
Towards Chapel-based Exascale Tree

Search Algorithms: dealing with multiple

GPU accelerators

Tiago Carneiro, Nouredine Melab, Akihiro Hayashi, Vivek
Sarkar

University of Luxembourg (Luxembourg), INRIA Lille/Université de
Lille (France), Georgia Tech – (USA)

March 22–27, 2021
(virtual event)

Agenda

Introduction

Initial Premises

The Proposed Algorithm

Performance evaluation

Discussion/Conclusion

Carneiro et al. HPCS 2020 2 / 49

Introduction

Algorithms for solving combinatorial optimization problems
(COPs) can be divided into exact (complete) or approximate
strategies.

Approximate: feasible time.

Local Search (k-opt)

Meta-heuristics (GRASP,
Tabu Search)

Hybrid Methods, etc.

Exact: exponential execution
time.

Tree-based search:
backtracking, B&B (and
their variations).

Dynamic Programming,
etc.

Carneiro et al. HPCS 2020 3 / 49

Introduction

Tree Search Algorithms implicitly enumerate a solution space,
dynamically building a tree.

x

x
Branch Evaluation

Active Set Nodes are removed from
the active set according
to the search strategy.

The search continues
until the active set is empty .

(Crainic, Le Cun, Roucairol

(2006)).

Carneiro et al. HPCS 2020 4 / 49

Introduction

Tree search algorithms...

are highly irregular ,

demand hand-optimized
data structures,

demand load balancing
schemes,

exponential execution
time.

Implementation is
performance-oriented :

Usually in C/C++

Low-level features →
performance

Parallel computing
libraries

GPUs are crucial in exact optimization : they enable solving to the
optimality instances having prohibitive execution times on CPUs.

Carneiro et al. HPCS 2020 5 / 49

Introduction

In this way, it is expected that exascale systems will decrease
the time required to solve instances of COPs to the
optimality.

several programming models, languages, runtimes combined
to efficiently exploit all levels of parallelism of such
heterogeneous systems.

High-productivity languages:

Exascale systems are going to be complex to program.

Efforts towards productivity are crucial for better
exploiting the future generation of supercomputers.

Carneiro et al. HPCS 2020 6 / 49

Introduction

Chapel plays a special role : it provides different parallel and
distributed iterators that implement load balancing among

processes, besides other high-level features.

Chapel’s parallel iterators:

Iterators in Chapel are similar to procedures that can be used
to isolate iterations from the loop body.

Each value yielded by the iterator corresponds to an iteration
of the loop.

Carneiro et al. HPCS 2020 7 / 49

Introduction

Chapel distributed iterators are a key feature for achieving a
trade-off between productivity and parallel efficiency/performance

in distributed tree-based optimization.

Distributed iterators implement:

Master/worker model for pool management;

Distributed load balancing/work distribution;

Complex distributed metrics reduction;

Termination criteria.

Thus, using Chapel can be up to 8× more productive than
MPI+C in the context of this work (Carneiro et al. (2020)).

Carneiro et al. HPCS 2020 8 / 49

Agenda

Introduction

Initial Premises

The Proposed Algorithm

Performance evaluation

Discussion/Conclusion

Carneiro et al. HPCS 2020 9 / 49

Initial Premises

GPUs are required in exact optimization : they enable solving to
the optimality instances having prohibitive execution times on

CPUs.

GPU support in Chapel:

A couple of approaches try to mitigate the gap between
Chapel and GPUs (Chu et al. (2017) and Sidelnik et al.
(2012)).

They do not allow lower-level GPU programming
features.

We do need such features in exact optimization.

Carneiro et al. HPCS 2020 10 / 49

Initial Premises

Hayashi et al. (2019): https://github.com/ahayashi/chapel-gpu

GPU/CPU oriented iterator for Chapel.

Allows the use of pre-compiled CUDA-C/C++ kernels.

Allows concurrent heterogeneous distributed CPU/GPU
execution.

However, does not provide load balancing between
GPUs/CPU tasks.

Tree-based search are highly irregular applications
Load balancing is therefore crucial.

Carneiro et al. HPCS 2020 11 / 49

Initial Premises

Hayashi’s iterator is not suitable for irregular GPU-based
applications.

So, how to use both Chapel’s high-level features for
distributed programming and GPUs?

Carneiro et al. HPCS 2020 12 / 49

Agenda

Introduction

Initial Premises

The Proposed Algorithm

Performance evaluation

Discussion/Conclusion

Carneiro et al. HPCS 2020 13 / 49

The Proposed Algorithm

We revisit:

Master-worker distributed tree-search,

Using Chapel’s distributed iterators for work distribution,

Distributed backtracking,

Enumerates all valid configurations of the N-Queens.

But now:

Using C-Interoperability layer along with Chapel’s high-level
features,

Pre-compiled CUDA-C kernels,

CPU-GPU scheme.

the N-Queens problem is a proof-of-concept that motivates
further improvements in solving related COPs.

Carneiro et al. HPCS 2020 14 / 49

The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x

Carneiro et al. HPCS 2020 15 / 49

The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x

On Locale 0
(master) -
Task 0.

Serial search.

Carneiro et al. HPCS 2020 16 / 49

The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x

On Locale 0
(master) -
Task 0.

Serial search.

Starts with
the initial
configuration
of the
problem.

Carneiro et al. HPCS 2020 17 / 49

The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x

Partial
search until a
cutoff depth.

Carneiro et al. HPCS 2020 18 / 49

The Master Locale

Generating the initial pool of subproblems: partial search on
CPU.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x Pool keeps all

valid and
feasible
partial
solutions with
cutoff
elements of
the
permutation.

Carneiro et al. HPCS 2020 19 / 49

The Master Locale

Master-worker: distributed load balancing using iterators.

Carneiro et al. HPCS 2020 20 / 49

The Master Locale:

Master-worker: distributed load balancing using iterators.

Locale 0 (master)

Distributed pool (Pd)

Metrics/Solutions

New requests

.....

Locale 1

+reduce metrics
+reduce solutions

local pool (P1)

...

Locale L

+reduce metrics
+reduce solutions

local pool (PL)

...

Carneiro et al. HPCS 2020 21 / 49

Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

Generate load enough for all GPUs of the system?

How to divide the load among GPUs?

Carneiro et al. HPCS 2020 22 / 49

Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

1. Generate load enough for all GPUs of the system?

Nested parallelism generating a local pool via partial search.
From depth cutoff until depth second cutoff.
Thus, it is another partial search on CPU.
Task-local pool.

2. How to divide the subproblems of the local pool among GPUs?

Carneiro et al. HPCS 2020 23 / 49

Exploiting Intra-node Parallelism

From one node received via parallel iterator, how to...

1. Generate load enough for all GPUs of the system?

Nested parallelism for generating a local pool via partial
search.
From depth cutoff until depth second cutoff.
Thus, it is another partial search on CPU.
Task-local pool.

2. From the task-local pool...

How to divide the subproblems of the local pool among GPUs?

Carneiro et al. HPCS 2020 24 / 49

Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Variables for
metrics
reduction.

Getting the
number of
GPUs via
CUDA.

Carneiro et al. HPCS 2020 25 / 49

Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

For each
GPU...

Get the GPU
load.

Carneiro et al. HPCS 2020 26 / 49

Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

For each
GPU...

Calculate its
load.

Calculate the
pointers for
calling the
CUDA kernel.

Strides on the
memory.

Carneiro et al. HPCS 2020 27 / 49

Exploiting Intra-node Parallelism

How to divide the local pool among GPUs?

Parallel
reduction
using
Chapel’s
high-level
features.

Carneiro et al. HPCS 2020 28 / 49

Overview of the algorithm

Two levels of parallelism: intra-node and inter-node.

Locale 0 (master)

Distributed pool (Pd)

Metrics/Solutions

New requests

.....

Locale 1

+reduce metrics
+reduce solutions

local pool (P1)

} }
GPU 0 GPU γ- 1...

...

Locale L

+reduce metrics
+reduce solutions

local pool (PL)

} }

GPU 0 GPU γ- 1...

...

Carneiro et al. HPCS 2020 29 / 49

Agenda

Introduction

Initial Premises

The Proposed Algorithm

Performance evaluation

Discussion/Conclusion

Carneiro et al. HPCS 2020 30 / 49

Performance Evaluation

Evaluation: The following programs were conceived for
enumerating all valid and complete configurations of the N-Queens
problem.

Baseline: single-node multi-GPU implementation optimized
for single-locale execution written in CUDA-C.

GPUIterator: distributed version of the baseline
implementation written in Chapel. Uses Hayashi et al. (2019).
No load balancing.

ChplGPU: implementation previously detailed.

Obs. : All implementations employ the same CUDA-C kernel code.

Carneiro et al. HPCS 2020 31 / 49

Performance Evaluation

Parameters settings:

12 computer nodes.

Two Intel Xeon E5-2650 v4@ 2.00GHz (a total of 24 cores/
48 threads per node) and 128 GB RAM.

Two NVIDIA GeForce GTX 1080 Ti – Pascal generation
(11GB RAM and 3584 CUDA cores @ 1582Mhz).

Maximum 24 GPUs (86,016 CUDA cores) used in the
experiments.

100 Gbps Intel Omni-Path network.

Carneiro et al. HPCS 2020 32 / 49

Performance Evaluation

Single-node performance: one computer node – two GPUs.

 0.5

 1

 1.5

 2

 2.5

 3

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

ChplGPU
GPUIterator

CUDA-C

Carneiro et al. HPCS 2020 33 / 49

Performance Evaluation

Single-node performance: one computer node – two GPUs.

0.5

1

1.5

2

2.5

3

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

ChplGPU
GPUIterator

CUDA-C

Chpl-based
GPUIterator
equivalent to
the CUDA-C
baseline.

Using the
iterator does
not mean
significant
overhead.

Carneiro et al. HPCS 2020 34 / 49

Performance Evaluation

Single-node performance: one computer node – two GPUs.

 0.5

 1

 1.5

 2

 2.5

 3

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

ChplGPU
GPUIterator

CUDA-C

The ChplGPU
implementa-
tion is not
single-node
oriented.

Nested
parallelism
and other
features for
distributed
execution.

Carneiro et al. HPCS 2020 35 / 49

Performance Evaluation

Single-node performance: one computer node – two GPUs.

0.5

1

1.5

2

2.5

3

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

ChplGPU
GPUIterator

CUDA-C

The
overhead
becomes
less
significant as
N increases.

It is from
2.15× to 10%
slower than
the baseline.

Carneiro et al. HPCS 2020 36 / 49

Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

 0

 0.5

 1

 1.5

 2

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

Ite4
Ite8

Ite16
Ite20
Ite24

ChplGPU

For the
smallest
instance,
that take only
a few
seconds,
GPUIterator
is faster than
ChplGPU.

Carneiro et al. HPCS 2020 37 / 49

Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

0

0.5

1

1.5

2

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

Ite4
Ite8

Ite16
Ite20
Ite24

ChplGPU

For the
smallest
instance,
that take only
a few
seconds,
GPUIterator
is faster than
ChplGPU.

As more
GPUs
(nodes) are
added...

Carneiro et al. HPCS 2020 38 / 49

Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

 0

 0.5

 1

 1.5

 2

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

Ite4
Ite8

Ite16
Ite20
Ite24

ChplGPU

GPUIterator
performs
poorly due to
the lack of
distributed
load
balancing.

Carneiro et al. HPCS 2020 39 / 49

Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

0

0.5

1

1.5

2

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

Ite4
Ite8

Ite16
Ite20
Ite24

ChplGPU

For N = 18
and 16–24
GPUs,
ChplGPU is
from
1.32×–1.45×
faster.

Carneiro et al. HPCS 2020 40 / 49

Performance Evaluation

Distributed performance: for 4 GPUs (2 computer nodes) to 24
GPUs (12 computer nodes).

0

0.5

1

1.5

2

17 18 19 20 21

N
o
rm

.
e
xe

cu
ti

o
n
 t

im
e

Instance

Ite4
Ite8

Ite16
Ite20
Ite24

ChplGPU

For N ≥ 20,
ChplGPU is
from 1.13×
(4 GPUs) to
1.77× (24
GPUs) faster
than its
counterpart.

Carneiro et al. HPCS 2020 41 / 49

Performance Evaluation

Efficiency: speedup compared to the CUDA-C baseline.

As a consequence... For N ≥ 18, the speedups achieved by
the GPUIterator implementation are around 50% of the
linear speedup.

Carneiro et al. HPCS 2020 42 / 49

Performance Evaluation

Efficiency: speedup compared to the CUDA-C baseline.

In turn, for the ChplGPU implementation, when N ≥ 19, the
speedups achieved for all < problem,#GPUS > configurations are
at least 80% of the linear speedup. For N ≥ 20 rangd from 87% to
91%.

Carneiro et al. HPCS 2020 43 / 49

Agenda

Introduction

Initial Premises

The Proposed Algorithm

Performance evaluation

Discussion/Conclusion

Carneiro et al. HPCS 2020 44 / 49

Discussion

GPU Iterator:

The best option for a
single-locale
implementation.

Best option in terms of
time to a first implementation.

Low programming effort to
get a distributed version.

Error-prone details are
hidden:

Pointer arithmetics

Load distribution
(CPU-GPU, GPUs, and
locales)

Small SLOC count (8
lines+)

However, poor scalability in irregular tree search.
Good solution for programming distributed heterogeneous and

regular applications (*).

Carneiro et al. HPCS 2020 45 / 49

Discussion

ChplGPU:

Nested parallelism.

GPU-related load
distribution by hand.

Much more complex.

Error-prone details explicitly
programmed:

1.5× longer than using the
iterator.

GPU load distribution.

Pointer arithmetics.

Pays off : scales much better than its counterpart.

Carneiro et al. HPCS 2020 46 / 49

Discussion

However, some challenges concerning the use of GPUS remain,
even using a high-productivity language:

Challenges:

CPU-GPU heterogeneity.

How to generate on CPU load enough for all CPU/GPUs?

How to perform load balancing between all CPU/GPUs using
iterators?

First research direction : incorporate work-stealing mechanism
into Hayashi’s GPUIterator module.

Carneiro et al. HPCS 2020 47 / 49

Future Research Directions

Research directions:

Extend the current
implementation to a
distributed B&B.

Solving challenging COPs
(FSP, Q3AP, etc.).

Road Towards Exascale:

The scalability should be
increased

CPU-GPU heterogeneity?

Fault tolerance.
Checkpointing?

Carneiro et al. HPCS 2020 48 / 49

Thank you!

Questions ?

https://github.com/tcarneirop/ChOp
https://github.com/ahayashi/chapel-gpu

tiago.carneiropessoa@uni.lu

Carneiro et al. HPCS 2020 49 / 49

	Introduction
	Initial Premises
	The Proposed Algorithm
	Performance evaluation
	Discussion/Conclusion

