing

7 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Static load balancing mechanism

1 Initial search on CPU:

Pseudo-code

1 while (pool.size < D*m) {
2 var parent: Node = getNode(pool);
3 var children: [] Node = decompose(parent);
4 insertNodes(children, pool); // bulk insertion
5 }

2 Static workload distribution:

Pseudo-code

1 for i in 0..#pool.size {
2 var node = pool[i];
3 insertNode(node, multiPool[i%D]); // cyclic distribution
4 }

8 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

GPU-accelerated backtracking in Chapel vs. CUDA-based
Pseudo-code in Chapel

1 var pool = new Pool();
2 var root = new Node();
3 insertNode(root, pool);
4
5 // do partial search ...
6
7 coforall deviceID in 0..#D with (ref pool) {
8 var pool_d = new Pool();
9 // do static load balancing ...

10
11 while (pool_d.size != 0) {
12 if (pool_d.size < m) {
13 var parent = getNode(pool_d);
14 var children = decompose(parent);
15 insertNodes(children, pool_d);
16 } else {
17 var parents: [] Node = getNodes(pool_d);
18 var labels: [] int;
19 on here.gpus[deviceID] {
20 var parents_d = parents;
21 var labels_d: [] int;
22 evaluateNodes(parents_d, labels_d);
23 labels = labels_d;
24 }
25 generateNodes(parents, labels, pool_d);
26 }
27 }
28 }

Pseudo-code in C+OpenMP+CUDA
1 Pool pool;
2 Node root;
3 insertNode(root, pool);
4
5 // do partial search ...
6
7 #pragma omp parallel for num_thread(D) shared(pool)
8 for (int deviceID = 0, deviceID < D; deviceID++) {
9 cudaSetDevice(deviceID);

10 Pool pool_d;
11 // do static load balancing ...
12
13 while (pool_d.size != 0) {
14 if (pool_d.size < m) {
15 Node parent = getNode(pool_d);
16 Node* children = decompose(parent);
17 insertNodes(children, pool_d);
18 } else {
19 Node* parents = malloc();
20 parents = getNodes(pool_d);
21 Node* parents_d;
22 int* labels_d;
23 cudaMalloc(parents_d);
24 cudaMalloc(labels_d);
25 cudaMemcpy(parents_d, parents, HostToDevice);
26 evaluateNodes<<<nBlocks, blockSize>>>(parents_d, labels_d);
27 cudaMemcpy(labels_d, labels, DeviceToHost);
28 cudaFree(parents_d);
29 cudaFree(labels_d);
30 generateNodes(parents, labels, pool_d);
31 free(parents);
32 free(labels);
33 }
34 }
35 }

CUDA

OpenMP

9 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Experimental protocol
N-Queens problem, with artificial granularity;

Evaluations are repeated g times

1 foreach node to evaluate do
2 for i in 1..g do
3 evaluate node;

Instances from N = 14 to 17;

Comparison Chapel vs. . . .
C+CUDA in single-GPU setting;
C+OpenMP+CUDA in multi-GPU setting;

}
on a Nvidia-powered system

C+HIP in single-GPU setting;
C+OpenMP+HIP in multi-GPU setting.

}
on an AMD-powered system

10 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Testbed

Grid’5000 testbed (https://www.grid5000.fr/):
Nvidia Tesla V100: Intel Xeon E5-2698 v4 (Broadwell) @ 2.2 GHz, 512
GiB, equipped with 8 Nvidia Tesla V100 SXM2 (32 GiB);
AMD Radeon Instinct MI50: AMD EPYC 7642 (Zen 2) @ 2.3 GHz, 512
GiB, equipped with 8 AMD Radeon Instinct MI50 (32 GiB).

Software Version

Chapel 1.33.0
C compiler 10.4.0
CUDA 11.7.1
HIP/HIP compiler 4.5.0

11 / 17

https://www.grid5000.fr/

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Normalized execution time in single-GPU setting

14 15 16 17
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
ex

ec
ut
io
n
tim

e

Nvidia Tesla V100

14 15 16 17
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2
AMD Radeon Instinct MI50

baseline Chapel

Fig. 1: Normalized execution time: Chapel vs. baselines.

Support for AMD GPU architectures more recent than Nvidia one (March, 2023).
12 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Strong scaling efficiency
Fine-grained experiments: g = 1

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

Sp
ee
d-
up

Chapel

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

CUDA

Linear N=14 N=15 N=16 N=17

(a) Chapel vs. CUDA.

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

Sp
ee
d-
up

Chapel

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

HIP

Linear N=14 N=15 N=16 N=17

(b) Chapel vs. HIP.

Fig. 2: Strong scaling efficiency: Chapel vs. baselines, setting g = 1.

We achieve 45% (resp. 48%) of the CUDA (resp. HIP) baseline strong scaling
efficiency solving the largest instance using 8 GPUs.

13 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Strong scaling efficiency
Coarser-grained experiments: g = 10, 000

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

Sp
ee
d-
up

Chapel

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

CUDA

Linear N=14 N=15 N=16 N=17

(a) Chapel vs. CUDA.

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

Sp
ee
d-
up

Chapel

1 2 4 8
Number of GPU devices

1
2
3
4
5
6
7
8

HIP

Linear N=14 N=15 N=16 N=17

(b) Chapel vs. HIP.

Fig. 3: Strong scaling efficiency: Chapel vs. baselines, setting g = 10, 000.

We achieve 82% (resp. 66%) of the CUDA (resp. HIP) baseline strong scaling
efficiency solving the largest instance using 8 GPUs.

14 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Conclusions

In the context of tree search methods for combinatorial problems:
Chapel provides high-level features for portable GPU-programming;

The performance loss is only 8% (resp. 16%) on a Nvidia V100 (resp. AMD
MI50) GPU device;

82% (resp. 66%) of the CUDA (resp. HIP) baseline strong scaling efficiency is
achieved solving the coarser-grained largest instance using 8 GPUs.

15 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

Future works

Extension to combinatorial optimization problems, e.g., B&B applied to
PFSP:

More irregular workload;
External libraries;
Communications between B&B workers (e.g., best solution found so far), etc.

Extension to larger systems (e.g., the LUMI supercomputer, #5 of TOP500).
Use of a scalable data structure, e.g., the Chapel’s distBag data structure.

16 / 17

Motivation Design & Implementation Experimental evaluation Conclusions & Future works

References
[1] M. E. Lalami and D. El-Baz, “GPU Implementation of the Branch and Bound Method

for Knapsack Problems,” in 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum, pp. 1769–1777, 2012.

[2] J. Gmys, M. Mezmaz, N. Melab, and D. Tuyttens, “IVM-based parallel
branch-and-bound using hierarchical work stealing on multi-GPU systems,”
Concurrency and Computation: Practice and Experience, vol. 29, no. 9, p. e4019, 2017.

[3] I. Chakroun, N. Melab, M. Mezmaz, and D. Tuyttens, “Combining multi-core and
GPU computing for solving combinatorial optimization problems,” Journal of Parallel
and Distributed Computing, vol. 73, no. 12, pp. 1563–1577, 2013.

[4] D. Cunningham, R. Bordawekar, and V. Saraswat, “GPU programming in a high level
language: compiling X10 to CUDA,” in Proceedings of the 2011 ACM SIGPLAN X10
Workshop, pp. 1–10, 2011.

[5] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, and B. Shou, “Unified
Parallel C for GPU Clusters: Language Extensions and Compiler Implementation,” in
Languages and Compilers for Parallel Computing, pp. 151–165, 2011.

[6] A. Hayashi, S. R. Paul, and V. Sarkar, “A Multi-Level Platform-Independent GPU
API for High-Level Programming Models,” in High Performance Computing. ISC High
Performance 2022 International Workshops, pp. 90–107, 2022.

[7] T. Carneiro, N. Melab, A. Hayashi, and V. Sarkar, “Towards Chapel-based Exascale
Tree Search Algorithms: dealing with multiple GPU accelerators,” in 18th
International Conference on High Performance Computing & Simulation, 2021.

17 / 17

Thank you for your attention.
Contact:

Guillaume HELBECQUE
guillaume.helbecque@uni.lu

Open-source code on GitHub:
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel

Krishnasamy is supported by FNR CORE (ref. U-AGR-7213-00-V), while the other authors are supported
by the Agence Nationale de la Recherche (ref. ANR-22-CE46-0011) and the Luxembourg National

Research Fund (ref. INTER/ANR/22/17133848), under the UltraBO project.

guillaume.helbecque@uni.lu
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel

	Motivation
	Design & Implementation
	Experimental evaluation
	Conclusions & Future works

