—1

Hewlett Packard
Enterprise

ENABLING FAM ACCESS IN CHAPEL

Clarete Riana Crasta Co-Authors:

31d May, 2022 C. Amitha
Brad Chamberlain
Sharad Singhal

AGENDA

e Fabric-Attached Memory(FAM) - Context
e Why Chapel?
e FAM access from Chapel
o FAM Distributed Arrays — Design
o Status and Next Steps
o Competitive approaches

FABRIC-ATTACHED (PERSISTENT) MEMORY

e Converging memory and storage

» Resource disaggregation leads to high capacity shared
memory pool

 Local volatile memory provides lower latency, high
performance tier

e Distributed heterogeneous compute resources
« High-speed interconnect
« Operating system instance per compute node

e Fabric Attached Memory is
« Large - enabling workloads with large data sets

« Shared - enabling communication across compute
nodes through FAM

 Persistent — enabling faster checkpointing and access
to persistent data

Persistent
Memory
Node

Persistent
Memory
Node

NIC

NIC

Persistent
Memory
Node

Mersistent

Memory
Node

NIC

NIC

High speed low diameter network

NIC

NIC

NIC

CPU

CPU

CPU

Local
Memory

Local
Memory

Local
Memory

NIC

NIC

CPU

CPU

Local
Memory

Local
Memory

Links to
external
networks

CHAPEL

Our Goal:

Enable FAM access through multiple programming languages to make FAM available for a
variety of workloads.

FAM enablement in Chapel, because Chapel is :

- written for HPC

- scalable: Designed to be as scalable as MPI & OpenMP parallel computing
- fast: performance competes with or beats C/C++

- portable: runs on laptops, clusters, the cloud, and HPC systems

- Programmable: Designed with programmer productivity in mind

- open source: hosted on GitHub, permissively licensed

Guiding Philosophy

- Access FAM-resident data with minimal language changes
- Abstraction of FAM access from the application

—

CHAPEL

Chapel simplifies parallel programming through elegant
support for:

- data parallelism to efficiently use the cores of a laptop, cluster,
or supercomputer

- task parallelism to create concurrency within a node or across
the system

- a global namespace supporting direct access to local or remote
variables

- Distributed Arrays
- An important aspect of large-scale programming on HPC clusters

— Chapel distributes the elements of the array across nodes, and so the
tasks associated with the elements

— Array distributions provide a “global view” as if it was a local array
1 CHAPRPEL
—

—1 Ref: https://chapel-lang.org/ |

FAM ACCESS FROM CHAPEL

Proposed Solution
o New distribution module - Array resides on FAM

« Modified the Chapel external module to define new
distribution policy for FAM

« Provides support for named array allocation in the
application

o Supports implicit parallelism through domain partitioning

Chapel Chapel- Standard C
SOUrce |umm to-C Gznézt:d | Compiler & |
Code Compiler Linker
Chapel 4 Runtime \ —]
Chapel Internal Support
Modules Modules " . Component
oA modified for the
= = solution
=l ol =
2 gl]2
=t 3
o € =H(H K
3 § 8 E =
| B HIH B
o % C
- |
| - =

Figure 1: Chapel components

FAM DISTRIBUTED ARRAYS - DESIGN

High Level Design:

FAM distribution module converts high level array
operations into FAM-specific accesses underneath
Complete array is allocated on FAM by the locale creating
the array

Each locale is then assigned a partition upon which to
operate

Array operations executed in parallel by target nodes

» Example: forall, reduce or scan are divided into multiple tasks
based on the partitioning, and executed in parallel by the
farget nodes.

DRAM distributed array I:I:I:D
FAM distributed array I:I:I:D

) |

Node 0

Node 2 Node 3

(rrro LT

Write()

FAM

FAM DISTRIBUTED ARRAYS - STATUS

Enable longer-term vision

1st Dfam = {1..1000000} dmzpped Fam() ;

Current Status:

Initial Implementation of

* Array allocation, Array lookup, Array Destroy
Random indexed access const Dfam = {1..1000000} dmepped Fam() ;
Iteration (serial and parallel loops with zippering) Fami:m::d&:;::]“ﬁm}

Bulk fransfers

Reduce and scan

* Array slicing and re-indexing

Design ensures that:

* Applications can allocate and reuse arrays located on

var FamArr: [Dfam] int;
FamArr.allocate(name="MyArrayl"”, auto_destroy=false);

FamArr do

in FamArr do

FAM " oy

* QOur solution honors Chapel’s programming philosophy, forall (fa,ba) in zip(FamArr,BlockArr) do
e.g., programmer productivity fa = ba;
* Management of FAM data allocation and accesses are
abstracted away from the application Examples of FAM access from Chapel

* Semantics of a FAM array is as close to that of existing
Chapel distributions as possible

— K

BULK TRANSFER RESULTS

Preliminary results with bulk transfer

* 25 GiB array copied from FAM to a DRAM distributed array using
the bulk transfer operation

* Array directly copied from the application using OpenFAM APIs
* With bulk transfer 2

* Throughput increases as the number of locales increase due fo fask
parallelism with FAM distributed array

e Without bulk transfer

* Throughput drops as the number of locales is increased as a result
of the communication overhead between locales with application

copy 4
Configuration: il TS
- Chapel 1.24

- 40 Xeon Gold 6248 cores (80 hyper threaded cores) with 128
GB memory running RHEL 83 Number of locales

—Infiniband cluster interconnected using 12.5 GB/s link fat-tree

Bulk transfer with FAM distributed Array vs direct
application operations

14

10

FAM distributed arrays

== &= Direct application
6 operations

Throughput in GB/s

o

- One of the nodes used as memory server

—

MULTI-DIMENSIONAL ARRAYS

Block Partitioning
e Arrays are divided into blocks similar to
Chapel’s Block distribution

 Block partition may result in non-contiguous
elements per locale.

» Data may be stored on FAM contiguously

» To access a given block, multiple data access
requests are involved.

Locale2 Locale3 e
FAM access

EEREEEEEEEEEENEEEE - - - HEE - 2IIIXII

HPE PROPRIETARY I

10

MULTI-DIMENSIONAL ARRAYS

Row Partitioning
e Array is divided based on the number of rows and
locales

« Each node gets a partition where all of its indices are
contiguous

» Data is stored on FAM by row-major

e Only a single OpenFAM data access call to access its data
elements

e Can result in unused locales if number of locales are more
than the number of rows

1 1 1 1 1
2 2 2 2 2
2 2 2 2 2

Localel

Locale2

Locale3
FAM access

L L L PR] |

HPE PROPRIETARY I

11

ALTERNATE APPROACHES TO PRESENTING FAMIN CHAPEL

* FAM as a locale: FAM as new top-level locality in Chapel
o Chapel Locales[] array, provides an abstraction of all the localities
o FAM as a remote locality visible to the other compute localities
« Differs semantically from other localities, since it is a memory-only locality

» FAM as a sub-locale: Introduce FAM as a virtual sub-locale
o Inspired by the KNL locality model for supporting high-bandwidth on-package memory (HBM)
« Requires significant compiler changes to support external memory over the network

e FAM as an object: New class that represent FAM objects

» Abstract the FAM access semantics within this FAM class
» Helper methods within the FAM class handle FAM access details through the communication layer

: HPE PROPRIETARY I 12

FAM ACCESS FROM CHAPEL - LOOKING AHEAD

e Next Steps:
o Characterize performance of FAM distributed arrays
« Evaluate FAM distributed arrays usage in workloads like Arkouda
« Fix known temporary solutions — Extra parenthesis for Random indexed read
o Enable multi-dimensional array
« Integrate with Chapel mainline code
 Evaluate other proposals for enabling FAM access in Chapel
— Enabling FAM as a Chapel object class
—Present FAM as a sub-locale
e Other ways to access FAM:
« Represent data in FAM using file-system or key-value store abstractions
o FAM access to Chapel applications cluster-wide through external libraries such as OpenFAM, or DAOS
« Involve programming overhead, contrasts with Chapel’s philosophy of programmer productivity

—

Contact Details
Clarete.riana@hpe.com

ACKNOWLEDGMENT

We would like to thank Sanish Suresh, Greg Titus, Elliot Ronaghan, Michael Ferguson, Shome
Porno, Chinmay Ghosh and Dave Emberson for their contributions to this project.

14

REFERENCES

[1] l. Peng, R. Pearce, and M. Gokhale, “On the Memory Underutilization: Exploring Disaggregated Memory on HPC Systems,” in 2020 IEEE 32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 183-190. doi: 10.1109/SBAC-PAD49847.2020.0003 4.

[2] “Chapel: Productive Parallel Programming,” Apr. 01, 2022. https://chapel-lang.org/ (accessed Apr. 01, 2022).

[3] T. M. Press, “Programming Models for Parallel Computing | The MIT Press,” Apr. 01, 2022. https://sicm.mitpress.mit.edu/books/programming-models-parallel-computing (accessed Apr. 01, 2022).

[4] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-defined distributions and layouts in chapel: philosophy and framework,” in Proceedings of the 2nd USENIX conference on Hot topics in parallelism, USA, Jun.
2010, p.12.

[5] B. L. Chamberlain, S. Choi, S. J. Deitz, D. Iten, and V. Litvinov, “Authoring user-defined domain maps in chapel,” 2011.

[6] “OpenFAM: A library for programming Fabric-Attached Memory,” Aug. 30, 2021. https://openfam.github.io/index.html (accessed Aug. 29, 2021).

[7] “Domain Map Standard Interface — Chapel Documentation 1.24.” https://chapel-lang.org/docs/technotes/dsi.html (accessed Aug. 31, 2021).

[8] “OpenFAM: A library for programming Fabric-Attached Memory.” https://openfam.github.io/index.ntml (accessed Aug. 29, 2021).

[9] “An Approach To Data Distributions in Chapel - R.E. Diaconescu, H.P. Zima, 2007.” https://journals.sagepub.com/doi/abs/10.1177/1094342007078451?journalCode=hpcc (accessed Aug. 31, 2021).

[10] “Locale Models — Chapel Documentation 1.16.” https://chapel-lang.org/docs/1.16/technotes/localeModels.html#readme-knllm (accessed Apr. 01, 2022).

[11] A. Sodani, “Knights landing (KNL): 2nd Generation Intel® Xeon Phi processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Aug. 2015, pp. 1-24. doi: 10.1109/HOTCHIPS.2015.7477467.

[12] “DAOS and Intel® Optane™ Technology for High-Performance Storage,” Intel. https://www.intel.com/content/www/us/en/high-performance-computing/daos-high-performance-storage-brief.ntml (accessed Apr. 01,
2022).

[13] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persistent memory,” in Proceedings of the 2017 Symposium on Cloud Computing, New York, NY, USA, Sep. 2017, pp. 323-337. doi: 10.1145/3127479.3128610.
[14] “Rethinking software runtimes for disaggregated memory,” Penn State. https://pennstate.pure.elsevier.com/en/publications/rethinking-software-runtimes-for-disaggregated-memory/fingerprints/ (accessed Apr. 01,
2022).

[15] M. Merrill, W. Reus, and T. Neumann, “Arkouda: interactive data exploration backed by Chapel,” in Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, New York, NY, USA, Jun. 2019,
p. 28. doi: 10.1145/3329722.3330148.

[16] Arkouda (apkoUba): NumPy-like arrays at massive scale backed by Chapel. Bears-R-Us, 2021. Accessed: Aug. 29, 2021. [Online]. Available: https://github.com/Bears-R-Us/arkouda

— | s

THANK YOU

FABRIC-ATTACHED (DISAGGREGATED) MEMORY IN CONTEXT

Physical
Server

Physical
Server

1/0 Network

SoC

SoC

SoC

SoC

|
Local DRAM
NVM
Local DRAM NVM
(%)
‘=
2
(]
L
>
-
]
£
[7)
=
Local DRAM
NVM
NVM
Local DRAM
Fabric-Attached
Memory Pool
|
Shared something

17

OPENFAM

« Develop an API and reference implementation to
enable programmers to easily program FAM.

e Challenges
o API should be “natural” to HPC programmers.

» Usable across scale-up machines, existing scale-out
clusters, and emerging FAM architectures.

Compute Nodes + Locally-Attached Memories (LAMs)

More detail available from
Keeton K., Singhal S., Raymond M. (2019) The OpenFAM API: A Programming Model for

Disaggregated Persistent Memory. In: Pophale S., Imam N., Aderholdt F,, Gorentla Venkata M.

(eds) OpenSHMEM and Related Technologies. OpenSHMEM in the Era of Extreme

Heterogeneity. OpenSHMEM 2018. Lecture Notes in Computer Science, vol 11283. Springer,

Cham

Open source reference implementation: hitps://github.com/OpenFAM

Node 1 Node 2 Node 3
Processing
Elements (PEs)
3 T]
[orRAM || | DRAM | | | DRAM | DRAM
‘ ‘ ‘ One-sided
]Data mover| |Data mover]]Data mover| Operations
8 ¢ 3
Region 1 Region 2 Region R
|
Dataitems | g N [] B H m
E m - H mm
Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))
Status:

* Reference implementation is available
* Omnipath and Infiniband clusters

* Currently we are
* Optimizing the implementation
* Adapting it for slingshot

