
24th International Conference on Computational Science

PGAS Data Structure for Unbalanced Tree-Based
Algorithms at Scale

G. Helbecque1,2, T. Carneiro3, N. Melab2, J. Gmys2, P. Bouvry1

1University of Luxembourg, DCS-FSTM/SnT, Luxembourg
2Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de l’Université de Lille, France

3Interuniversity Microelectronics Centre, Belgium

2-4 July 2024
Málaga, Spain



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Outline

1 Motivation

2 The DistBag_DFS data structure

3 Experimental evaluation

4 Conclusions & Future works

1 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Motivation

Exascale era of computation;

Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.), and
less and less reliable (Mean Time Between Failures – MTBF < 1h) systems1;

"Evolutionary approaches" (MPI+X) vs. "revolutionary approaches" (e.g.,
Partitioned Global Address Space (PGAS) -based environments).

1Bi-annual TOP500 ranking, https://www.top500.org/.
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Motivation

Focus on parallel tree-search methods for solving
combinatorial problems, e.g., Backtracking and
Branch-and-Bound (B&B):

Large trees → efficient data structure
Irregular trees → efficient load balancing

Motivating example: Permutation Flowshop
Scheduling Problem (PFSP). Search trees for hard
PFSP instances contain up to 1015 explored nodes.
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Related work

Limitations of existing MPI+X data structures and load balancing for parallel
tree-search algorithms, e.g. [1, 2]:

focus only on performance
combine low-level programming environments

PGAS-based load balancing techniques also exist [3, 4, 5], but none in Chapel.

In PGAS Chapel, we introduced the DistBag_DFS distributed data
structure [6], but ...

The description of the data structure could be extended
Load balancing mechanism not evaluated
Lack of performance evaluation at scale
Not included in the language (user-defined library)
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DistBag_DFS’s components: bag instances

One bag instance per Chapel locales
→ Exploit inter-node level of parallelism

Each bag instance maintains a multi-pool
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DistBag_DFS’s components: multi-pools

One pool per Chapel tasks
→ Exploit intra-node level of parallelism

Each pool is indexed by a task ID
→ Ensure DFS
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DistBag_DFS’s components: pools

Non-blocking double-ended queues (deques) [7]
→ lock-free local access to the private portion
→ copy-free transfer between shared and private portions

Dynamic-sized: 1024 × 2k
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DistBag_DFS’s components: dynamic load balancing

Dynamic Work Stealing (WS):
Locality-aware: local, then global
Random victim selection
Steal-one strategy locally, steal-half otherwise

WS fails when all pools have been visited and no work has been stolen.
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DistBag_DFS’s user interface

Two initialization variables: eltType and targetLocales

Three local procedures:
add: insert an element
addBulk: insert elements in bulk
remove: remove an element (contains WS)

Four global procedures:
clear: clear DistBag_DFS
these: iterate over DistBag_DFS
contains: check if a given element is in DistBag_DFS
getSize: get the global size of DistBag_DFS

9 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Integration to Chapel

Released in Chapel 2.0 (March 2024) in
the DistributedBag package module:

Usage

1 use DistributedBag;
2
3 var bag = new distBag(int);
4 // your code ...
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Experimental protocol
Applications:

Backtracking applied to the Unbalanced Tree-Search (UTS) benchmark [8], with
binary- and geometric-shaped trees
B&B applied to the Permutation Flowshop Scheduling Problem (PFSP)

Testbed: MeluXina - Cluster module (https://docs.lxp.lu/)
400 compute nodes × 2 AMD EPYC Rome 7H12 64 cores @ 2.6 GHz CPUs and
512 GB of RAM;
InfiniBand HDR high-speed fabric.

Chapel 1.31.0
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Speed-up solving UTS instances
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Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

68% of the ideal speed-up solving
UTS-geo

40% more than UTS-bin

High ratio of WS success

Inst. Nb. of nodes (106) Time (s) nodes/s (103) WS attempts (% success)
UTS-geo 171.1 37.38 4,577 48,433 (99.0%)
UTS-bin 131.7 37.11 3,548 1,473,048 (96.8%)
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Load balancing solving the UTS-bin instance

Workload distribution solving UTS-bin using 16, 32, 64, and 128 Chapel tasks:
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Fig. 2: Percentage of explored nodes per Chapel tasks solving the UTS-bin instance.

Even workload distribution for each experiment, i.e., 100/NbTasks.
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Strong scaling efficiency solving PFSP instances
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Fig. 3: Speed-up achieved solving ta056, compared to a multi-core version.

50% of strong scaling efficiency using 400 compute nodes (51,200 CPU cores)
solving ta056
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Conclusions

In the context of tree-search methods for combinatorial problems:
DistBag_DFS provides high-level abstractions for unbalanced tree-search at
scale

68% of the linear speed-up on a fine-grain backtracking application in
single-node setting

50% of strong scaling efficiency using 400 compute nodes on a B&B
application
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Future works

Pursue DistBag_DFS development:
Investigate ways to remove the required task ID in insertion/retrieval operations
Track its performance along Chapel’s releases
Improve existing features and/or add new ones
Collect users feedbacks

Further experiment DistBag_DFS:
Solve unsolved PFSP instances
Solve other problems (e.g., 0/1-Knapsack)
Extend our DistBag_DFS-based algorithms with a fault-tolerance mechanism
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