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Introduction
Context, motivations and objectives



▪ Optimization problems are increasingly big in many application areas

▪ High-dimensionality (#decision variables, #objectives) 

▪ Time-demanding objectives

▪ Motivating Example: Flow-shop scheduling problem

▪ Big instance Ta056 (50 jobs, 20 machines) 10^64 sub-problems  

▪ 22 years using a single-core processor [M. Mezmaz et al., 2006]

▪ We do need supercomputers to solve big COPs!

Context and motivations
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Combinatorial Optimization Problems

s.t.
(O.P)

min



Context and motivations (cont.)
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Tree-based Search Algorithms – Branch-and-Bound and Backtracking

▪ 4 Operators:

▪ Branching

▪ Bounding

▪ Pruning and Selection (DFS, BFS,…)

▪ Major properties:

▪ Huge tree

▪ Very dynamic and irregular loads

▪ Load balancing is required
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Tree-based Search Algorithms – Branch-and-Bound and Backtracking
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Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on 

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency
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Productivity-aware Ultra-scale Optimization
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Objectives

▪ Revisit the design and implementation of parallel tree-based search for solving COPs on 

large-scale supercomputers dealing with …

▪ Productivity awareness

▪ Parallel efficiency

▪ Heterogeneity

▪ Code and performance  portability
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Productivity-aware Ultra-scale Optimization

Revisit



Objectives

▪ The Chapel language, designed for productive parallel computing at scale, shows to be 

a  candidate for revisiting distributed tree-based search in the PGAS model.
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The Chapel Language – Productivity Awareness

▪ The Chapel language, designed for productive parallel computing at scale, shows to be 

a  candidate for revisiting distributed tree-based search in the PGAS model.
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Distributed Tree-based Search in Chapel 



Chapel-based Optimization (ChOp) 

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based 

master-worker load balancing scheme.
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Distributed Tree-based Search in Chapel

Branch-and-

Bound/Backtracking

To solve big COP
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Chapel-based Optimization (ChOp)
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Distributed Tree-based Search in Chapel

t

DistributedIters:

distributed load balancing/work 

distribution

Metrics reduction

Termination criteria
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▪ The DistributedIters module, encapsulates a complex distributed PGAS-based 

master-worker load balancing scheme.

Chapel-based Optimization (ChOp)
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Distributed Tree-based Search in Chapel

DistributedIters:

Increases productivity in the 

context of distributed tree-based 

search!
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Distributed Tree-based Search in Chapel
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Chapel+CUDA
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Chapel-based Optimization (ChOp)
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Distributed Tree-based Search in Chapel

DistributedIters:

distributed load balancing/work 

distribution

Metrics reduction

Termination criteria

Intra-node:

Chapel+CUDA

Chapel+HIP

▪ Chapel-based Optimization (ChOp)

▪ The DistributedIters module, encapsulates a complex distributed PGAS-based 

master-worker load balancing scheme.
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The Complexity of Mixing CUDA/HIP with 

Chapel



The Complexity of Using C-Interoperability
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Mix of Programming Languages and Programming Models

Intra-node Parallelism

From a subproblem in the chunk:

Generates load for the GPUs

Improves locality



The Complexity of Using C-Interoperability
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Mix of Programming Languages and Programming Models

Intra-node Parallelism

Calling the kernels and load distribution:

Tasks in Chapel – 1 task per GPU

C-Interoperability types and functions
(c_ulonglong, CPtrTo(pool+chunk))



The Complexity of Using C-Interoperability

32

Redundant Kernel Implementations

Intra-node Parallelism

Redundant kernels in CUDA and HIP

Wrapper function in C 

Different Makefile rules



The Complexity of Using C-Interoperability
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Redundant Kernel Implementations

Intra-node Parallelism

Gets the result back from the C-Wrapper 

Uses C-Interoperability types



The Complexity of Using C-Interoperability
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Programming Complexity and Productivity Loss

Intra-node Parallelism
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Programming Complexity and Productivity Loss

Replace with Chapel's 

native GPU support

Intra-node Parallelism



Research Questions
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1. Is it possible to achieve both code 

and performance portability in 

distributed tree-based search with 

Chapel's native GPU support?

2. Is it worth in terms of programming 

effort?
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Performance Experiments



▪ The following applications for enumerating all valid complete solutions of the N-Queens 
problem are considered:  (Backtracking)

▪ Single-node Multi-GPU baselines: HIP+OpenMP and CUDA+OpenMP

▪ Single-node Multi-GPU: Chapel-GPU

▪ Distributed Hybrid:  Chapel+CUDA and Chapel+HIP

▪ Distributed Chapel-GPU: Chape's native GPU support

Performance Experiments
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Baselines

N-Queens – proof 

of concept

C. Optimization Problems – B&B



Performance Experiments

▪ N-Queens:

▪ Problem sizes (board) ranging from N=18 to N=22

▪ N=18:

▪ 6.6 * 10⁸ solutions

▪ 2.96 * 10¹⁰ valid placements of queens on the board

▪ N=22

▪ 2.69 * 10¹² solutions

▪ 1.43 * 10¹⁴ valid placements of queens on the board

▪ From ~10 seconds (N=18) to ~8 hours (N=22) on 8 GPUs. 

45

Testbeds and Parameters - Problems



Performance Experiments

▪ NVIDIA System:

▪ Perlmutter supercomputer (#14 of TOP500)

▪ 1 to 128 computer nodes

▪ 4 to 512 GPUs (A100 SXM4)

▪ AMD System:

▪ Frontier supercomputer (#1 of TOP500)

▪ 1 to 128 computer nodes

▪ 8 to 1024 GPUs (MI250As)

▪ (only two hours of execution)
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Performance Portability Results



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs – AMD, Chapel's native GPU support vs. Baseline
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Single-node Application: execution time
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Single-node Application: execution time

Budget 

limitations



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 GPUS – NVIDIA, 8 GPUs - AMD
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Single-node Application: execution time

The bigger the load - the 

better the Chapel 

performance

Chapel: for 6% to 

15% slower



Performance Results
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▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid
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Distributed Application: execution time
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Distributed Application: execution time

Chapel is on avg:

18 – equivalent

19 – 4% slower

20 – 16% slower

21 - 13% slower 

Chapel is on 

avg 8% slower



Performance Results

▪ N-Queens of sizes ranging from N=18 to N=22

▪ 4 to 128 computer nodes, Chapel's native GPU support vs. Hybrid
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Distributed Application: execution time

From 3.7x 

slower to 

slightly faster

The bigger the load - the 

better the Chapel 

performance



Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Load is tiny for 512 GPUs:

Hybrid CUDA 72% vs. Chapel 60% 

of the linear speedup on 16 nodes (64 GPUs)



Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Load is tiny for 512 GPUs:

Drops to 37% vs. 35% 

of the linear speedup on 128 nodes (512 GPUs)



Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Hybrid CUDA ~78% and Chapel ~72%
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Strong Scaling

Hybrid CUDA – 60% of the linear speedup

Vs.

Chapel – 55% of the linear speedup
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Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Load is too tiny for 1024 GPUs!

Drops from ~60% to ~18% of the linear 

speedup for both versions



Performance Results

▪ N-Queens of sizes N=21 and N=22

▪ 4-128 computer nodes, speedup compared to the Baseline
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Strong Scaling

Hybrid HIP – 61% of the linear speedup

Vs.

Chapel – 57% of the linear speedup

(***)



Research Questions
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1. Is it possible to achieve both code 
and performance portability in 
distributed tree-based search with 
Chapel's native GPU support?

1. Yes! 

2. Minor performance loss on 
NVIDIA GPUs and equivalent 
performance on AMD for big 
problems.

3. Chapel scales similarly on both 
systems – up to 128 nodes.
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Programming Effort



Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of 
SLOC

▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel
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Single-node – Multi-GPU
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Programming Effort

▪ The HIP, CUDA and Chapel-GPU applications are equivalent in terms of SLOC
▪ Single-node – Multi-GPU

▪ One thread per GPU

▪ N-Queens kernel

▪ Chapel-GPU: the benefit is to get rid of both HIP and CUDA applications
▪ Low/no performance loss for the medium/big problems

▪ Only one application
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Single-node – Multi-GPU



Programming Effort

▪ Replacing one hybrid version (CUDA or HIP) with Chapel's native GPU 

support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP wrappers) results in a 

final code 65% shorter.
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Programming Effort

▪ Replacing one hybrid version (CUDA or HIP) with Chapel's native GPU 

support results in an application 30% shorter.

▪ Getting rid of both interoperability codes (CUDA and HIP wrappers) results in a 

final code 65% shorter.

▪ Only one kernel version to keep

▪ Almost no performance loss for distributed execution - biggest loads
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Distributed



Research Questions

75

1. Is

2. Is it worth in terms of programming 

effort?

1. Yes!

2. Single-node: a single application for 

two different vendors

3. Distributed: getting rid of the 

kernels and its wrappers results in a 

much shorter application – small 

performance loss
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Conclusions and Perspectives



Conclusions

▪ Chapel efficiently unifies the different parallel levels of GPU-powered clusters: 

inter-node and intra-node (CPUs and GPUs).

▪ This allows one to holistically deal with the two major challenges of exascale 

computing in a unified/productive way:

▪ Intra-node and inter-node scalability  

▪ GPU-aware heterogeneity 
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Conclusions

▪ The Chapel-GPU vs. its hybrid distributed counterparts achieved:

▪ Similar parallel performance

▪ Similar strong scaling efficiency on 128 nodes.

▪ It is possible to achieve both code portability and performance portability in 

distributed tree-based search with Chapel's native GPU support. 

▪ Using Chapel's Native GPU support instead of interoperability results in a 

distributed application 65% shorter.
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Conclusions

▪ The main benefit Chapel brings: the incremental parallelism: 

▪ Consider the scenario when the application is developed from scratch.

▪ A first version would likely be written for CPUs: 

▪ Serial then multicore

▪ From multicore to distributed:

▪ Due to the unified memory model (PGAS), a distributed application in Chapel can 

be very similar to its multicore counterpart. 

▪ From CPU to GPU: how to write and compile the mix of OpenMP+CUDA or 

MPI+CUDA? 

▪ In Chapel, all these steps are significantly easier than other paradigms:

▪ One language for CPUs, GPUs, single-node and distributed computing

▪ No mix of programming models
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Perspectives

80

▪ Study the generated target code to better understand the results 

▪ From the N-Queens to Combinatorial Optimization Problems:

▪ Branch-and-Bound search instead of distributed Backtracking

▪ Variants of the N-Queens, FSP, VRP, MinLA, etc. 

▪ (e.g.; FSP Ta057 ~30-years PFSP instance)

▪ Checkpointing for solving to the optimality larger problems

▪ More efficient ways of exploiting intra-node parallelism?

▪ The present algorithm was conceived for small-sized clusters

▪ Is there a more efficient way of exploiting intra-node parallelism? 

▪ One locale/sublocale per GPU?

▪ Is it possible to use all GPUs/CPU cores to decrease execution time?
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https://github.com/tcarneirop/ChOp

Chapel-based Optimization on Github

tiago.carneiropessoa@imec.be
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Questions?

Thank you!

https://github.com/tcarneirop/ChOp
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