
1

Investigating Portability in Chapel for Tree-based

Optimization on GPU-powered Clusters

Tiago Carneiro¹, Engin Kayraklioglu², Guillaume Helbecque³ and Nouredine Melab4

IMEC - Leuven¹, Hewlett Packard Enterprise², University of Luxembourg³, University of Lille³⁴

EUROPAR 2024 – The 30th International European Conference on Parallel and Distributed Computing

26-30 August 2024 – Madrid, Spain

Outline

▪ Context, motivations and objectives

▪ Distributed Tree-based Search in Chapel

▪ The Complexity of Mixing CUDA/HIP with Chapel

▪ Performance Portability Experiments

▪ Performance Portability Results

▪ Programming Effort

▪ Conclusions and Perspectives

2

3

Introduction
Context, motivations and objectives

▪ Optimization problems are increasingly big in many application areas

▪ High-dimensionality (#decision variables, #objectives)

▪ Time-demanding objectives

▪ Motivating Example: Flow-shop scheduling problem

▪ Big instance Ta056 (50 jobs, 20 machines) 10^64 sub-problems

▪ 22 years using a single-core processor [M. Mezmaz et al., 2006]

▪ We do need supercomputers to solve big COPs!

Context and motivations

4

Combinatorial Optimization Problems

s.t.
(O.P)

min

Context and motivations (cont.)

5

Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required

Context and motivations (cont.)

6

Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required

Context and motivations (cont.)

7

Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required

Context and motivations (cont.)

8

Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required

Context and motivations (cont.)

9

Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required

Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency

10

Productivity-aware Ultra-scale Optimization

Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency

11

Productivity-aware Ultra-scale Optimization

Revisit

Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency

▪ Heterogeneity

12

Productivity-aware Ultra-scale Optimization

Revisit

Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency

▪ Heterogeneity

▪ Code and performance portability

13

Productivity-aware Ultra-scale Optimization

Revisit

Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

14

The Chapel Language – Productivity Awareness

Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

15

The Chapel Language – Productivity Awareness

Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

16

The Chapel Language – Productivity Awareness

Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

17

The Chapel Language – Productivity Awareness

Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

18

The Chapel Language – Productivity Awareness

Objectives

19

The Chapel Language – Productivity Awareness

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

Objectives

20

The Chapel Language – Productivity Awareness

▪ The Chapel language, designed for productive parallel computing at scale, shows to be

a candidate for revisiting distributed tree-based search in the PGAS model.

21

Distributed Tree-based Search in Chapel

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

22

Distributed Tree-based Search in Chapel

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

23

Distributed Tree-based Search in Chapel

Chapel-based Optimization (ChOp)

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

24

Distributed Tree-based Search in Chapel

Branch-and-

Bound/Backtracking

To solve big COP

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

Chapel-based Optimization (ChOp)

25

Distributed Tree-based Search in Chapel

t

DistributedIters:

distributed load balancing/work

distribution

Metrics reduction

Termination criteria

Branch-and-

Bound/Backtracking

To solve big COP

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

Chapel-based Optimization (ChOp)

26

Distributed Tree-based Search in Chapel

DistributedIters:

Increases productivity in the

context of distributed tree-based

search!

Chapel-based Optimization (ChOp)

27

Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work

distribution

Metrics reduction

Termination criteria

Intra-node:

Chapel+CUDA

Chapel+HIP

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

Chapel-based Optimization (ChOp)

28

Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work

distribution

Metrics reduction

Termination criteria

Intra-node:

Chapel+CUDA

Chapel+HIP

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based

master-worker load balancing scheme.

29

The Complexity of Mixing CUDA/HIP with

Chapel

The Complexity of Using C-Interoperability

30

Mix of Programming Languages and Programming Models

Intra-node Parallelism

From a subproblem in the chunk:

Generates load for the GPUs

Improves locality

The Complexity of Using C-Interoperability

31

Mix of Programming Languages and Programming Models

Intra-node Parallelism

Calling the kernels and load distribution:

Tasks in Chapel – 1 task per GPU

C-Interoperability types and functions
(c_ulonglong, CPtrTo(pool+chunk))

The Complexity of Using C-Interoperability

32

Redundant Kernel Implementations

Intra-node Parallelism

Redundant kernels in CUDA and HIP

Wrapper function in C

Different Makefile rules

The Complexity of Using C-Interoperability

33

Redundant Kernel Implementations

Intra-node Parallelism

Gets the result back from the C-Wrapper

Uses C-Interoperability types

The Complexity of Using C-Interoperability

34

Programming Complexity and Productivity Loss

Intra-node Parallelism

The Complexity of Using C-Interoperability

35

Programming Complexity and Productivity Loss

Intra-node Parallelism

The Complexity of Using C-Interoperability

36

Programming Complexity and Productivity Loss

Intra-node Parallelism

The Complexity of Using C-Interoperability

37

Programming Complexity and Productivity Loss

Replace with Chapel's

native GPU support

Intra-node Parallelism

The Complexity of Using C-Interoperability

38

Programming Complexity and Productivity Loss

Replace with Chapel's

native GPU support

Intra-node Parallelism

Research Questions

39

1. Is it possible to achieve both code

and performance portability in

distributed tree-based search with

Chapel's native GPU support?

2. Is it worth in terms of programming

effort?

40

Performance Experiments

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baselines: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA and Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments

41

Baselines

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baselines: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA and Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments

42

Baselines

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baselines: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA and Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments

43

Baselines

▪ The following applications for enumerating all valid complete solutions of the N-Queens
problem are considered: (Backtracking)

▪ Single-node Multi-GPU baselines: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid: Chapel+CUDA and Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments

44

Baselines

N-Queens – proof

of concept

C. Optimization Problems – B&B

Performance Experiments

▪ N-Queens:

▪ Problem sizes (board) ranging from N=18 to N=22

▪ N=18:

▪ 6.6 * 10⁸ solutions

▪ 2.96 * 10¹⁰ valid placements of queens on the board

▪ N=22

▪ 2.69 * 10¹² solutions

▪ 1.43 * 10¹⁴ valid placements of queens on the board

▪ From ~10 seconds (N=18) to ~8 hours (N=22) on 8 GPUs.

45

Testbeds and Parameters - Problems

Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

46

Testbeds and Parameters - Computers

Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

47

Testbeds and Parameters - Computers

Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

48

Testbeds and Parameters - Computers

Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

49

Testbeds and Parameters - Computers

Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)

50

Testbeds and Parameters - Computers

51

Performance Portability Results

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs – AMD, Chapel's native GPU support vs. Baseline

52

Single-node Application: execution time

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs – AMD, Chapel's native GPU support vs. Baseline

53

Single-node Application: execution time

Budget

limitations

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs - AMD

54

Single-node Application: execution time

The bigger the load - the

better the Chapel

performance

Chapel: for 6% to

15% slower

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

55

Distributed Application: execution time

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

56

Distributed Application: execution time

Budget

limitations

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

57

Distributed Application: execution time

Chapel is on avg:

18 – equivalent

19 – 4% slower

20 – 16% slower

21 - 13% slower

Chapel is on

avg 8% slower

Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid

58

Distributed Application: execution time

From 3.7x

slower to

slightly faster

The bigger the load - the

better the Chapel

performance

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

59

Strong Scaling

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

60

Strong Scaling

Load is tiny for 512 GPUs:

Hybrid CUDA 72% vs. Chapel 60%

of the linear speedup on 16 nodes (64 GPUs)

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

61

Strong Scaling

Load is tiny for 512 GPUs:

Drops to 37% vs. 35%

of the linear speedup on 128 nodes (512 GPUs)

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

62

Strong Scaling

Hybrid CUDA ~78% and Chapel ~72%

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

63

Strong Scaling

Hybrid CUDA – 60% of the linear speedup

Vs.

Chapel – 55% of the linear speedup

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

64

Strong Scaling

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

65

Strong Scaling

Load is too tiny for 1024 GPUs!

Drops from ~60% to ~18% of the linear

speedup for both versions

Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline

66

Strong Scaling

Hybrid HIP – 61% of the linear speedup

Vs.

Chapel – 57% of the linear speedup

(***)

Research Questions

67

1. Is it possible to achieve both code
and performance portability in
distributed tree-based search with
Chapel's native GPU support?

1. Yes!

2. Minor performance loss on
NVIDIA GPUs and equivalent
performance on AMD for big
problems.

3. Chapel scales similarly on both
systems – up to 128 nodes.

68

Programming Effort

Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of
SLOC

▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

69

Single-node – Multi-GPU

Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of SLOC
▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

▪ Chapel-GPU: the benefit is to get rid of both HIP and CUDA applications
▪ Low/no performance loss for the medium/big problems

70

Single-node – Multi-GPU

Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of SLOC
▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

▪ Chapel-GPU: the benefit is to get rid of both HIP and CUDA applications
▪ Low/no performance loss for the medium/big problems

▪ Only one application

71

Single-node – Multi-GPU

Programming Effort

▪ Replacing one hybrid version (CUDA or HIP) with Chapel's native GPU

support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP wrappers) results in a

final code 65% shorter.

72

Distributed

Programming Effort

▪ Replacing one hybrid version (CUDA or HIP) with Chapel's native GPU

support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP wrappers) results in a

final code 65% shorter.

73

Distributed

Programming Effort

▪ Replacing one hybrid version (CUDA or HIP) with Chapel's native GPU

support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP wrappers) results in a

final code 65% shorter.

▪ Only one kernel version to keep

▪ Almost no performance loss for distributed execution - biggest loads

74

Distributed

Research Questions

75

1. Is

2. Is it worth in terms of programming

effort?

1. Yes!

2. Single-node: a single application for

two different vendors

3. Distributed: getting rid of the

kernels and its wrappers results in a

much shorter application – small

performance loss

76

Conclusions and Perspectives

Conclusions

▪ Chapel efficiently unifies the different parallel levels of GPU-powered clusters:

inter-node and intra-node (CPUs and GPUs).

▪ This allows one to holistically deal with the two major challenges of exascale

computing in a unified/productive way:

▪ Intra-node and inter-node scalability

▪ GPU-aware heterogeneity

77

Conclusions

▪ The Chapel-GPU vs. its hybrid distributed counterparts achieved:

▪ Similar parallel performance

▪ Similar strong scaling efficiency on 128 nodes.

▪ It is possible to achieve both code portability and performance portability in

distributed tree-based search with Chapel's native GPU support.

▪ Using Chapel's Native GPU support instead of interoperability results in a

distributed application 65% shorter.

78

Conclusions

▪ The main benefit Chapel brings: the incremental parallelism:

▪ Consider the scenario when the application is developed from scratch.

▪ A first version would likely be written for CPUs:

▪ Serial then multicore

▪ From multicore to distributed:

▪ Due to the unified memory model (PGAS), a distributed application in Chapel can

be very similar to its multicore counterpart.

▪ From CPU to GPU: how to write and compile the mix of OpenMP+CUDA or

MPI+CUDA?

▪ In Chapel, all these steps are significantly easier than other paradigms:

▪ One language for CPUs, GPUs, single-node and distributed computing

▪ No mix of programming models

79

Perspectives

80

▪ Study the generated target code to better understand the results

▪ From the N-Queens to Combinatorial Optimization Problems:

▪ Branch-and-Bound search instead of distributed Backtracking

▪ Variants of the N-Queens, FSP, VRP, MinLA, etc.

▪ (e.g.; FSP Ta057 ~30-years PFSP instance)

▪ Checkpointing for solving to the optimality larger problems

▪ More efficient ways of exploiting intra-node parallelism?

▪ The present algorithm was conceived for small-sized clusters

▪ Is there a more efficient way of exploiting intra-node parallelism?

▪ One locale/sublocale per GPU?

▪ Is it possible to use all GPUs/CPU cores to decrease execution time?

Acknowledgments

▪ This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-

INFRA CZ (ID:90254) -- Project EU2022D08-197.

▪ It is also supported by the Agence Nationale de la Recherche (ref.ANR-22-CE46-0011) and the Luxembourg

National Research Fund (ref. INTER/ANR/22/ 17133848), under the UltraBO project.

▪ This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.

Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory,

operated under Contract No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAP-mp215. In addition,

this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725.

81

https://github.com/tcarneirop/ChOp

Chapel-based Optimization on Github

tiago.carneiropessoa@imec.be

82

Questions?

Thank you!

https://github.com/tcarneirop/ChOp

	Default Section
	Slide 1
	Slide 2: Outline

	Intro
	Slide 3
	Slide 4: Context and motivations
	Slide 5: Context and motivations (cont.)
	Slide 6: Context and motivations (cont.)
	Slide 7: Context and motivations (cont.)
	Slide 8: Context and motivations (cont.)
	Slide 9: Context and motivations (cont.)
	Slide 10: Objectives
	Slide 11: Objectives
	Slide 12: Objectives
	Slide 13: Objectives
	Slide 14: Objectives
	Slide 15: Objectives
	Slide 16: Objectives
	Slide 17: Objectives
	Slide 18: Objectives
	Slide 19: Objectives
	Slide 20: Objectives
	Slide 21
	Slide 22: Chapel-based Optimization (ChOp)
	Slide 23: Chapel-based Optimization (ChOp)
	Slide 24: Chapel-based Optimization (ChOp)
	Slide 25: Chapel-based Optimization (ChOp)
	Slide 26: Chapel-based Optimization (ChOp)
	Slide 27: Chapel-based Optimization (ChOp)
	Slide 28: Chapel-based Optimization (ChOp)
	Slide 29
	Slide 30: The Complexity of Using C-Interoperability
	Slide 31: The Complexity of Using C-Interoperability
	Slide 32: The Complexity of Using C-Interoperability
	Slide 33: The Complexity of Using C-Interoperability
	Slide 34: The Complexity of Using C-Interoperability
	Slide 35: The Complexity of Using C-Interoperability
	Slide 36: The Complexity of Using C-Interoperability
	Slide 37: The Complexity of Using C-Interoperability
	Slide 38: The Complexity of Using C-Interoperability
	Slide 39: Research Questions
	Slide 40
	Slide 41: Performance Experiments
	Slide 42: Performance Experiments
	Slide 43: Performance Experiments
	Slide 44: Performance Experiments
	Slide 45: Performance Experiments
	Slide 46: Performance Experiments
	Slide 47: Performance Experiments
	Slide 48: Performance Experiments
	Slide 49: Performance Experiments
	Slide 50: Performance Experiments
	Slide 51
	Slide 52: Performance Results
	Slide 53: Performance Results
	Slide 54: Performance Results
	Slide 55: Performance Results
	Slide 56: Performance Results
	Slide 57: Performance Results
	Slide 58: Performance Results
	Slide 59: Performance Results
	Slide 60: Performance Results
	Slide 61: Performance Results
	Slide 62: Performance Results
	Slide 63: Performance Results
	Slide 64: Performance Results
	Slide 65: Performance Results
	Slide 66: Performance Results
	Slide 67: Research Questions
	Slide 68
	Slide 69: Programming Effort
	Slide 70: Programming Effort
	Slide 71: Programming Effort
	Slide 72: Programming Effort
	Slide 73: Programming Effort
	Slide 74: Programming Effort
	Slide 75: Research Questions
	Slide 76
	Slide 77: Conclusions
	Slide 78: Conclusions
	Slide 79: Conclusions
	Slide 80: Perspectives
	Slide 81: Acknowledgments
	Slide 82
	Slide 83

