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Motivations

1. Existing tools(mostly based on Python), such as NetworkX and
DotMotif, can only handle small graphs/datasets.

2. Highly productive tools are necessary to improve data science
performance.

3. Analgorithm like subgraph isomorphism requires a way to quickly
access the properties of a graph during its semantic check step.
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Real use-case: Connectome HO1 Analysis
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Drosophila Hemibrain Dataset, [Scheffer et al. 2020]

Slide credit: Jakob Troidl, Hanspeter Pfister, Jeff Lichtman (Harvard University)
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Drosophila Auditory Circuit [Baker et al. 2022]
Video: Amy Sterling, FlyWire

Using Arachne, we can convert connectome datasets with
one hundred million rows of JSON objects to distributed

HDF5 files.
With Arachne, graphs of this size can be queried in

NJI

Modestly sized ~ 250GB of raw data
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Arachne addresses these needs

name born brand model
person Ann 1990 NULL NULL . .
srcid dstid relationship since bought rea d_m atrl)(_market_ﬁle()
29 34 69 lives-with NULL NULL
lives-with

- 69 34 ives-wit NULL NULL - read_hdf()

34 89 drives 2011 NULL

69 89 drives 2011 NULL read_pa rquet()

69 89 owns NULL 2011

89 89 drives NULL NULL rmat()

Load in terabytes-sized CSVs, HDF5s, Parquets, etc. Generate or load graphs in from

various sources.

import arkouda as ak
import arachne as ar

User edits a Python
script or a Jupyter

graph = ar.PropGraph()
Notebook.

VoONOUVTHS WN

graph.load_ed e_attributesérdaﬁonshisﬁdﬁ
graph.load_node_attributes label_df?

returned_nodes

| graph.node_attributes[“column”] == 1
returned_edges

= graph.edge_attributes[“column”] == 2
subgraph_src
subgraph_dst

ak.inld(returned_edges[@], returned_nodes
ak.inld(returned_edges[1], returned_nodes

kept_edges = subgraph_src & subgraph_dst

subgraph_src
subgraph_dst

subgraph_src[kept_edges]
subgraph_dst[kept_edges]

subgraph = ar.Graph()
subgraph.add_edges_from(subgraph_src, subgraph_dst)

Easily usable through NetworkX-like API.

&

User

OPEN SOURCE: https:
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PUBLICATIONS & PRESENTATIONS AT: HPEC, HiPC, IPDPS, &

“lives-with

34 69
:person :person

“lives-with
:drives :drives

since 01-10-2011 since 01-10-2011

bought 01-10-2011
:owns

Convert tabular data to a property graph with all data closely
maintained with vertex and edges.

name Ann

name Dan

born 05-29-1990 born 12-05-1975

—

—

brand Tesla

model Model X

NetworkX, iGraph, or graph-tool.

Chapel Server

Overarching Dispatcher

&=

Code Modules

Indexing
Generation

Distributed Array
Distributed B ]
Object Store Dlsﬁr'bUtEd Segﬁtaph
|
Platform MPP, SMP, Cluster, Laptop, etc.

Original image source: https://chapel-lang.org/CHIUW/2020/Reus.pdf was modified for this presentation

Runs on any hardware, data stays in the back-end,
user calls APl through Python: powerful and
productive. Server can run on supercomputers;
Python API usable locally.
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Problem Definition

The subgraph isomorphism is about finding Subgraph (pattern) inside a larger Graph
(host/target). Two version (induced and non-induced). Challenge: NP-complete problem

Algorithm 1 VF2 [2]
1: procedure VF2(subgraph, host graph, state)

2 if mapping is full then

3: return mapping

i end if Core 1 and Core 2 Keep track of
5 candidates «+— GETCANDIDATEPAIRS(subgraph, host mapping.

The most time consuming part!
graph, state) gp

6: for each candidate ¢ in candidates do

7: if ¢ satisfies isFeasible rules then

8: NewState « add new candidate to state

9: results «<— VF2(subgraph, host, NewState)

10: end if

11: end for

12: end procedure Recursion

NJ I
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VF2-PS
Algorithm
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Al

gorithm 2 Parallel VF2-PS algorithm that generates the

mappings of vertices u from the host graph that are mapped

to

vertices v from the subgraph.

Input: A state S.,, ., With the current mapping information

for a given recursive depth d.

Output: Mappings M of all host graph and subgraph pairs

10:
11:
12:
13:
14:
15:
16:
p7:
18:
19:

T EaProRrRTREE

that induce a monomorphism.
. M = list(int) > Parallel-safe list.
if d == n, then > noy is the size of the subgraph.
for v € S.,,rent.core do
M .pushBack(v)
end for
return M/ Core Keeps track of mapping.
end if
candidates = getCandidate Pairs(S . yrent)
for all (u,v) € candidates do
if isFeasible(u,v,S.urrent) then

Scione = Seurrent-clone() |
addT oTinT out(u, v, Scione) where.each tasdk'dWIt” e)t;ecutde
‘I‘I"‘fu' = VFQ(‘ ‘(TI()“(_'- (1 + 1) on a given candidaate, base

n current stat
for m € M., do on current state

M.pushBack(m)
end for
end if

end for all N I
return A/
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Experiments

* We conducted systematic comparisons between our implementation and those from
well-established and widely used Python libraries such as NetworkX and DotMotif.
Additionally, we experimented with VF3P.

* Synthetic graphs

o The synthetic directed graphs were derived from standard random graph models, including
Erd6s—Rényi, Watts—Strogatz, and Barabasi—Albert, which are frequently used in network analysis
studies.

* Real-world datasets
o the Hemibrain v.1.2 dataset, the Enron email network, and the Math Overflow temporal network

REAL-WORLD DATASETS USED FOR EXPERIMENTATION, SORTED BY THE NUMBER OF EDGES.

Dataset Number of vertices | Number of edges | Density Field
Enron Emails 36,692 183,831 0.0001 Communication network
Math Overflow 24,818 506,550 0.0008 Social network
Hemibrain v1.2 21,739 3,550,403 0.0075 Neuroscience ] I
New Jersey Institute
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Performance on Synthetic graphs
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Performance with Various Structures

e These tests were carefully
designed to examine the effect s Execution Time by Number of Edges

e VF2-PS LA A
of both network size and = Networkx =
. 40004 * DotMotif fg
subgraph size and structure 5 « VF3P .
e we produced 300 distinct  § 30001
directed Erd6s—Rényi graphs.The £ il
c 2000 - a4
vertex counts for these graphs £ e |
. . . § 4 @ &‘ B
were uniformly  distributed J—— LI
1000 é“ég b K
. . L]
within a range of 100 to 300, and ?_.ﬁ.g 2
. e ] J  J abduedttes ekt 5 & o8 L
their edge densities were i s e it i s s W i Wi
. 0 2 4 6 8 10 12 14 16 18 20 22 24
uniformly sampled from a Edges counts (thousands)
continuum spanning 0.05 to 0.1. N ] I
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Performance on Real-World Graphs

e For the Enron email network, VF2-PS achieved an impressive speedup of 81.5 times compared to the widely used
NetworkX. Similarly, in the Stack Overflow dataset, VF2-PS facilitated a speedup of 72.8 times, and for the Hemibrain
dataset, the speedup reached 97.0 times. These metrics highlight Arachne’s robust performance and precision in

motif finding tasks.

Math Overflow temporal network

103.
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Scalable Performance

 we use different numbers of parallel threads to
run the same task on the same graph. In Chapel,
we can update the value of the environmental
variable CHPL _RT_NUM_THREADS PER_LOCALE

to vary the number of threads.
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Conclusion

* A parallel and optimized implementation of the VF2 algorithm for
subgraph monomorphism implemented into Arachne.

* Comprehensive experimental results on synthetic and real-world
graphs showing that our subgraph monomorphism method is
significantly faster than the ubiquitous, Python-based, graph
packages, DotMotif and NetworkX. Additionally, it shows better
performance compared to VF3 Parallel.

e Our solution easily can handle massive graphs.
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Thank You ®
Questions?
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Problem Definition

* The subgraph isomorphism is about finding Subgraph (pattern) inside
a larger Graph (host/target)
e Two version (induced and non-induced).

* Challenge: NP-complete problem

O—Q—
) ) () .
o~ ""“ - *. i '
Ciaran McCreech et al. 2018 N ] I
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Optimization Methods

* Reduce the amount of space utilized by the VF2 implementation by
restructurmg the state data structure.
o In the original VF2 data structure, two vectors, core 1 and core_2 are used to keep

the current mapping. However, we use core_2[n_2]=n_1 to keep the current

mapping (n_1,n_2). This can save the space used by state variables and make the
search for unmapped vertices easy. Based on the simplified state data structure, it
sufficesdto check the value of core_2[i], 0O<=I< |V_2|-1, to know if a vertex has been
mapped.

* Invoke very ﬁ)roductive and fast parallelization in Chapel that automatically
creates parallel tasks and assigns them to available threads dynamically
dependent on the amount of threads at a given time.

* the parallel for loop will split up into many blocks where each task will
execute on a given block.

o Any freed threads can be utilized by subsequent recursive calls, provided they
become available when the execution reaches one of the nested 'for all' loops.
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Performance on Scale-free Networks

e This Figure shows one of the many generated

Barabasi-Albert (alpha=0.41, beta=0.54, gamma=0.05)

configurations, characterized by parameters a o e /]
=0.41, B =0.54, and y = 0.05. = /

* a network with moderate preferential -
attachment and a higher propensity for /.,/--‘/
internal connections, resulting in moderate T LT
clustering and balanced degree distribution. et 1

Edges counts (thousands)
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Performance on Small-world Networks

* |In theses setups we tried to demonstrate

Watts-Strogatz ( k= 10, p=0.01)

the impact of the rewiring probability in | 2
transitioning from highly structured | o /
networks to those exhibiting more 3250 /_,../-"
random properties. ; :zz //»/_/,-f«

e [t can be seen that VF2-PS can efficiently 100 T = i ——
handle the intricate structures of small- - T O e e
world graphs with millions of edges, S B JUE T

which are common in many real-world
scenarios.

NJ I

New Jersey Institute
May 2024 18 of Technology




