
24th International Conference on Computational Science

PGAS Data Structure for Unbalanced Tree-Based
Algorithms at Scale

G. Helbecque1,2, T. Carneiro3, N. Melab2, J. Gmys2, P. Bouvry1

1University of Luxembourg, DCS-FSTM/SnT, Luxembourg
2Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de l’Université de Lille, France

3Interuniversity Microelectronics Centre, Belgium

2-4 July 2024
Málaga, Spain



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Outline

1 Motivation

2 The DistBag_DFS data structure

3 Experimental evaluation

4 Conclusions & Future works

1 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Motivation

Exascale era of computation;

Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.), and
less and less reliable (Mean Time Between Failures – MTBF < 1h) systems1;

"Evolutionary approaches" (MPI+X) vs. "revolutionary approaches" (e.g.,
Partitioned Global Address Space (PGAS) -based environments).

1Bi-annual TOP500 ranking, https://www.top500.org/.
2 / 17

https://www.top500.org/


Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Motivation

Focus on parallel tree-search methods for solving
combinatorial problems, e.g., Backtracking and
Branch-and-Bound (B&B):

Large trees → efficient data structure
Irregular trees → efficient load balancing

Motivating example: Permutation Flowshop
Scheduling Problem (PFSP). Search trees for hard
PFSP instances contain up to 1015 explored nodes.

3 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Related work

Limitations of existing MPI+X data structures and load balancing for parallel
tree-search algorithms, e.g. [1, 2]:

focus only on performance
combine low-level programming environments

PGAS-based load balancing techniques also exist [3, 4, 5], but none in Chapel.

In PGAS Chapel, we introduced the DistBag_DFS distributed data
structure [6], but ...

The description of the data structure could be extended
Load balancing mechanism not evaluated
Lack of performance evaluation at scale
Not included in the language (user-defined library)

4 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

DistBag_DFS’s components: bag instances

One bag instance per Chapel locales
→ Exploit inter-node level of parallelism

Each bag instance maintains a multi-pool

5 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

DistBag_DFS’s components: multi-pools

One pool per Chapel tasks
→ Exploit intra-node level of parallelism

Each pool is indexed by a task ID
→ Ensure DFS

6 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

DistBag_DFS’s components: pools

Non-blocking double-ended queues (deques) [7]
→ lock-free local access to the private portion
→ copy-free transfer between shared and private portions

Dynamic-sized: 1024 × 2k

7 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

DistBag_DFS’s components: dynamic load balancing

Dynamic Work Stealing (WS):
Locality-aware: local, then global
Random victim selection
Steal-one strategy locally, steal-half otherwise

WS fails when all pools have been visited and no work has been stolen.

8 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

DistBag_DFS’s user interface

Two initialization variables: eltType and targetLocales

Three local procedures:
add: insert an element
addBulk: insert elements in bulk
remove: remove an element (contains WS)

Four global procedures:
clear: clear DistBag_DFS
these: iterate over DistBag_DFS
contains: check if a given element is in DistBag_DFS
getSize: get the global size of DistBag_DFS

9 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Integration to Chapel

Released in Chapel 2.0 (March 2024) in
the DistributedBag package module:

Usage

1 use DistributedBag;
2
3 var bag = new distBag(int);
4 // your code ...

10 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Experimental protocol
Applications:

Backtracking applied to the Unbalanced Tree-Search (UTS) benchmark [8], with
binary- and geometric-shaped trees
B&B applied to the Permutation Flowshop Scheduling Problem (PFSP)

Testbed: MeluXina - Cluster module (https://docs.lxp.lu/)
400 compute nodes × 2 AMD EPYC Rome 7H12 64 cores @ 2.6 GHz CPUs and
512 GB of RAM;
InfiniBand HDR high-speed fabric.

Chapel 1.31.0
11 / 17

https://docs.lxp.lu/


Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Speed-up solving UTS instances

1 16 32 64 128
Processing cores

1
16
32

64

128
Sp

ee
d-

up
Ideal
UTS - geo
UTS - bin

Fig. 1: Speed-up achieved solving geometrical
and binomial synthetic UTS trees.

68% of the ideal speed-up solving
UTS-geo

40% more than UTS-bin

High ratio of WS success

Inst. Nb. of nodes (106) Time (s) nodes/s (103) WS attempts (% success)
UTS-geo 171.1 37.38 4,577 48,433 (99.0%)
UTS-bin 131.7 37.11 3,548 1,473,048 (96.8%)

12 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Load balancing solving the UTS-bin instance

Workload distribution solving UTS-bin using 16, 32, 64, and 128 Chapel tasks:

1 16 32 64 128
Processing cores

6.250

3.125

1.562
0.781

Ex
pl

or
ed

 n
od

es
 (%

)

NProc=16
NProc=32
NProc=64
NProc=128

Fig. 2: Percentage of explored nodes per Chapel tasks solving the UTS-bin instance.

Even workload distribution for each experiment, i.e., 100/NbTasks.

13 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Strong scaling efficiency solving PFSP instances

20 21 22 23 24 25 26 27 28 29

Computer nodes

20

21

22

23

24

25

26

27

28

29

Sp
ee

d-
up

Ideal
P3D-DFS

Fig. 3: Speed-up achieved solving ta056, compared to a multi-core version.

50% of strong scaling efficiency using 400 compute nodes (51,200 CPU cores)
solving ta056

14 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Conclusions

In the context of tree-search methods for combinatorial problems:
DistBag_DFS provides high-level abstractions for unbalanced tree-search at
scale

68% of the linear speed-up on a fine-grain backtracking application in
single-node setting

50% of strong scaling efficiency using 400 compute nodes on a B&B
application

15 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

Future works

Pursue DistBag_DFS development:
Investigate ways to remove the required task ID in insertion/retrieval operations
Track its performance along Chapel’s releases
Improve existing features and/or add new ones
Collect users feedbacks

Further experiment DistBag_DFS:
Solve unsolved PFSP instances
Solve other problems (e.g., 0/1-Knapsack)
Extend our DistBag_DFS-based algorithms with a fault-tolerance mechanism

16 / 17



Motivation The DistBag_DFS data structure Experimental evaluation Conclusions & Future works

References
[1] T. Carneiro Pessoa, J. Gmys, F. H. de Carvalho Júnior, and et al., “GPU-accelerated

backtracking using CUDA Dynamic Parallelism,” Concurrency and Computation:
Practice and Experience, vol. 30, no. 9, p. e4374, 2018.

[2] J. Gmys, R. Leroy, M. Mezmaz, and et al., “Work stealing with private
integer–vector–matrix data structure for multi-core branch-and-bound algorithms,”
Concurrency and Computation: Practice and Experience, vol. 28, no. 18,
pp. 4463–4484, 2016.

[3] J. Dinan, D. B. Larkins, P. Sadayappan, and et al., “Scalable Work Stealing,” in
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, Association for Computing Machinery, 2009.

[4] R. Machado, C. Lojewski, S. Abreu, and et al., “Unbalanced tree search on a manycore
system using the GPI programming model,” Computer Science - Research and
Development, vol. 26, no. 3, pp. 229–236, 2011.

[5] S. Olivier and J. Prins, “Scalable Dynamic Load Balancing Using UPC,” in 37th
International Conference on Parallel Processing, pp. 123–131, 2008.

[6] G. Helbecque, J. Gmys, N. Melab, and et al., “Parallel distributed productivity-aware
tree-search using Chapel,” Concurrency and Computation: Practice and Experience,
vol. 35, no. 27, p. e7874, 2023.

[7] T. van Dijk and J. C. van de Pol, “Lace: Non-blocking Split Deque for Work-Stealing,”
in Euro-Par 2014: Parallel Processing Workshops, pp. 206–217, 2014.

[8] S. Olivier, J. Huan, J. Liu, and et al., “UTS: An Unbalanced Tree Search Benchmark,”
in Languages and Compilers for Parallel Computing, pp. 235–250, 2007.

17 / 17



Thank you for your attention.
Contact:

Guillaume HELBECQUE
guillaume.helbecque@uni.lu

Work supported by the Agence Nationale de la Recherche (ref. ANR-22-CE46-0011) and the Luxembourg
National Research Fund (ref. INTER/ANR/22/17133848), under the UltraBO project.

guillaume.helbecque@uni.lu

	Motivation
	The DistBag_DFS data structure
	Experimental evaluation
	Conclusions & Future works

