24TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE

PGAS Data Structure for Unbalanced Tree-Based

Algorithms at Scale

G. Helbecque®?, T. Carneiro®, N. Melab?, J. Gmys?, P. Bouvry!

IUniversity of Luxembourg, DCS-FSTM/SnT, Luxembourg
2Université de Lille, CNRS/CRIStAL UMR, 9189, Centre Inria de I’Université de Lille, France
3Interuniversity Microelectronics Centre, Belgium

“'"I“ L Sates™ " umec
LUXEMBOURG

2-4 July 2024
Maélaga, Spain

Outline

Motivation

The DistBag_DFS data structure

Experimental evaluation

Conclusions & Future works

1/17

Motivation
@00

Motivation

10 EFiopis

1EFlopis
100 PFiopis
10 PFiopis

1PFlopis
100 TFlopis
10 TFiopis

m Exascale era of computation;

100 GFlops 2 o

Performance

10 GFlopls -~
1GFlopis -
100 MFlopls
1990 1085 2000 2005 2010 2015 2020 2028

Lists

m Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.), and
less and less reliable (Mean Time Between Failures - MTBF < 1h) systems!;

m "Evolutionary approaches" (MPI+X) vs. "revolutionary approaches" (e.g.,
Partitioned Global Address Space (PGAS) -based environments).

!Bi-annual TOP500 ranking, https://www.top500.o0rg/.
2/17

https://www.top500.org/

Motivation
oeo

Motivation

Branch-and-Bound (B&B)

Branching Bounding Pruning
T

T (3] Ok =3

Selection: returns next node to process,

m Focus on parallel tree-search methods for solving
combinatorial problems, e.g., Backtracking and
Branch-and-Bound (B&B):

m Large trees — efficient data structure
m Irregular trees — efficient load balancing

m Motivating example: Permutation Flowshop
Scheduling Problem (PFSP). Search trees for hard

PFSP instances contain up to 10'® explored nodes.

solution = [3,4,2,1]

M1
M2
M3

cost to minimize

3/17

Motivation
ooe

Related work

m Limitations of existing MPI+X data structures and load balancing for parallel
tree-search algorithms, e.g. [1, 2]:
m focus only on performance
m combine low-level programming environments

m PGAS-based load balancing techniques also exist [3, 4, 5], but none in Chapel.

m In PGAS Chapel, we introduced the DistBag_DFS distributed data
structure [6], but ...
m The description of the data structure could be extended
m Load balancing mechanism not evaluated
m Lack of performance evaluation at scale
m Not included in the language (user-defined library)

4/17

The DistBag_DFS data structure
@00000

DistBag DFS’s components: bag instances

DistBag_DFS
:7/\
baga bag, m One bag instance per Chapel locales
i . TR I — Exploit inter-node level of parallelism
LB ¥ VY
loc, loc, m Each bag instance maintains a multi-pool
__// !

5/17

The DistBag_DFS data structure
0@0000

DistBag DFS’s components: multi-pools

(bag instance)

Sq S2 Si St.
m One pool per Chapel tasks
— Exploit intra-node level of parallelism
R) m Each pool is indexed by a task ID

— Ensure DF'S

6/17

The DistBag_DFS data structure
[e]e] le]ele]

DistBag DFS’s components: pools

other split pointer
Tsks —
I .

— 2 |«| O o o
= 2(mEmEE 2
Qﬁ ™S 0l —

| —

shared private

m Non-blocking double-ended queues (deques) [7]
— lock-free local access to the private portion

— copy-free transfer between shared and private portions

m Dynamic-sized: 1024 x 2F

7/17

The DistBag_DFS data structure
[e]e]e] lele]

DistBag DFS’s components: dynamic load balancing

locy loc,

\ & F— pop
-(PUS - CPUs shared = private
- | ol ... B .. & t,‘|
»

DistBag_DFS bag instance
S1 Sz Si St St
-) [@ N h li .
bag, - bag. other split p:olnter "
o . n LD - = : /-\)‘ : 3
u — 8| . : H (:)
u [y u L

Dynamic Work Stealing (WS):
m Locality-aware: local, then global
m Random victim selection

m Steal-one strategy locally, steal-half otherwise

WS fails when all pools have been visited and no work has been stolen.

8/17

The DistBag_DFS data structure
[e]e]ele] Je]

DistBag DFS’s user interface

m Two initialization variables: eltType and targetLocales

m Three local procedures:
m add: insert an element
m addBulk: insert elements in bulk
m remove: remove an element (contains WS)

m Four global procedures:
m clear: clear DistBag_DFS
these: iterate over DistBag_DFS
contains: check if a given element is in DistBag_DFS
getSize: get the global size of DistBag_DFS

9/17

The DistBag_DFS dat
00000e

Integration to Chapel

Chapel Documentation

/ Package Mo

DistributedBag

version 20V

DistributedBag
Usage

use Distr

Released in Chapel 2.0 (March 2024) in
the DistributedBag package module:

import. Distributedsag

Implements a highly parallel segmented mult-pool specialized for depth-firt search (DFS),
sometimes referenced as isteag_DFS

A sp for DFS), that
scales in terms of nodes, processors per node (PPN), and workload; the more PPN, the more
segments we allocate to increase raw parallelism, and the lrger the workload the better locality

© Package Modules.

Aot = . Eed 1 use DistributedBag;
Can o0 N encapsulates a dynamic work stealing mechanism to balance work across nodes, and provides a
o B 2
p—) .
o 3 var bag = new distBag(int);
j;"":’“ ‘This module is a work in progress and may change in future releases. 4 / / -y our co de

Usage

DistrbutedBagDeprecated

Distrbuteddecue
Touse disteag , the initializer must be invoked explictly to properly initalze the data structure. By

Ditrbutediers default, one bag instance is initialized per locale, and one segment per task.

Linkealists:

IR var bag = new distsag(int, targottocales-ourTargetLocales)

Lockrreestack

S “The basic methods that distBag supports require a taskid argument. This taskTd will serve as an
Sortedset

index to the segment to be updated and it must be in 6. .<here.saskraskar . More precisely, it is

10/17

Experimental evaluation
[JeJele]

Experimental protocol

m Applications:
m Backtracking applied to the Unbalanced Tree-Search (UTS) benchmark [8], with
binary- and geometric-shaped trees
m B&B applied to the Permutation Flowshop Scheduling Problem (PFSP)

solution = [3,4,2,1]

cost to minimize

m Testbed: MeluXina - Cluster module (https://docs.1lxp.1lu/)
m 400 compute nodes x 2 AMD EPYC Rome TH12 64 cores @ 2.6 GHz CPUs and
512 GB of RAM,;
m InfiniBand HDR high-speed fabric.

m Chapel 1.31.0

11/17

https://docs.lxp.lu/

Experimental evaluation

o] lee)

Speed-up solving UTS instances

1281 . |deal
—e— UTS - geo
—e— UTS - bin

m 68% of the ideal speed-up solving
UTS-geo

Speed-up

m 40% more than UTS-bin

1 16 32 64 128

Processing cores

m High ratio of WS success

Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

Nb. of nodes (10°) Time (s) nodes/s (10°) WS attempts (% success)

Inst.
UTS-geo 171.1 37.38 4,577 48,433 (99.0%)
UTS-bin 131.7 37.11 3,548 1,473,048 (96.8%)

12/17

Experimental evaluation
[e]e] o]

Load balancing solving the UTS-bin instance

Workload distribution solving UTS-bin using 16, 32, 64, and 128 Chapel tasks:

6.2507 m NProc=16 |
_ B NProc=32
B EE NProc=64
D NProc=128
el
2
5 3.1251
o
K=l
o
& 1562

0.781+4

64 128

Processing cores

Fig. 2: Percentage of explored nodes per Chapel tasks solving the UTS-bin instance.

Even workload distribution for each experiment, i.e., 100/NbTasks.

13/17

Experimental evaluation
[e]e]e])

Strong scaling efficiency solving PFSP instances

1 ---- Ideal
28{ —e— P3D-DFS

Speed-up

20 21 22 23 2% 25 26 27 28 29

Computer nodes
Fig. 3: Speed-up achieved solving ta056, compared to a multi-core version.

50% of strong scaling efficiency using 400 compute nodes (51,200 CPU cores)

solving ta056
14/17

Conclusions & Future works
@00

Conclusions

In the context of tree-search methods for combinatorial problems:

m DistBag_DFS provides high-level abstractions for unbalanced tree-search at
scale

m 68% of the linear speed-up on a fine-grain backtracking application in
single-node setting

m 50% of strong scaling efficiency using 400 compute nodes on a B&B
application

15 /17

Conclusions & Future works
(o] le}

Future works

m Pursue DistBag_DFS development:
m Investigate ways to remove the required task ID in insertion/retrieval operations
m Track its performance along Chapel’s releases
m Improve existing features and/or add new ones
m Collect users feedbacks

m Further experiment DistBag_DFS:

m Solve unsolved PFSP instances
m Solve other problems (e.g., 0/1-Knapsack)
m Extend our DistBag_DFS-based algorithms with a fault-tolerance mechanism

16 /17

Conclusions & Future wo
[efe]]

References

[1] T. Carneiro Pessoa, J. Gmys, F. H. de Carvalho Junior, and et al., “GPU-accelerated
backtracking using CUDA Dynamic Parallelism,” Concurrency and Computation:
Practice and Experience, vol. 30, no. 9, p. e4374, 2018.

[2] J. Gmys, R. Leroy, M. Mezmaz, and et al., “Work stealing with private
integer—vector-matrix data structure for multi-core branch-and-bound algorithms,”
Concurrency and Computation: Practice and Ezperience, vol. 28, no. 18,
pp. 4463-4484, 2016

[3] J. Dinan, D. B. Larkins, P. Sadayappan, and et al., “Scalable Work Stealing,” in
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, Association for Computing Machinery, 2009.

[4] R. Machado, C. Lojewski, S. Abreu, and et al., “Unbalanced tree search on a manycore

system using the GPI programming model,” Computer Science - Research and
Development, vol. 26, no. 3, pp. 229-236, 2011.

[5] S. Olivier and J. Prins, “Scalable Dynamic Load Balancing Using UPC,” in 37th
International Conference on Parallel Processing, pp. 123-131, 2008.

[6] G. Helbecque, J. Gmys, N. Melab, and et al., “Parallel distributed productivity-aware
tree-search using Chapel,” Concurrency and Computation: Practice and Ezperience,
vol. 35, no. 27, p. e7874, 2023.

[7] T. van Dijk and J. C. van de Pol, “Lace: Non-blocking Split Deque for Work-Stealing,”
in Euro-Par 2014: Parallel Processing Workshops, pp. 206-217, 2014.

[8] S. Olivier, J. Huan, J. Liu, and et al., “UTS: An Unbalanced Tree Search Benchmark,”
in Languages and Compilers for Parallel Computing, pp. 235-250, 2007.
17 /17

Thank you for your attention.
Contact:
Guillaume HELBECQUE

guillaume.helbecque@uni.lu

Work supported by the Agence Nationale de la Recherche (ref. ANR-22-CE46-0011) and the Luxembourg
National Research Fund (ref. INTER/ANR/22/17133848), under the UltraBO project.

©
Luxembour n r .
‘ National d a agence nationale
"\ Research Fund de la recherche

guillaume.helbecque@uni.lu

	Motivation
	The DistBag_DFS data structure
	Experimental evaluation
	Conclusions & Future works

