
Adaptive Prefetching for

Fine-grain Communication

in PGAS Programs

IPDPS 2024

Thomas Rolinger (UMD/NVIDIA)

Alan Sussman (UMD)

Contact: trolinger@nvidia.com

Background: Terminology and Motivation

 Partitioned Global Address Space (PGAS) Model

 Provides a (logical) shared-memory view on a distributed-memory system

 One-sided communication (puts/gets) instead of sends/receives

Well-suited for applications with irregular memory accesses

 Ex: Chapel, OpenSHMEM, UPC

2

Message-passing (e.g., MPI)

matching sends/receives

PGAS

just “get” the data

Shared-memory (e.g., OpenMP)

just “get” the data

Problem: Productivity vs. Performance

3

SpMV in PGAS (Chapel)

PGAS code is very similar to shared-memory

code, but is distributed-memory parallel

Problem: Productivity vs. Performance

3

SpMV in PGAS (Chapel)

0

1

2

3

4

2 4 8 16 32ru
n
ti

m
e
 s

p
e
e
d
-u

p
s

v
s

2
 n

o
d
e
s

of nodes

PageRank: Runtime Scalability

NOT linear scaling

Problem: Productivity vs. Performance

4

SpMV in PGAS (Chapel)

0

1

2

3

4

2 4 8 16 32ru
n
ti

m
e
 s

p
e
e
d
-u

p
s

v
s

2
 n

o
d
e
s

of nodes

PageRank: Runtime Scalability

NOT linear scaling

Performance issues due to fine-grain

remote communication

PGAS model “encourages” programmers

to write code that exhibits fine gain

communication

x is a distributed array

Problem: Productivity vs. Performance

4

SpMV in PGAS (Chapel)

0

1

2

3

4

2 4 8 16 32ru
n
ti

m
e
 s

p
e
e
d
-u

p
s

v
s

2
 n

o
d
e
s

of nodes

PageRank: Runtime Scalability

NOT linear scaling

Performance issues due to fine-grain

remote communication

PGAS model “encourages” programmers

to write code that exhibits fine gain

communication

x is a distributed array

Goal of this work:

Achieve better performance for irregular PGAS

programs without negatively impacting developer

productivity

Problem: Productivity vs. Performance

4

SpMV in PGAS (Chapel)

0

1

2

3

4

2 4 8 16 32ru
n
ti

m
e
 s

p
e
e
d
-u

p
s

v
s

2
 n

o
d
e
s

of nodes

PageRank: Runtime Scalability

NOT linear scaling

Performance issues due to fine-grain

remote communication

PGAS model “encourages” programmers

to write code that exhibits fine gain

communication

x is a distributed array

Goal of this work:

Achieve better performance for irregular PGAS

programs without negatively impacting developer

productivity

Our Approach:

Automatically improve performance via runtime

optimization

Outline

 Optimization: Adaptive Remote Prefetching

 Performance Evaluation

5

Outline

 Optimization: Adaptive Remote Prefetching

 Performance Evaluation

5

Optimization: Adaptive Remote Prefetching

 High level idea:

 Target A[B[i]] access patterns in parallel loops, where A is distributed and i is
the loop index

 Perform non-blocking reads for remote data that will be needed in future loop
iteration

 Adapt prefetching behavior as program executes

 What are we prefetching into:

 Chapel’s software/runtime-managed cache for remote data

 Provides mechanism to perform prefetches

 Each core on a node has its own remote cache

And therefore, its own prefetch distance/metrics

6

Optimization: Adaptive Remote Prefetching

 High level idea:

 Target A[B[i]] access patterns in parallel loops, where A is distributed and i is
the loop index

 Perform non-blocking reads for remote data that will be needed in future loop
iteration

 Adapt prefetching behavior as program executes

 What are we prefetching into:

 Chapel’s software/runtime-managed cache for remote data

 Provides mechanism to perform prefetches

 Each core on a node has its own remote cache

And therefore, its own prefetch distance/metrics

6

Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

7

Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

7

Challenges (1) and (2) impact performance and are difficult

because static decisions are not good enough.

Challenge (3) can impact developer productivity by requiring

additional effort to manually apply the optimization.

Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

 Our approach:

 Use information at runtime to dynamically adjust prefetching behavior

 Adjust prefetch distance, pause/resume prefetching

 Develop a compiler optimization that automatically identifies candidate

access patterns and then modifies the code to perform prefetching

7

Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

 Our approach:

 Use information at runtime to dynamically adjust prefetching behavior

 Adjust prefetch distance, pause/resume prefetching

 Develop a compiler optimization that automatically identifies candidate

access patterns and then modifies the code to perform prefetching

7

Focus of this talk

Optimization: Prefetch Adjustment Heuristic

 Each thread/core will periodically “pause” its execution of the

parallel loop independently to evaluate prefetching behavior:

 Late prefetches → core had to wait for prefetched data to arrive

Prefetch distance too small

Action: increase prefetch distance

 Unnecessary prefetches → prefetched data already in remote cache

Memory access pattern is sequential/not irregular

Action: pause prefetching

Will resume prefetching if cache miss rate is too high

8

Optimization: Prefetch Adjustment Heuristic

 Each thread/core will periodically “pause” its execution of the

parallel loop independently to evaluate prefetching behavior:

 Late prefetches → core had to wait for prefetched data to arrive

Prefetch distance too small

Action: increase prefetch distance

 Unnecessary prefetches → prefetched data already in remote cache

Memory access pattern is sequential/not irregular

Action: pause prefetching

Will resume prefetching if cache miss rate is too high

8

Optimization: Prefetch Adjustment Heuristic

 Each thread/core will periodically “pause” its execution of the

parallel loop independently to evaluate prefetching behavior:

 Late prefetches → core had to wait for prefetched data to arrive

Prefetch distance too small

Action: increase prefetch distance

 Unnecessary prefetches → prefetched data already in remote cache

Memory access pattern is sequential/not irregular

Action: pause prefetching

Will resume prefetching if cache miss rate is too high

8

Outline

 Optimization: Adaptive Remote Prefetching

 Performance Evaluation

9

Performance Evaluation: Systems and Apps

10

Distributed-memory Systems

Applications/kernels:

• IndexGather

• SpMV

• PageRank

• SSSP (delta-stepping)

Data sets

Performance Evaluation: Systems and Apps

10

Distributed-memory Systems

Applications/kernels:

• IndexGather

• SpMV

• PageRank

• SSSP (delta-stepping)

Data sets

In this talk: impact of

different adaptive

decisions for SpMV on the

HDR-200 system

See our paper for many

more experiments and

results

11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g
SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g
SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

Adjust Prefetch Distance Only

average of 25%

performance loss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g

12

SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

Adjust Prefetch Distance Only Adjust + Pause Prefetching

average of no gain nor lossaverage of 25%

performance loss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g

12

SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

Adjust Prefetch Distance Only Adjust + Pause Prefetching

Large performance drop after we

stopped prefetching

• indicative of alternating

dense/sparse regions in matrix

average of no gain nor lossaverage of 25%

performance loss

13

SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g

Adjust + Pause + Resume PrefetchingAdjust Prefetch Distance Only Adjust + Pause Prefetching

average of 3% speed-upaverage of no gain nor lossaverage of 25%

performance loss

13

SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g

Adjust + Pause + Resume PrefetchingAdjust Prefetch Distance Only Adjust + Pause Prefetching

Gain back performance by

resuming prefetching

average of 3% speed-upaverage of no gain nor lossaverage of 25%

performance loss

13

SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
e

e
d

-u
p

 v
s

n
o

-p
re

fe
tc

h
in

g

Adjust + Pause + Resume PrefetchingAdjust Prefetch Distance Only Adjust + Pause Prefetching

• Many of these matrices do not benefit from prefetching (not entirely irregular),

but since our optimization will pause in those cases, we do not suffer significant

performance loss

• Max speed-ups range from 2.4x to 3.7x across the different systems

average of 3% speed-upaverage of no gain nor lossaverage of 25%

performance loss

Performance Evaluation: Final Remarks

14

 Performance losses are avoided due to adaptive behavior

 Performance gains can be significant:

 IndexGather: 292x, SpMV: 3.7x, PageRank: 1.6x, SSSP: 2x

 Adaptive prefetching is built into larger framework for other

compiler optimizations for irregular memory accesses

 E.g., data replication via inspector-executor (LCPC`22)

 Adaptive prefetching can be applied in situations where inspector-

executor cannot

Inspector is too costly, replicated data is not read-only, etc.

Performance Evaluation: Final Remarks

14

 Performance losses are avoided due to adaptive behavior

 Performance gains can be significant:

 IndexGather: 292x, SpMV: 3.7x, PageRank: 1.6x, SSSP: 2x

 Adaptive prefetching is built into larger framework for other

compiler optimizations for irregular memory accesses

 E.g., data replication via inspector-executor (LCPC`22)

 Adaptive prefetching can be applied in situations where inspector-

executor cannot

Inspector is too costly, replicated data is not read-only, etc.

See our paper for additional experiments and results

	Default Section
	Slide 1: Adaptive Prefetching for Fine-grain Communication in PGAS Programs
	Slide 2: Background: Terminology and Motivation
	Slide 3: Problem: Productivity vs. Performance
	Slide 4: Problem: Productivity vs. Performance
	Slide 5: Problem: Productivity vs. Performance
	Slide 6: Problem: Productivity vs. Performance
	Slide 7: Problem: Productivity vs. Performance
	Slide 8: Outline
	Slide 9: Outline
	Slide 10: Optimization: Adaptive Remote Prefetching
	Slide 11: Optimization: Adaptive Remote Prefetching
	Slide 12: Optimization: Adaptive Remote Prefetching (cont.)
	Slide 13: Optimization: Adaptive Remote Prefetching (cont.)
	Slide 14: Optimization: Adaptive Remote Prefetching (cont.)
	Slide 15: Optimization: Adaptive Remote Prefetching (cont.)
	Slide 16: Optimization: Prefetch Adjustment Heuristic
	Slide 17: Optimization: Prefetch Adjustment Heuristic
	Slide 18: Optimization: Prefetch Adjustment Heuristic
	Slide 19: Outline
	Slide 20: Performance Evaluation: Systems and Apps
	Slide 21: Performance Evaluation: Systems and Apps
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Performance Evaluation: Final Remarks
	Slide 30: Performance Evaluation: Final Remarks

