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Introduction

Algorithms for solving combinatorial optimization problems
(COPs) can be divided into exact (complete) or approximate
strategies.

. ) ) Exact: exponential execution
Approximate: feasible time.

time.
o Local Search (k-opt) o Tree-based search:
o Meta-heuristics (GRASP, backtracking, B&B (and
Tabu Search) their variations).
o Hybrid Methods, etc. o Dynamic Programming,
etc.
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Introduction

Tree Search Algorithms implicitly enumerate a solution space,
dynamically building a tree.

EActwe Set ] o Nodes are removed from

SEESS the active set according

@ to the search strategy.
—> .
® @ o The search continues
@ — @ X until the active set is empty .
o (Crainic, Le Cun, Roucairol

—> @ X (2006)).
Branch Evaluation
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Introduction

Tree search algorithms...
o are highly irregular ,
o demand hand-optimized
data structures,
o demand load balancing
schemes,

o exponential execution
time.

Implementation is
performance-oriented :
o Usually in C/C++
o Low-level features —
performance

o Parallel computing
libraries

GPUs are crucial in exact optimization : they enable solving to the
optimality instances having prohibitive execution times on CPUs.

Carneiro et al.
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Introduction

In this way, it is expected that exascale systems will decrease
the time required to solve instances of COPs to the
optimality.
o several programming models, languages, runtimes combined
to efficiently exploit all levels of parallelism of such
heterogeneous systems.

High-productivity languages:

o Exascale systems are going to be complex to program.

o Efforts towards productivity are crucial for better
exploiting the future generation of supercomputers.
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Introduction

Chapel plays a special role : it provides different parallel and
distributed iterators that implement load balancing among
processes, besides other high-level features.

Chapel’s parallel iterators:

o lterators in Chapel are similar to procedures that can be used
to isolate iterations from the loop body.

o Each value yielded by the iterator corresponds to an iteration
of the loop.
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Introduction

Chapel distributed iterators are a key feature for achieving a
trade-off between productivity and parallel efficiency/performance
in distributed tree-based optimization.

Distributed iterators implement:

Master /worker model for pool management;

o

o

Distributed load balancing/work distribution;

o

Complex distributed metrics reduction;

Termination criteria.

o

Thus, using Chapel can be up to 8x more productive than
MPI4-C in the context of this work (Carneiro et al. (2020)).
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Initial Premises

GPUs are required in exact optimization : they enable solving to
the optimality instances having prohibitive execution times on
CPUs.

GPU support in Chapel:

o A couple of approaches try to mitigate the gap between
Chapel and GPUs (Chu et al. (2017) and Sidelnik et al.
(2012)).

o They do not allow lower-level GPU programming
features.

o We do need such features in exact optimization.
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Initial Premises

Hayashi et al. (2019): https://github.com/ahayashi/chapel-gpu

o GPU/CPU oriented iterator for Chapel.
o Allows the use of pre-compiled CUDA-C/C++ kernels.

o Allows concurrent heterogeneous distributed CPU/GPU
execution.

o However, does not provide load balancing between
GPUs/CPU tasks.

Tree-based search are highly irregular applications
Load balancing is therefore crucial.
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Initial Premises

Hayashi’s iterator is not suitable for irregular GPU-based
applications.

So, how to use both Chapel’s high-level features for
distributed programming and GPUs?
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The Proposed Algorithm

We revisit:
o Master-worker distributed tree-search,
o Using Chapel’s distributed iterators for work distribution,
o Distributed backtracking,
o Enumerates all valid configurations of the N-Queens.
But now:

o Using C-Interoperability layer along with Chapel's high-level
features,

o Pre-compiled CUDA-C kernels,
o CPU-GPU scheme.

the N-Queens problem is a proof-of-concept that motivates
further improvements in solving related COPs.
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The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

Task 0

Depth=1 (locale 0)

Depth=2

Depth=3

[|1-2»3] [1-2-4] [1-2-5] |1-5-2]]
Pool of nodes (P)
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The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

*
*
*
| Task O
Depth=1 - 'X (locale 0)
o On Locale 0
Depth=2 (master) -
Task 0.
Depth=3 o Serial search.

[|1-2-3] [1-2-4] [1-2-5] |1-5-2]J
Pool of nodes (P)
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The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

o On Locale 0
(master) -
Task 0.

o Serial search.
o Starts with

Depth=1

Depth=2

Depth=3 the I.nltla| .
configuration
Cutoff = 3 of the
[|1-2-3| [1-2-4] [1-2-5] |1-5-2|] bl
Pool of nodes (P) problem.
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The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

.
o .
-
"= Task O

Depth=1 X (locale 0)

Depth— o Partial .
search until a
cutoff depth.

Depth=3

[|1-2»3] [1-2-4] [1-2-5] |1-5-2]]

Pool of nodes (P)

Carneiro et al. HPCS 2020 18 / 49



The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

o Pool keeps all
Depth=1 - 'X maskd valid and
feasible
partial
solutions with
cutoff
elements of
the
permutation.

Depth=2

Depth=3

[|1-2-3] [1-2-4] [1-2-5] |1-5-2]]
Pool of nodes (P)
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The Master Locale

Master-worker: distributed load balancing using iterators.

Algorithm 1: The Master locale.

1 N « get_problem( )

2 cutoff <« get_cutof f_depth( )

3 second_cutof f < get_scnd_cutof f_depth( )

4 P < {} Node

metrics <+ (0,0)

metrics + = initial_search(N, cutof f, P)

Size « {0..(|P|—1)} // Domain

D <« Size mapped onto locales to a standard distribution
Py < [D] : Node

10 P4 = P // Using implicit bulk-transfer

N

e ® 3

1 forall node in Py following a distributed iterator with(+ reduce
metrics) do

12 metrics + = Algorithm_2(N, node, cutof f,

13 second_cutof f)

14 end

15 present_results(metrics)
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The Master Locale:

Master-worker: distributed load balancing using iterators.

Locale 0 (master)
Distributed pool (Pg)

PSS

Metrics/Solutions
I New requests

-
Locale 1 Locale L

/Px /Px

local pool (P1) local pool (P)

e @8 e @8

el e

+reduce metrics +reduce metrics
+reduce solutions +reduce solutions
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Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

o Generate load enough for all GPUs of the system?
o How to divide the load among GPUs?
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Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

1. Generate load enough for all GPUs of the system?

o Nested parallelism generating a local pool via partial search.
o From depth cutoff until depth second_cutoff.

o Thus, it is another partial search on CPU.
o Task-local pool.

2. How to divide the subproblems of the local pool among GPUs?
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Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

1. Generate load enough for all GPUs of the system?

o Nested parallelism for generating a local pool via partial
search.

o From depth cutoff until depth second_cutoff.

o Thus, it is another partial search on CPU.

o Task-local pool.

2. From the task-local pool...
o How to divide the subproblems of the local pool among GPUs?
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Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Algorithm 3: Exploiting multiple GPUs.

Input: N, P, the second cutoff depth
Output: A tuple containing the explored tree size and the number of
complete and valid solutions found on GPU.

tree_h < [0..|P] —1] int

2 sols_h <« [0..|P| — 1] int .

3 v < cuda_get_num_devices( ) o Variables for
4 GPU load <« |P| metrics

5 forall gpu_id in 0..y — 1 do reduction.

6 cuda_set_gpu(gpu_id)

7 device_load <« get_load(gpu_id, GPU_load,~) o Gett|ng the
8 stride <« get_starting_point(GPU_load, gpu_id,~)

9 sols_ptr <+ sols_h + stride number of
10 tree_ptr < tree_h + stride .

11 pool_ptr < P + stride GPUs via

12 call_GPU_search(N, depth, device_load, pool_ptr, CU DA

13 tree_ptr, sols_ptr)

14 end

15 redTree <« (+ reduce tree_size_h)
16 redSols « (+ reduce sols_h)
17 metrics+ = (redTree, redSol)

18 return (redT'ree,redSols)
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Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Algorithm 3: Exploiting multiple GPUs.

Input: N, P, the second cutoff depth

Output: A ruple containing the explored tree size and the number of
complete and valid solutions found on GPU.

tree_h < [0..|P| — 1] int

sols_h <« [0..|P| — 1] int

v 4« cuda_get_num_devices( )

GPU_load <+ |P|

5 forall gpu_id in 0..y — 1 do

6 cuda_set_gpu(gpu_id) G PU “er
7 device_load <« get_load(gpu_id, GPU_load,~)

8

9

W e

'S

o For each

stride <« get_starting_point(GPU_load, gpu_id,~) o Get the GPU
sols_plr < sols_h + stride

10 tree_ptr < tree_h + stride IOad.

1 pool_ptr <+ P + stride

12 call_GPU_search(N, depth, device_load, pool_ptr,

13 tree_ptr, sols_ptr)

14 end

15 redTree <« (+ reduce tree_size_h)
16 redSols < (+ reduce sols_h)
17 metrics+ = (redTree, redSol)

18 return (redT'ree, redSols)
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Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Algorithm 3: Exploiting multiple GPUs.

Input: N, P, the second cutoff depth

Output: A tuple containing the explored tree size and the number of
complete and valid solutions found on GPU.

tree_h < [0..|P| — 1] int

sols_h « [0..|P| — 1] int

v 4« cuda_get_num_devices( )

GPU_load <+ |P|

5 forall gpu_id in 0..y — 1 do

W e

'S

6 cuda_set_gpu(gpu_id)

7 device_load <« get_load(gpu_id, GPU_load,~)

8 stride < get_starting_point(GPU_load, gpu_id,~)
9 sols_ptr <« sols_h + stride

10 tree_ptr < tree_h + stride

11 pool_ptr <+ P + stride

12 call_GPU_search(N, depth, device_load, pool_ptr,

13 tree_ptr, sols_ptr)

14 end

15 redTree <« (+ reduce tree_size_h)
16 redSols « (+ reduce sols_h)
17 metrics+ = (redTree, redSol)

18 return (redT'ree,redSols)
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Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Algorithm 3: Exploiting multiple GPUs.

Input: N, P, the second cutoff depth
Output: A ruple containing the explored tree size and the number of
complete and valid solutions found on GPU.

tree_h < [0..|P| — 1] int

2 sols_h <« [0..|P| — 1] int

3 v < cuda_get_num_devices( ) P llel

4« GPU_load « |P| o Faralle

s forall gpu_id in 0..y — 1 do reduction
6 cuda_set_gpu(gpu_id) using

7 device_load <« get_load(gpu_id, GPU_load,~) )

8 stride < get_starting_point(GPU_load, gpu_id,~) Chapel S
9 sols_ptr < sols_h + stride .

10 tree_ptr < tree_h + stride hlgh_level
1 pool_ptr <+ P + stride features.
12 call_GPU_search(N, depth, device_load, pool_ptr,

13 tree_ptr, sols_ptr)

14 end

15 |[redTree <« (+ reduce tree_size_h)
16 |[redSols <« (+ reduce sols_h)
17 |metrics+ = (redTree, redSol)

18 return (redT'ree, redSols)
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Overview of the algorithm

Two levels of parallelism: intra-node and inter-node.

Locale 0 (master)
Distributed pool (Pq)

SSLD

/ Metrics/Solutions \
W New requests

(Locale 1 Locale L
/ v\ / v\
local pool (P7) local pool (PL)
— — [ W R W——
GPUO -+ GPUY-1 GPUO -+ GPUY-1
+reduce metrics +reduce metrics
+reduce solutions +reduce solutions
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Performance Evaluation

Evaluation: The following programs were conceived for
enumerating all valid and complete configurations of the N-Queens
problem.

o Baseline: single-node multi-GPU implementation optimized
for single-locale execution written in CUDA-C.

o GPUlterator: distributed version of the baseline
implementation written in Chapel. Uses Hayashi et al. (2019).
No load balancing.

o ChplGPU: implementation previously detailed.

Obs. : All implementations employ the same CUDA-C kernel code.
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Performance Evaluation

Parameters settings:
o 12 computer nodes.

o Two Intel Xeon E5-2650 v4@ 2.00GHz (a total of 24 cores/
48 threads per node) and 128 GB RAM.

o Two NVIDIA GeForce GTX 1080 Ti — Pascal generation
(11GB RAM and 3584 CUDA cores @ 1582Mhz).

o Maximum 24 GPUs (86,016 CUDA cores) used in the
experiments.

o 100 Gbps Intel Omni-Path network.
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Performance Evaluation

Single-node performance: one computer node — two GPUs.

Norm. execution time
=
w

=

o
&)

Carneiro et al.

" ChpIGPU e
GPUlterator
CUDA-C —— -

RXHXHRIHN]

XK P2

S
XXX 5o
05058 Kol

18

19 20 21
Instance
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Performance Evaluation

Single-node performance: one computer node — two GPUs.

3 ' ' ' o Chpl-based
) GPUIterator
€25 _
= equivalent to
I ] the CUDA-C
El .
S baseline.
3 15¢ 1 .
. o Using the
g 1 iterator does
= not mean
0.5 18 o 0 ” significant
Instance overhead.
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Performance Evaluation

Norm. execution time

Single-node performance: one computer

3 T T
ChpIGPU s
GPUlterator mzzzza
2.5+ CUDA-C — -
2F |
1.5r b
1 25 R IT:
0.5 18 19 20

Carneiro et al.

Instance
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node — two GPUs.

o The ChplGPU
implementa-
tion is not
single-node
oriented.

o Nested
parallelism
and other
features for
distributed
execution.
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Performance Evaluation

Single-node performance: one computer node — two GPUs.

3 , , , ,
ChplGPU_ i | o The
) GPUlterator & 3 Overhead
€25¢F CUDA-C —— -
S becomes
C
S ot ] less
3 . e
S significant as
S15¢ 1 N increases.
§ 1 - o It is from
z i 2 0
£ 55 2.15x to 10%
0.5 = i i = slower than
17 18 19 20 21 .
Instance the baseline.
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Performance Evaluation

2 computer nodes) to 24

(

Distributed performance: for 4 GPUs

GPUs (12 computer nodes).

o For the

> c
c rla
_ o 2 <
) Q . °
ka v oo 5
L3 _ T3
T8 L.36§>5 4%
E2ESon
B.ES5S o O

T

Ite4 mmm
lte8 =X

Iltelc mm

[ 3

RRRBLLELELLLEBLSEEY

Ilte24 =3

Ite20 E=3
ChplGPU —

15

QW] UoIijNdaXa "WION

— N o

ChplGPU.

21

17

Instance
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Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

o For the
2 : : , , , smallest
lte _ instance,
£ 15 lte20 8 | that take only
S | cnpiory — a few
5 seconds,
% ' 7 GPUlterator
3 is faster than
g% ’ ChplGPU.
% ] KR o As more
’ 17 B GPUs
Instance (nodes) are
added...
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Performance Evaluation

2 computer nodes) to 24

(

Distributed performance: for 4 GPUs

GPUs (12 computer nodes).

o] mfd

i} v 0 0 oh
C n = =} c
s E2%3 ©
hmlya..m c
U_..Irl..uuda
o 502087
VOaasT Lo
o

T

Ite4 mmm
lte8 =X

Iltelc mm

[ 3

RRRBLLELELLLEBLSEEY

Ilte24 =3

Ite20 E=3
ChplGPU —

15

QW] UoIijNdaXa "WION

— N o

21

17

Instance
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Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

2

T T T T

T
Ilte4 mmm

Ite8 =3 7
Itel6 "
g 1.5 ) Ite20 &= g o For N =18
b= Ite24 7
s ChplGPU — / and 1624
"g g GPUs,
% g ChplGPU is
£ g from
o /]
z g 1.32x-1.45x
/ g faster.
b 4 i
18 19 20

Instance
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Performance Evaluation

Norm. execution time

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

2

T
Ilte4 mmm
lte8 =3
ltel6
15 Ite20 &=
lte24
ChplGPU —

0.5

17

Carneiro et al.

18 19
Instance

20

SOONNNNY

SONANNN

SOONANNN

A
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o For N > 20,
ChpIGPU is
from 1.13x
(4 GPUs) to
1.77x (24
GPUs) faster
than its
counterpart.
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Performance Evaluation

Efficiency: speedup compared to the CUDA-C baseline.

©12 Baseline(2) 012 Baseline(2)
s r— £ 20) s
b 10 4(8) EEEm b 10 4(8) m=m
8 8(16) 8 8(16)
o gl 10(20) m— o gl 10(20) w—
£ 12(24) ez £ 12(24) ==
2 4 2 4
3 3
& oLl &, i | Al

17 18 17 18 19 20

Instance Instance
(a) ChplGPU vs. Baseline (CUDA-C) ((b) GPUiterator vs. Baseline (CUDA-C))
o As a consequence... For N > 18, the speedups achieved by

the GPUIterator implementation are around 50% of the
linear speedup.

Carneiro et al. HPCS 2020 42 / 49



Performance Evaluation

Efficiency: speedup compared to the CUDA-C baseline.

Baseline(2) T2 Baseline(2) 223

.g 12 1(2) m— ,ag) 12 1(2) m—

o 2(4) ——3 ] 2(4) 3

810 4(8) Ezmm v10 4(8)

a 8(16) 5553 a 8(16)

o gl 10(20) m— v g 10(20) m—

F=] 12(24) ez £ 12(24) ==

= s

g6 g 6

o o

g 4 S 4

3 3

o 2F o 2

w W@ & ﬂ% A
0 0

17 18
Instance Instance

(" (a) ChpIGPU vs. Baseline (CUDAC) ) (b) GPUiterator vs. Baseline (CUDA-C)

o In turn, for the ChplGPU implementation, when N > 19, the
speedups achieved for all < problem, #GPUS > configurations are
at least 80% of the linear speedup. For N > 20 rangd from 87% to
91%.
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Discussion

GPU Iterator: Error-prone details are

o The best option for a hidden:
?single—locale. o Pointer arithmetics
implementation. o Load distribution

o Best option in terms of (CPU-GPU, GPUs, and
time to a first implementation. locales)

o Low programming effort to o Small SLOC count (8
get a distributed version. lines+)

However, poor scalability in irregular tree search.
Good solution for programming distributed heterogeneous and
regular applications (*).
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Discussion

ChplGPU: Error-prone details explicitly
o Nested parallelism. programmed:
o GPU-related load o 1.5x longer than using the
iterator.

distribution by hand.
o GPU load distribution.

o Pointer arithmetics.

o Much more complex.

Pays off : scales much better than its counterpart.
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Discussion

However, some challenges concerning the use of GPUS remain,
even using a high-productivity language:

Challenges:

o CPU-GPU heterogeneity.

o How to generate on CPU load enough for all CPU/GPUs?

o How to perform load balancing between all CPU/GPUs using
iterators?

First research direction : incorporate work-stealing mechanism
into Hayashi's GPUlterator module.
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Future Research Directions

Research directions:

o Extend the current
implementation to a
distributed B&B.

o Solving challenging COPs
(FSP, Q3AP, etc.).

Carneiro et al.

Road Towards Exascale:

o The scalability should be
increased

o CPU-GPU heterogeneity?

o Fault tolerance.
Checkpointing?
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Thank you!

Questions ?

https://github.com/tcarneirop/ChOp
https://github.com/ahayashi/chapel-gpu

tiago.carneiropessoa@uni.lu

mi.ln 2 .-, @RIStAL

LUXEMBOURG
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