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Motivation
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Motivation
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m Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.), and
less and less reliable (Mean Time Between Failures - MTBF < 1h) systems!;

m "Evolutionary approaches" (MPI+X) vs. "revolutionary approaches" (e.g.,
Partitioned Global Address Space (PGAS) -based environments).

!Bi-annual TOP500 ranking, https://www.top500.o0rg/.
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Motivation

Branch-and-Bound (B&B)

Branching Bounding  Pruning
T
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Selection: returns next node to process,

m Focus on parallel tree-search methods for solving
combinatorial problems, e.g., Backtracking and
Branch-and-Bound (B&B):

m Large trees — efficient data structure
m Irregular trees — efficient load balancing

m Motivating example: Permutation Flowshop
Scheduling Problem (PFSP). Search trees for hard

PFSP instances contain up to 10'® explored nodes.

solution = [3,4,2,1]

M1
M2
M3

cost to minimize
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Motivation
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Related work

m Limitations of existing MPI+X data structures and load balancing for parallel
tree-search algorithms, e.g. [1, 2]:
m focus only on performance
m combine low-level programming environments

m PGAS-based load balancing techniques also exist [3, 4, 5], but none in Chapel.

m In PGAS Chapel, we introduced the DistBag_DFS distributed data
structure [6], but ...
m The description of the data structure could be extended
m Load balancing mechanism not evaluated
m Lack of performance evaluation at scale
m Not included in the language (user-defined library)
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The DistBag_DFS data structure
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DistBag DFS’s components: bag instances

DistBag_DFS
:7/\
baga bag, m One bag instance per Chapel locales
i . TR I — Exploit inter-node level of parallelism
LB ¥ VY
loc, loc, m Each bag instance maintains a multi-pool
\__// !
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The DistBag_DFS data structure
0@0000

DistBag DFS’s components: multi-pools

( bag instance )

Sq S2 Si St.
m One pool per Chapel tasks
— Exploit intra-node level of parallelism
R ) m Each pool is indexed by a task ID

— Ensure DF'S
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The DistBag_DFS data structure
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DistBag DFS’s components: pools
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shared private

m Non-blocking double-ended queues (deques) [7]
— lock-free local access to the private portion

— copy-free transfer between shared and private portions

m Dynamic-sized: 1024 x 2F
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The DistBag_DFS data structure
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DistBag DFS’s components: dynamic load balancing

locy loc,
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Dynamic Work Stealing (WS):
m Locality-aware: local, then global
m Random victim selection

m Steal-one strategy locally, steal-half otherwise

WS fails when all pools have been visited and no work has been stolen.
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The DistBag_DFS data structure
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DistBag DFS’s user interface

m Two initialization variables: eltType and targetLocales

m Three local procedures:
m add: insert an element
m addBulk: insert elements in bulk
m remove: remove an element (contains WS)

m Four global procedures:
m clear: clear DistBag_DFS
these: iterate over DistBag_DFS
contains: check if a given element is in DistBag_DFS
getSize: get the global size of DistBag_DFS
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The DistBag_DFS dat
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Integration to Chapel

# Chapel Documentation

# / Package Mo

DistributedBag

version 20V

DistributedBag
Usage

use Distr

Released in Chapel 2.0 (March 2024) in
the DistributedBag package module:

import. Distributedsag

Implements a highly parallel segmented mult-pool specialized for depth-firt search (DFS),
sometimes referenced as isteag_DFS

A sp for DFS), that
scales in terms of nodes, processors per node (PPN), and workload; the more PPN, the more
segments we allocate to increase raw parallelism, and the lrger the workload the better locality

© Package Modules.

Aot = . Eed 1 use DistributedBag;
Can o0 N encapsulates a dynamic work stealing mechanism to balance work across nodes, and provides a
o B 2
p— ) .
o 3 var bag = new distBag(int);
j;"":’“ ‘This module is a work in progress and may change in future releases. 4 / / -y our co de

Usage

DistrbutedBagDeprecated

Distrbuteddecue
Touse disteag , the initializer must be invoked explictly to properly initalze the data structure. By

Ditrbutediers default, one bag instance is initialized per locale, and one segment per task.

Linkealists:

IR var bag = new distsag(int, targottocales-ourTargetLocales)

Lockrreestack

S “The basic methods that distBag supports require a taskid argument. This taskTd will serve as an
Sortedset

index to the segment to be updated and it must be in 6. .<here.saskraskar . More precisely, it is
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Experimental evaluation
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Experimental protocol

m Applications:
m Backtracking applied to the Unbalanced Tree-Search (UTS) benchmark [8], with
binary- and geometric-shaped trees
m B&B applied to the Permutation Flowshop Scheduling Problem (PFSP)

solution = [3,4,2,1]

cost to minimize

m Testbed: MeluXina - Cluster module (https://docs.1lxp.1lu/)
m 400 compute nodes x 2 AMD EPYC Rome TH12 64 cores @ 2.6 GHz CPUs and
512 GB of RAM,;
m InfiniBand HDR high-speed fabric.

m Chapel 1.31.0
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Experimental evaluation
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Speed-up solving UTS instances

1281 . |deal
—e— UTS - geo
—e— UTS - bin

m 68% of the ideal speed-up solving
UTS-geo

Speed-up

m 40% more than UTS-bin

1 16 32 64 128

Processing cores

m High ratio of WS success

Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

Nb. of nodes (10°) Time (s) nodes/s (10°) WS attempts (% success)

Inst.
UTS-geo 171.1 37.38 4,577 48,433 (99.0%)
UTS-bin 131.7 37.11 3,548 1,473,048 (96.8%)
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Experimental evaluation
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Load balancing solving the UTS-bin instance

Workload distribution solving UTS-bin using 16, 32, 64, and 128 Chapel tasks:

6.2507 m NProc=16 |
_ B NProc=32
B EE NProc=64
D NProc=128
el
2
5 3.1251
o
K=l
o
& 1562

0.781+4

64 128

Processing cores

Fig. 2: Percentage of explored nodes per Chapel tasks solving the UTS-bin instance.

Even workload distribution for each experiment, i.e., 100/NbTasks.
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Experimental evaluation
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Strong scaling efficiency solving PFSP instances

1 ---- Ideal
28{ —e— P3D-DFS

Speed-up

20 21 22 23 2% 25 26 27 28 29

Computer nodes
Fig. 3: Speed-up achieved solving ta056, compared to a multi-core version.

50% of strong scaling efficiency using 400 compute nodes (51,200 CPU cores)

solving ta056
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Conclusions & Future works
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Conclusions

In the context of tree-search methods for combinatorial problems:

m DistBag_DFS provides high-level abstractions for unbalanced tree-search at
scale

m 68% of the linear speed-up on a fine-grain backtracking application in
single-node setting

m 50% of strong scaling efficiency using 400 compute nodes on a B&B
application
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Conclusions & Future works
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Future works

m Pursue DistBag_DFS development:
m Investigate ways to remove the required task ID in insertion/retrieval operations
m Track its performance along Chapel’s releases
m Improve existing features and/or add new ones
m Collect users feedbacks

m Further experiment DistBag_DFS:

m Solve unsolved PFSP instances
m Solve other problems (e.g., 0/1-Knapsack)
m Extend our DistBag_DFS-based algorithms with a fault-tolerance mechanism
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