
Chapel HyperGraph Library (CHGL)

MARCIN ZALEWSKI1

LOUIS JENKINS1, TANVEER BHUIYAN2, SARAH HARUN2, CHRISTOPHER
LIGHTSEY2, DAVID MENTGEN2, SINAN AKSOY1, TIMOTHY STAVENGER1, HUGH
MEDAL2, CLIFF JOSLYN1

1 Paciýc Northwest National Laboratory, Seattle, Washington, USA.
2 Mississippi State University, Mississippi State, Mississippi, USA.

HPEC 2018

December 3, 2018 1

What Weôre Trying To Do

Develop scalable parallel computation methodologies for complex high dimensional

graphical data objects

Abstract Hypergraph Analytics:

Graph HPC runtime for vertex and edge centric computation extended to support hypergraphs

Mapping abstract hypergraph algorithms to families of efficient asynchronous parallel implementations

Chapel HyperGraph Library (CHGL):

Hypergraph generation

Scalable generation algorithms that preserve key properties of hypergraphs

Hypergraph algorithms

Metrics, S-Metrics, connected components, etc.

Exploration of irregular applications in Chapel

Exploration of abstract interfaces in Chapel

Distributed, large-scale, and scalable out of the box

Contribute back to Chapel

December 3, 2018 2

Hypergraphs

December 3, 2018 3

Why Chapel

Chapel...

Has strong HPC abstractions and language constructs

Data-Parallelism and Data-Driven Locality

Is a Partitioned Global Address Space (PGAS) language

But data structures provide seamless access to distributed data

Has a rich type system and generics

Offers first-class support arrays, domains, and distributions such as global-arrays

Multiresolution Philosophy

High-level abstractions are implemented in terms of low-level abstractions

Low-level abstractions can be configured to fine-tune performance of high-level abstractions

Communication & Tasking Layer, Hierarchical Locale Models, global-view arrays

Designed to work on a laptop or supercomputer

Chapel enables this óout-of-the-boxô

Optimized for both shared memory and distributed memory

December 3, 2018 4

CHGL Warmup

December 3, 2018 5

Graph is created with a distribution

Can be default (local), one of the Chapel-

provided distributions (Cyclic) here, or

custom

Here, distribution is cyclic on locales 4, 6,

and 8 (4..8 by 2)

Aggregation of messages can be turned on

and off

Adding inclusions produces small messages,

so aggregation improves performance

Types are inferred where possible

E.g., numVerticesand numEdgesare int

All types can and are inferred here, but they could be also specified explicitly

CHGL Warmup

Simple task: collect all degrees

Create an array with the same domain as vertices

Iterate through the array and degrees in parallel

Assign the degrees to the array and reduce

What if we just want the total number of inclusions?

Simple, just reduce on the fly

Reduction is built in and parameterized by a binary

operation

Reduction can be used just like a variable

What if we did something wrong?

Chapel allows us to explicitly signal errors

We provide a òcatch allò overload that produces a

useful error message

This is simple example, but this is a general method

December 3, 2018 6

CHGL Philosophy

Abstract interfaces that

describe classes of data

structures

Well-thought out interfaces

Durable

Minimal

Performance guarantees

Reusable algorithms

Write once

Use with many data

structures

Avoid implementation details

December 3, 2018 7

Genericity

Enable performance at scale

Distributed memory

Scalability

Rely on Chapel for the basics

Design efficient data

structures and algorithms

Efficient but elegant

Explore what is possible

today

Low-level implementation if

necessary with forward

looking design

Provide simple interfaces

Provide multiple interfaces

Allow customization for

advanced users

Modern feel

Use language features

Fit the expected language

style

Drive development by user

expectations rather than by

implementation needs

Performance Usability

API

December 3, 2018 8

CHGL: Chapel-flavored

generic hypergraph interface

Use-case driven

Make sure that interfaces are

necessary for some

algorithms

Do not overdevelop

Currently used for graph

generation

This is observable interface

Implementation òunder the

hoodò may be more complex

CHGL AdjListHyperGraph

Adjacency list hypergraph

CSR storage for edges and vertices

Very much like a bipartite graph storage

Both inner and outer containers are implemented with Chapel

arrays

We want to reuse one of Chapelôs strongest abstractions

We can build on distributions functionality

Outer lists are distributed (1D)

In the future, inner lists may be distributed for some vertices (1.5D)

Currently, traversal is based on inclusions

We will be extending our generic interface with s-walk concepts

Not strictly necessary for graph generation yet

December 3, 2018 9

AdjListHyperGraph

é
é

V
e
rt

ic
e
s

E
d

g
e
s

é

é

é

é

é

é

E
d

g
e
 i
n

c
lu

s
io

n
s

V
e
rt

e
x
 i
n
c
lu

s
io

n
s

Privatization

A shallow clone of the data structure is maintained on each locale

All accesses to data structure are forwarded to per-locale clone

Clone can have locale-private decentralized data fields

Clone can have wide pointers to centralized data fields

Eliminates fine-grained communication

associated with accessing a remote objects

Lightens network bottleneck

December 3, 2018 10

Aggregation

Chapel Aggregation Library

To Appear in PAW-ATM, an SCô18 Workshop

Each privatized instance manages its own

aggregation buffer

Currently only used in óaddInclusionô

Further reduces the network bottleneck

December 3, 2018 11

Goal: End-to-End Hypergraph Analytics Tool

December 3, 2018 12

Hypergraph
I/O

BinaryReader
CSVReader GraphStats

Module

Graph stats
LCC

Density
Degree dist.

Clustering coef.

Hypergraph stats
S-distance

S-clustering
Toplexintersection

Core hypergraph
engine

AdjListHyperGraph.chpl (1D)
1.5D Representation

Generation
Module

Generation.chpl

9ǊŘǃǎ-Rényi
Chung-Lu

BTER

Hypergraph
Dataset
Repo

Les Miserables
COND-MAT

Enron
DNS

?

Hypergraph
I/O

GraphStats
Module

Graph stats
LCC

Density
Degree dist.

Clustering coef.

Hypergraph stats
S-distance

S-clustering
Toplexintersection

iterate

Metamorphosis Coefficient for Clustering

4-cycle = smallest units of social cohesion in a bipartite graph

December 3, 2018 13

How often does a 3-path close into a 4-cycle?, i.e.
How frequently are shared affiliations repeated?

3-path 4-cycleCaterpillar Butterfly

Citation: Measuring and modeling bipartite graphs with community structure, Sinan G. Aksoy Tamara G. Kolda Ali Pinar, Journal of
Complex Networks, Volume 5, Issue 4, 1. August 2017, Pages 581ς603.

Counting Caterpillars and Butterflies

Iterate through caterpillars and through butterflies in a hypergraph

This code works in shared and in distributed memory

Works for any graph

December 3, 2018 14

W X

ZY

W X

ZY

