
VF2-PS: Parallel and Scalable
Subgraph Monomorphism in Arachne

Mohammad Dindoost, Oliver Alvarado Rodriguez, Sounak Bagchi+,
Palina Pauliuchenka, Zhihui Du, David A. Bader

Department of Data Science

New Jersey Institute of Technology

Newark, NJ, USA

+Edison Academy Magnet School, Edison, NJ,USA

Supported by NSF grant: CCF-2109988 & NSF OAC-2402560

Motivations

1. Existing tools(mostly based on Python), such as NetworkX and
DotMotif, can only handle small graphs/datasets.

2. Highly productive tools are necessary to improve data science
performance.

3. An algorithm like subgraph isomorphism requires a way to quickly
access the properties of a graph during its semantic check step.

May 2024 2

Real use-case: Connectome H01 Analysis

May 2024

Drosophila Hemibrain Dataset, [Scheffer et al. 2020]

Drosophila Auditory Circuit [Baker et al. 2022]
Video: Amy Sterling, FlyWire

Slide credit: Jakob Troidl, Hanspeter Pfister, Jeff Lichtman (Harvard University)

• Using Arachne, we can convert connectome datasets with
one hundred million rows of JSON objects to distributed
HDF5 files.

• With Arachne, graphs of this size can be queried in
seconds.

• Modestly sized ~ 250GB of raw data

3

4

Raw data (Connectome, Banking, Citation,...)

Arachne Framework

Applications (kernels)

Needs

May 2024

Arachne addresses these needs
read_matrix_market_file()

read_hdf()

read_parquet()

rmat()
Load in terabytes-sized CSVs, HDF5s, Parquets, etc. Convert tabular data to a property graph with all data closely

maintained with vertex and edges.Generate or load graphs in from
various sources.

bfs_layers()

subgraph_isomorphism()

square_counting()

subgraph_view()Perform analysis or filter for
NetworkX, iGraph, or graph-tool.

1. import arkouda as ak
2. import arachne as ar
3.
4. ## Get src and dst from input file.
5.
6. graph = ar.PropGraph()
7.
8. ## Generate label_df and relationships_df from input file.
9.
10. graph.load_edge_attributes(relationships_df)
11. graph.load_node_attributes(label_df)
12.
13. ## User generates labels_to_find and relationships_to_find.
14. returned_nodes = graph.node_attributes[“column”] == 1
15. returned_edges = graph.edge_attributes[“column”] == 2
16.
17. subgraph_src = ak.in1d(returned_edges[0], returned_nodes)
18. subgraph_dst = ak.in1d(returned_edges[1], returned_nodes)
19.
20. kept_edges = subgraph_src & subgraph_dst
21.
22. subgraph_src = subgraph_src[kept_edges]
23. subgraph_dst = subgraph_dst[kept_edges]
24.
25. subgraph = ar.Graph()
26. subgraph.add_edges_from(subgraph_src, subgraph_dst)
27. ## Run some other operations on subgraph! Reference our HPEC22 paper ☺

Easily usable through NetworkX-like API.

Runs on any hardware, data stays in the back-end,
user calls API through Python: powerful and

productive. Server can run on supercomputers;
Python API usable locally.

OPEN SOURCE: https://github.com/Bears-R-Us/arkouda-njit
PUBLICATIONS & PRESENTATIONS AT: HPEC, HiPC, IPDPS, &
PPoPP

ZM
Q

User

User edits a Python
script or a Jupyter

Notebook.

5

about:blank

Problem Definition
The subgraph isomorphism is about finding Subgraph (pattern) inside a larger Graph
(host/target). Two version (induced and non-induced). Challenge: NP-complete problem

May 2024 6

Recursion

Core 1 and Core 2 Keep track of
mapping.
The most time consuming part!

VF2-PS
Algorithm

May 2024 7

Core Keeps track of mapping.

where each task will execute
on a given candidate, based
on current state

Experiments
• We conducted systematic comparisons between our implementation and those from

well-established and widely used Python libraries such as NetworkX and DotMotif.
Additionally, we experimented with VF3P.

• Synthetic graphs
o The synthetic directed graphs were derived from standard random graph models, including

Erdős–Rényi, Watts–Strogatz, and Barabási–Albert, which are frequently used in network analysis
studies.

• Real-world datasets
o the Hemibrain v.1.2 dataset, the Enron email network, and the Math Overflow temporal network

May 2024 8

Performance on Synthetic graphs

May 2024 9

Performance with Various Structures

• These tests were carefully
designed to examine the effect
of both network size and
subgraph size and structure

• we produced 300 distinct
directed Erdős–Rényi graphs.The
vertex counts for these graphs
were uniformly distributed
within a range of 100 to 300, and
their edge densities were
uniformly sampled from a
continuum spanning 0.05 to 0.1.

May 2024 10

Performance on Real-World Graphs
• For the Enron email network, VF2-PS achieved an impressive speedup of 81.5 times compared to the widely used

NetworkX. Similarly, in the Stack Overflow dataset, VF2-PS facilitated a speedup of 72.8 times, and for the Hemibrain
dataset, the speedup reached 97.0 times. These metrics highlight Arachne’s robust performance and precision in
motif finding tasks.

May 2024 11

Scalable Performance

• we use different numbers of parallel threads to
run the same task on the same graph. In Chapel,
we can update the value of the environmental
variable CHPL_RT_NUM_THREADS_PER_LOCALE
to vary the number of threads.

May 2024 12

Conclusion

• A parallel and optimized implementation of the VF2 algorithm for
subgraph monomorphism implemented into Arachne.
• Comprehensive experimental results on synthetic and real-world

graphs showing that our subgraph monomorphism method is
significantly faster than the ubiquitous, Python-based, graph
packages, DotMotif and NetworkX. Additionally, it shows better
performance compared to VF3 Parallel.

• Our solution easily can handle massive graphs.

May 2024 13

Thank You ☺
Questions?

May 2024 14

Problem Definition

• The subgraph isomorphism is about finding Subgraph (pattern) inside
a larger Graph (host/target)

• Two version (induced and non-induced).
• Challenge: NP-complete problem

May 2024 15

Ciaran McCreech et al. 2018

Optimization Methods
• Reduce the amount of space utilized by the VF2 implementation by

restructuring the state data structure.
o In the original VF2 data structure, two vectors, core_1 and core_2 are used to keep

the current mapping. However, we use core_2[n_2]=n_1 to keep the current
mapping (n_1,n_2). This can save the space used by state variables and make the
search for unmapped vertices easy. Based on the simplified state data structure, it
suffices to check the value of core_2[i], 0<= I< |V_2|-1, to know if a vertex has been
mapped.

• Invoke very productive and fast parallelization in Chapel that automatically
creates parallel tasks and assigns them to available threads dynamically
dependent on the amount of threads at a given time.
• the parallel for loop will split up into many blocks where each task will

execute on a given block.
o Any freed threads can be utilized by subsequent recursive calls, provided they

become available when the execution reaches one of the nested 'for all' loops.

May 2024 16

Performance on Scale-free Networks

• This Figure shows one of the many generated
configurations, characterized by parameters α
= 0.41, β = 0.54, and γ = 0.05.

• a network with moderate preferential
attachment and a higher propensity for
internal connections, resulting in moderate
clustering and balanced degree distribution.

May 2024 17

Performance on Small-world Networks

• In theses setups we tried to demonstrate
the impact of the rewiring probability in
transitioning from highly structured
networks to those exhibiting more
random properties.

• It can be seen that VF2-PS can efficiently
handle the intricate structures of small-
world graphs with millions of edges,
which are common in many real-world
scenarios.

May 2024 18

