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Background: Terminology and Motivation

 Partitioned Global Address Space (PGAS) Model

 Provides a (logical) shared-memory view on a distributed-memory system

 One-sided communication (puts/gets) instead of sends/receives

Well-suited for applications with irregular memory accesses

 Ex: Chapel, OpenSHMEM, UPC
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Message-passing (e.g., MPI)

matching sends/receives

PGAS

just “get” the data

Shared-memory (e.g., OpenMP)

just “get” the data



Problem: Productivity vs. Performance
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SpMV in PGAS (Chapel)

PGAS code is very similar to shared-memory 

code, but is distributed-memory parallel
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SpMV in PGAS (Chapel)
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Performance issues due to fine-grain 

remote communication

PGAS model “encourages” programmers 

to write code that exhibits fine gain 

communication

x is a distributed array
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Goal of this work:

 

Achieve better performance for irregular PGAS 

programs without negatively impacting developer 

productivity
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Performance issues due to fine-grain 

remote communication

PGAS model “encourages” programmers 

to write code that exhibits fine gain 

communication

x is a distributed array

Goal of this work:

 

Achieve better performance for irregular PGAS 

programs without negatively impacting developer 

productivity

Our Approach:

 

Automatically improve performance via runtime 

optimization



Outline

 Optimization: Adaptive Remote Prefetching

 Performance Evaluation
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Optimization: Adaptive Remote Prefetching

 High level idea:

 Target A[B[i]] access patterns in parallel loops, where A is distributed and i is 
the loop index

 Perform non-blocking reads for remote data that will be needed in future loop 
iteration

 Adapt prefetching behavior as program executes

 What are we prefetching into:

 Chapel’s software/runtime-managed cache for remote data

 Provides mechanism to perform prefetches

 Each core on a node has its own remote cache

And therefore, its own prefetch distance/metrics
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Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

7



Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

7

Challenges (1) and (2) impact performance and are difficult 

because static decisions are not good enough.

Challenge (3) can impact developer productivity by requiring 

additional effort to manually apply the optimization.



Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:

1. Computing prefetch distance

2. Determining when prefetching is profitable for performance

3. Modifying the program to perform prefetching

 Our approach:

 Use information at runtime to dynamically adjust prefetching behavior

 Adjust prefetch distance, pause/resume prefetching

 Develop a compiler optimization that automatically identifies candidate 

access patterns and then modifies the code to perform prefetching 
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Optimization: Adaptive Remote Prefetching (cont.)

 Challenges:
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Focus of this talk



Optimization: Prefetch Adjustment Heuristic

 Each thread/core will periodically “pause” its execution of the 

parallel loop independently to evaluate prefetching behavior:

 Late prefetches → core had to wait for prefetched data to arrive

Prefetch distance too small

Action: increase prefetch distance

 Unnecessary prefetches → prefetched data already in remote cache

Memory access pattern is sequential/not irregular

Action: pause prefetching

Will resume prefetching if cache miss rate is too high

8
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Outline

 Optimization: Adaptive Remote Prefetching

 Performance Evaluation
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Performance Evaluation: Systems and Apps
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Distributed-memory Systems

Applications/kernels:

• IndexGather

• SpMV

• PageRank

• SSSP (delta-stepping)

Data sets



Performance Evaluation: Systems and Apps
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Distributed-memory Systems

Applications/kernels:

• IndexGather

• SpMV

• PageRank

• SSSP (delta-stepping)

Data sets

In this talk: impact of 

different adaptive 

decisions for SpMV on the 

HDR-200 system

See our paper for many 

more experiments and 

results
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SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

Adjust Prefetch Distance Only Adjust + Pause Prefetching

average of no gain nor lossaverage of 25% 

performance loss
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SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200

Adjust Prefetch Distance Only Adjust + Pause Prefetching

Large performance drop after we 

stopped prefetching

• indicative of alternating 

dense/sparse regions in matrix

average of no gain nor lossaverage of 25% 

performance loss
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SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200
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SpMV Speed-ups vs. No-prefetching – 64 nodes HDR 200
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• Many of these matrices do not benefit from prefetching (not entirely irregular), 

but since our optimization will pause in those cases, we do not suffer significant 

performance loss

• Max speed-ups range from 2.4x to 3.7x across the different systems

average of 3% speed-upaverage of no gain nor lossaverage of 25% 

performance loss



Performance Evaluation: Final Remarks
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 Performance losses are avoided due to adaptive behavior

 Performance gains can be significant:

 IndexGather: 292x, SpMV: 3.7x, PageRank: 1.6x, SSSP: 2x

 Adaptive prefetching is built into larger framework for other 

compiler optimizations for irregular memory accesses

 E.g., data replication via inspector-executor (LCPC`22)

 Adaptive prefetching can be applied in situations where inspector-

executor cannot

Inspector is too costly, replicated data is not read-only, etc.
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 Adaptive prefetching can be applied in situations where inspector-

executor cannot

Inspector is too costly, replicated data is not read-only, etc.

See our paper for additional experiments and results
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