
A BRIEF OVERVIEW OF CHAPEL1

(PRE-PRINT OF AN UPCOMING BOOK CHAPTER)

Bradford L. Chamberlain, Cray Inc.

January 2013

revision 1.0
1This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0001.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency.

Chapter 9
Chapel

Bradford L. Chamberlain, Cray Inc.

Chapel is an emerging parallel language whose design and development has been led by Cray Inc. under the DARPA
High Productivity Computing Systems program (HPCS) from 2003 to the present. Chapel supports a multithreaded
execution model, permitting the expression of far more general and dynamic styles of computation than the typi-
cal single-threaded Single Program, Multiple Data (SPMD) programming models that became dominant during the
1990’s. Chapel was designed such that higher-level abstractions, such as those supporting data parallelism, would
be built in terms of lower-level concepts in the language, permitting the user to select amongst differing levels of
abstraction and control as required by their algorithm or performance requirements. This chapter provides a brief
introduction to Chapel, starting with a condensed history of the project (Section 9.1). It then describes Chapel’s mo-
tivating themes (Section 9.2), followed by a survey of its main features (Section 9.3), and a summary of the project’s
status and future work (Chapter 9.4).

9.1 A Brief History of Chapel

9.1.1 Inception

DARPA’s HPCS program was launched in 2002 with five teams, each led by a hardware vendor: Cray Inc., Hewlett-
Packard, IBM, SGI, and Sun. The program challenged the teams to develop technologies that would improve the
productivity of High Performance Computing users in the areas of performance, portability, programmability, and
robustness. The vendors were encouraged to reconsider all aspects of their system stack with the goal of delivering
technologies that would be revolutionary and distinct from their established roadmap. Along with changes to their pro-
cessor, memory, and network architectures, the vendor teams also proposed new and enhanced software technologies,
including novel programming languages.

In 2003, the HPCS program transitioned to phase II, and a programmatic downselect occurred, enabling the Cray,
IBM, and Sun teams to pursue their proposed research plans. At the outset of this phase, the initial designs of the new
programming languages began to emerge, with the Cray team pursuing the Chapel language, IBM starting work on
X10 (Chapter ??), and Sun (now Oracle) developing Fortress.

Cray’s HPCS project was termed Cascade after the prominent mountain range just east of its corporate headquarters
in Seattle. The project was led by Burton Smith, Chief Scientist of Cray at the time. Though he believed that existing
HPC programming models were a productivity limiter for high-end systems, Burton was initially hesitant to pursue
a new programming language under HPCS, due to skepticism about whether languages designed by lone hardware
vendors could be successful. He soon reconsidered this position, however, after an enumeration of well-established
programming languages in both HPC and mainstream computing revealed that most of them had originally been
developed by a single hardware vendor. In most cases, the key to a language’s long-term success involved a transition
to a broader, more community-oriented model at an appropriate point in its life cycle. In January–February 2003, the
Cascade team announced its intention to pursue a new language at various HPCS reviews and meetings. Work on
Chapel began in earnest that year under the leadership of David Callahan.

1

2 CHAPTER 9. CHAPEL

The Chapel language took its name as an approximate acronym for Cascade High Productivity Language, coined
by Callahan. The team generally felt lukewarm-to-negative about the name, in large part due to its possible religious
implications. However, nobody came up with a preferable alternative quickly enough, and the name stuck. When
asked about it, team members would occasionally quip, “We’ll wait until we’ve gotten the language to a point that
we’re happy with it and then switch to a truly great name.”

9.1.2 Initial Directions

Chapel’s initial design was shaped primarily by four people who set the language on the course that it continues to
follow today: David Callahan, its chief architect from Cray Inc.; Hans Zima, an academic partner within the Cascade
program representing CalTech/JPL; Brad Chamberlain, a recent graduate from the ZPL project at the University of
Washington; and John Plevyak, an independent contractor who joined the Chapel project in late 2003, bringing with
him a strong background in iterative flow analysis and type inference [16].

To a great extent, Chapel’s feature set reflects a combination of the backgrounds of these four initial architects:
David Callahan established the overall vision for the language and, from his extensive experience with the Tera MTA
(Multi-Threaded Architecture), brought the notion of a general, multithreaded execution model with lightweight, data-
centric synchronization [1]. Hans Zima was a founding contributor to the High Performance Fortran (HPF) language
in the 1990s, and brought with him the lessons learned from that high-profile endeavor [13]. Brad Chamberlain’s dis-
sertation focused on the benefits of supporting first-class index set concepts in parallel languages [4], so he contributed
an alternative model for data parallelism with the goals of generalizing and improving upon the array abstractions
supported by HPF. And finally, John Plevyak’s experience filled an expertise gap in the group that Callahan correctly
believed would be crucial for the language’s success—supporting static type inference with the goal of making parallel
programming more productive, particularly with respect to supporting generic functions and classes.

With this combined background, the initial team set off to define Chapel. Much of the early brainstorming was
guided by explorations of parallel computations that had posed challenges for previously adopted parallel languages.
Examples included finite element methods, fast multipole methods, connected components algorithms, n-body sim-
ulations, and the like. Draft codes and documents to explain them were circulated, punctuated by marathon design
summits at which the virtues and flaws of various options were debated, often passionately and at length. In the fall
of 2004, David Callahan took on the task of writing an initial draft of the language specification, which served as a
strawman for subsequent debate, refinement, and implementation. With that, the Chapel project was off and running.

9.1.3 Phases of Development

The Chapel project’s history during the course of HPCS can be thought of as falling into three distinct periods: For
the first period, from 2003 to early 2006, the project was in a molten state, with team members splashing around and
trying to construct a common vision of the language that they could all agree upon and conceivably implement. This
period saw the first publication describing Chapel [3], as well as the formation of the initial development team who
would get the Chapel compiler up and running.

The second period, from 2006–2008, marks the timeframe in which both Chapel’s design and the compiler ar-
chitecture began stabilizing, permitting a number of milestones to be achieved at regular intervals: In April 2006,
task-parallel Chapel codes were run for the first time. In December 2006, the first release was made available to ex-
ternal users and evaluation teams on a by-request basis. July 2007 saw the execution of the first distributed-memory
task-parallel programs. In June 2008, the first data-parallel constructs started working, and by September 2008, the
first distributed-memory data-parallel codes were executing. During this period the core Chapel development team at
Cray kept their heads tucked down, to move the implementation along as far and fast as possible.

The third period, from 2008–2012, constitutes the time when the Chapel team began to increasingly look outward
in an attempt to attract users to Chapel and get feedback on its design and implementation. During these years, Chapel
moved to an open source control repository1, switched to a public release mechanism, started to support early users,
and established a number of collaborations with academics, lab staff, and members of industry outside of Cray. The
Chapel team also stepped up its level of outreach during this period, particularly in terms of giving tutorials on Chapel
in forums like the SC conference series and PRACE community events. All the while, improvements were made to
the implementation to flesh out missing features and improve performance in order to make progress and retain the
interest of early users.

1http://sourceforge.net/projects/chapel/ — where it is still hosted at the time of this writing

9.2. CHAPEL’S MOTIVATING THEMES 3

The Chapel project remains an active work-in-progress. At the time of this writing it is undergoing a transition from
its HPCS-based funding to a post-HPCS funding and project management model. With this overview of Chapel’s
history in mind, we now move on to describe some of the motivating themes and concerns that helped shape Chapel’s
design.

9.2 Chapel’s Motivating Themes

To understand Chapel’s features, it can be helpful to understand the themes that influenced what would or would not
be included in the language. In this section, we provide an overview of these themes to establish a framework for the
language features described in Section 9.3.

9.2.1 General Parallelism

One of the first and most important themes in Chapel is the concept of supporting general parallel programming. In
particular, Chapel’s goal is to be a language in which users will never hit a point where they conclude “Well, that was
fun while I was trying to do x and y; now that I want to do z, I’ll have to go back to using C with MPI,” (or whatever
technology they had been using). This approach is in strong contrast to the host of parallel languages from the 1990s
that focused on a specific type of parallelism, to the exclusion of other styles—e.g., HPF and ZPL’s overriding focus
on data-parallelism to the detriment of task-parallelism and nested parallelism. Chapel’s founders believed that while
focusing on a single style of parallelism was a prudent approach for an academic project, for a language like Chapel
to truly become adopted within a field as diverse as HPC, it had to support a wide variety of computational styles.

To this end, Chapel was designed with concepts that support data parallelism, cooperative task parallelism, and
synchronization-based concurrent programming. In addition, these concepts were designed such that they could be
composed arbitrarily to support nested parallelism.

In addition to permitting diverse styles of parallelism, Chapel was also designed to support general granularities of
parallelism, both in the user’s program and the target hardware. In practice, algorithms tend to contain parallelism at
multiple levels: computational models, function calls, loop iterations, and even individual statements or expressions.
Meanwhile, modern hardware typically supports parallelism across multiple machines or cabinets, network nodes,
processor cores, and potentially instructions for processors supporting vectors or multithreading. Most conventional
parallel programming models target only a subset of these software and hardware granularities, often just one. As a
result, programmers must use hybrid programming models that mix multiple concepts and notations in order to take
full advantage of all available parallelism in their algorithm and hardware. For example, a parallel program wanting to
take full advantage of a petascale system today might use MPI to express executable-level parallelism across the nodes,
OpenMP to express loop or task parallelism across the processor cores, and OpenACC to offload parallel kernels to an
accelerator. In contrast, Chapel strives to support the expression of all parallelism in a user’s program while targeting
all available hardware parallelism with a single, unified set of language concepts.

9.2.2 Multithreaded Programming and Execution Models

At the time of Chapel’s inception, like today, most of the deployed distributed-memory programming languages and
notations exposed programming and execution models based on single-threaded cooperating executables, with SPMD
models as a particularly common case. The Chapel team attributes much of the lack of productivity and generality
within HPC programming to this restriction since it forces users to take a process-centric view of their computation
rather than describing and orchestrating the parallelism as a whole.

Chapel chose instead to adopt a multi-threaded execution model in which each process will typically be composed of
multiple threads. Users express parallelism within their programs in terms of tasks that represent units of computation
that can, and should, execute in parallel. These tasks are then executed by the threads, potentially creating additional
tasks, either within the same process or a remote one. The result is a programming and execution model that is far
more dynamic and general than traditional single-threaded SPMD models.

9.2.3 Global-View Programming

Another way in which Chapel diverges from most adopted HPC notations is by supporting what its designers refer to
as a global view of data structures and control flow. The concept is to move away from requiring computations on

4 CHAPTER 9. CHAPEL

distributed data structures, like arrays, to be expressed in terms of the subarrays owned by each process, as is typical
in conventional approaches like MPI or Co-Array Fortran. Instead, the programmer can declare and compute on
distributed data structures identically to a completely local version. Such variables are referred to as global-view data
structures since they can be declared using a global problem size and accessed using global indices rather than via a
per-processor size and local indices. Since large-scale programs are almost always data-intensive by definition, Chapel
also strives to support a wide variety of global-view array types, including multidimensional rectangular arrays, sparse
arrays, associative arrays, and unstructured arrays.

Chapel’s global view of control refers to the fact that a Chapel program begins executing using a single task and
then introduces parallelism through the use of additional language constructs. This is in contrast to SPMD program-
ming models in which users write their program under the assumption that multiple copies of main() will execute
simultaneously.

It is important to note that while previous languages, like HPF and ZPL, also supported global-view concepts, they
did not provide a rich means of escaping these abstractions in order to exert more control over execution details. Recog-
nizing that high-level abstraction is not ideal for every scenario, Chapel was designed such that users could selectively
avoid using global-view abstractions and drop down to more explicit local-view constructs. As a specific example,
Chapel programmers can choose to write traditional single-threaded SPMD programs using manually-distributed data
structures, and even message passing, if they so choose. In summary, providing a global view of computation for pro-
grammability should not preclude the expression of more explicit parallelism, since having a greater degree of control
can also play a crucial role in productivity.

9.2.4 Multiresolution Design

The aforementioned notion of programming at higher levels of abstraction or greater degrees of control as needed
is part of what Chapel refers to as its multiresolution design philosophy. The idea is to have the language support
higher and lower levels of abstraction, permitting the user to benefit from abstractions like global-view arrays when
appropriate, while still being able to do more explicit low-level programming when desired or necessary. Moreover,
Chapel was designed such that its higher-level abstractions are implemented in terms of the lower-level ones. This
ensures that they are all compatible, permitting users to mix and match between different levels without problems.

As a specific example, Chapel’s data-parallel loops and global-view arrays are higher-level features that are imple-
mented in terms of its lower-level features like task-parallelism and explicit control over locality. Another example of
a multiresolution concept that has been planned for Chapel but not yet implemented is an implementation of its tasks
that permits the user to specify varying levels of control over their scheduling policies. For example, a user might
abdicate control for some tasks (“have the runtime schedule, load-balance, and work-steal these tasks however it sees
fit”), while exerting stricter control over others (“lock this task down to this particular thread running on this particular
core”)—or some number of intermediate policies between these two extremes.

9.2.5 Locality Control

Because Chapel was designed to execute on the largest-scale parallel machines where locality and affinity are crucial
for performance, locality is considered a core concept in Chapel after parallelism. Chapel’s locality features provide
control over where data values are stored and where tasks execute so that users can ensure parallel computations
execute near the variables they access, or vice-versa.

Chapel supports a Partitioned Global Address Space (PGAS) memory model in which user code can refer to any
lexically visible variable regardless of whether it is stored in a local or remote memory. If the variable is remote, the
compiler and runtime are responsible for implementing the communication that is required to load or store the variable
over the network. Users can reason about the location of a variable statically using Chapel semantics, or dynamically
using a variety of execution-time queries.

Chapel supports expression of locality using distinct language concepts from those used to introduce parallelism.
This contrasts sharply with SPMD programming models in which each copy of the executable serves as both the unit of
parallelism and of locality for the program. By separating these concerns into two distinct feature sets, Chapel permits
programmers to introduce additional parallelism within a single process, or to execute code on a distinct compute
node without introducing parallelism. The result is a cleaner design in which each concern can be reasoned about and
controlled separately.

9.2. CHAPEL’S MOTIVATING THEMES 5

9.2.6 Data-Centric Synchronization

Another motivating theme in Chapel is the expression of synchronization in a data-centric manner. This has two pri-
mary benefits: The first is that by associating synchronization constructs with variables, the locality of the abstraction
is well-defined since each variable has a specific location on the target machine. The second is that since most syn-
chronization is designed to guard access to data structures or values, combining the synchronization constructs with
the variables being accessed often results in a more elegant expression of the algorithm.

9.2.7 Establish Roles for Users vs. the Compiler

Chapel has been designed so that the responsibility of identifying parallelism and managing locality rests on the user
rather than the compiler. Although Chapel is often referred to (correctly) as a large and feature-rich language, it
was intentionally designed to avoid reliance on heroic compilation or promises of compilers that would automatically
take care of everything for the user. To this end, Chapel was designed to avoid relying on the compiler to introduce
parallelism and manage locality. While nothing in the language precludes an aggressive compiler from performing
such transformations automatically, such technology is not expected of a Chapel compiler (and conversely, identifying
parallelism and locality is expected from users).

Owing to its PGAS nature, one of the main roles of the compiler (and runtime libraries) is to implement the global
namespace in a manner that transparently and efficiently transfers data values between their stored location and the
tasks that reference them. This communication management forms the Chapel compiler’s biggest role, along with
traditional compiler concerns of scalar code generation and optimization.

Chapel’s multiresolution design also serves to distinguish between different user roles. For example, a parallel pro-
gramming expert can work at lower levels of the language, implementing parallel loop schedules and distributed data
structures that can then be used by a numerical scientist who does not need to be exposed to all of the implementation
details. Chapel’s user-defined domain maps are a key example of this philosophy.

9.2.8 Reduce Gap Between Mainstream and HPC Languages

When polling current students about which programming languages they are most familiar and comfortable with,
responses typically focus on modern and productive languages like Java, Python, Matlab, and Perl, along with some
experience with C++ and C from those who have worked in more systems-oriented areas. Meanwhile, the HPC
community still uses Fortran, C, and C++ almost exclusively along with technologies like MPI and OpenMP that most
students have no experience with. Part of Chapel’s goal for improving productivity is to narrow this gap in order
to make better use of the graduating workforce while also leveraging productivity advances enjoyed by mainstream
programmers.

To this end, the Chapel design team selected features and themes in productive mainstream languages and sought
ways of incorporating them into a language suitable for HPC programming. In doing so, the goal was to support
features that would neither undermine the goal of scalable performance nor alienate traditional HPC programmers.

Chapel’s type inference capability is an example of a mainstream language feature that was customized to support
good performance. Chapel chose to support type inference in order to give users the ability to quickly prototype
code and to benefit from polymorphism in a manner similar to scripting languages like Matlab and Python. However,
unlike most scripting languages, Chapel’s type inference is implemented in the compiler, resulting in a fixed static
type for each variable in order to avoid the overheads of dynamic typing at execution time. The use of type inference
is completely optional in Chapel so that programmers who prefer using explicitly-typed languages (e.g., for clarity)
can still program in a more traditional style.

Chapel’s object-oriented programming (OOP) capabilities are an example of a mainstream feature that was included
in a manner that would keep it palatable to more traditional HPC programmers. In Chapel’s early years, the design
team spoke with HPC programmers who would report opinions like “I’m simply not accustomed to using object-
oriented features. If I had to rewrite my code in an object-oriented style it would create a lot of work for me because
it’s not how I’ve been trained to think.” To this end, Chapel supports object-oriented features for all of the productivity
and modularity benefits that they provide, yet intentionally avoids basing the language on an object-oriented core
(like Smalltalk or Java) so that C and Fortran programmers can opt to ignore the OOP features and write traditional
block-structured imperative code.

6 CHAPTER 9. CHAPEL

9.2.9 Start From Scratch (but strive for familiarity)

The decision that Chapel’s designers made which has probably been called into question more often than any other
was the approach of designing Chapel from a blank slate rather than as an extension to an existing language. There
are many reasons why Chapel took this approach; perhaps the simplest is that all adopted languages carry with them
a certain amount of baggage which reflects their origins supporting something other than general, large-scale parallel
computing. As a result, most extension-based parallel languages tend to be a subset of a superset of a sequential
language, making them incompatible with pre-existing source code while still requiring a significant learning curve
from the user to remember which features have changed while learning the new features that have been added. Chapel’s
attitude is that the intellectual effort involved in learning a new parallel language stems primarily from learning the
semantics of its parallel constructs, not their syntax. Thus, starting from scratch and designing features that express
those new semantics as clearly as possible can have great value when compared with trying to force them into a
language that was not originally designed with parallelism in mind.

That said, Chapel has also tried to avoid inventing concepts simply for the sake of it. In designing Chapel, the team
studied successful and unsuccessful languages, in order to learn from their benefits and failures, and select features
that would work well together. Chapel’s primary influences include C, Modula, Fortran, C++, Java, C#, CLU [14],
Scala [15], ML [12], Perl, Matlab, ZPL [7], HPF [13], and the Cray MTATM/XMTTMextensions to C and Fortran [18].

Chapel’s developers believe that in order to preserve the community’s investment in legacy applications and libraries,
it is more important to interoperate with existing languages than to extend them. To that end, Chapel directly supports
interoperability with C, and also works with the Babel project at LLNL as a means of supporting a greater number of
languages [17], including Fortran, Java, and Python.

The Chapel team likes to joke that they chose not to extend an existing language in order to offend all language
communities equally rather than favoring one at the risk of offending another. Joking aside, one of the surprising results
of Chapel’s approach is that users from diverse language backgrounds—Fortran, C, Java, Python—have described
Chapel as being familiar. The fact that so many users find facets of Chapel that are familiar and comfortable to them,
while considering others an improvement over what they are used to, is an indication that the melting pot approach
taken by Chapel should aid adoption rather than hinder it.

9.2.10 Shoot for the Moon

Another early criticism of Chapel was that the project bit off more than it could hope to complete under HPCS funding
alone. This observation accurately reflects the team’s intention. Chapel’s founders believed that a truly successful,
general parallel language would need to be very broad in its feature set and would need to involve a larger community
than simply the Cray Chapel team. To this end, many of the original features were intentionally open research topics
as a means of striving for a more productive solution and encouraging collaborations with the broader community.
Examples of such features include user-defined data distributions (which are supported today), distributed software
transactional memory (which resulted in collaborative research [2, 19] that has not yet been incorporated into the
implementation), and distributed garbage collection (which has not yet been investigated).

9.2.11 Portable, Open Source

The final theme in this discussion is the choice to develop and release Chapel as portable, open-source software. This
decision was made primarily due to the fact that it is nearly impossible to get any new parallel language broadly
adopted, let alone one that is not freely and generally available. Moreover, making the project open source lowered
barriers to involving external collaborators and makes potential users less wary about what might happen if support
for Chapel ends. As a result, the Chapel project has been implemented and released under the Berkeley Software
Distribution (BSD) license and developed at the SourceForge website for open-source software.

The portability of Chapel—both in terms of the compiler and its generated code—was also considered strategically
crucial since nobody would adopt a language that only ran on machines from a single vendor. Moreover, making
Chapel’s implementation portable permits users to develop parallel programs on their desktops and laptops, and then
move them to large-scale machines as the programs mature and resources become available. In order to maximize
portability, the Chapel compiler has been developed in ISO C++ and generates ISO C99. All parallelism in Chapel
is implemented using POSIX threads by default, and all communication is implemented using the portable GASNet
communication library supporting one-sided communication and active messages (Chapter ??). As a result of this
approach, Chapel runs on most parallel systems, whether custom or commodity.

9.3. CHAPEL FEATURE OVERVIEW 7

9.2.12 Summary

The themes in this section have been crucial to defining the Chapel language and setting it apart from many conven-
tional and competitive technologies. The following sections provide an overview of Chapel’s main features, which
have been designed with these themes in mind.

9.3 Chapel Feature Overview

This section provides an introduction to Chapel’s primary features to provide an overview of the language. By ne-
cessity, this description only presents a subset of Chapel’s features and semantics. For a more complete treatment of
the language, the reader is referred to the Chapel language specification [9], materials on the Chapel website2, and
examples from the Chapel release3. This section begins with the base language features and then moves on to those
used to control parallelism and locality.

9.3.1 Base Language Features

Chapel’s base language can be thought of as the set of features that are unrelated to parallel programming and
distributed-memory computing—it is essentially the sequential language on which Chapel is based. As mentioned
in Section 9.2.9, Chapel was designed from scratch rather than by extending an existing language, and the base
language can be thought of as those features that were considered important for productivity and for supporting user-
specification of advanced language features within Chapel itself. Overall, the base language is quite large, so this
section focuses on features that are philosophically important or useful for understanding Chapel code in subsequent
sections.

Syntax Chapel’s syntax was designed to resemble C’s in many respects, due to the fact that most currently-used
languages, including C++, Java, C#, Perl, and Python, are generally C-based. Like C, Chapel statements are separated
by semicolons and compound statements are defined using curly brackets. Most Chapel operators follow C’s lead,
with some additional operators added; Chapel’s conditionals and while-loops are based on C’s; and so forth.

In other areas Chapel departs from C, typically to improve upon it in terms of generality or productivity. One of
Chapel’s main syntactic departures can be seen in its declarations which use more of a Modula-style left-to-right,
keyword-based approach. For example, the following declarations declare a type alias, a variable, and a procedure in
Chapel:

type eltType = complex; // ’eltType’ is an alias for the complex type

var done: bool = true; // ’done’ is a boolean variable, initialized to ’true’

proc abs(x: int): int { // a procedure to compute the absolute value of ’x’
if (x < 0) then

return -x;
else

return x;
}

In this example, the type keyword introduces a new type identifier, var introduces a new variable, and proc intro-
duces a new procedure, as noted in the comments. Other declaration keywords are used to create compile-time con-
stants (param), run-time constants (const), iterators (iter), and modules, which support namespace management
(module).

Chapel uses the left-to-right declaration style in part because it supports type inference and skyline arrays better. In
addition, adopting a left-to-right declaration style aids productivity by making declarations easier for a non-expert to
read.

Basic Types Chapel’s basic scalar types include boolean values (bool), signed and unsigned integers (int and
uint), real and imaginary floating point values (real and imag), complex values (complex), and strings (string).

2http://chapel.cray.com
3Located in $CHPL HOME/examples

8 CHAPTER 9. CHAPEL

All of Chapel’s numeric types use 64-bit values by default, though users can override this choice by explicitly speci-
fying a bit width. For example, uint(8) would specify an 8-bit unsigned integer. All types in Chapel have a default
value that is used to initialize variables that are otherwise uninitialized. Numeric values default to zeroes, booleans to
false, and strings to empty strings.

Chapel supports record and class types, each of which supports objects with member variables and methods.
Records are declared using the record keyword and result in in-place memory allocation. Classes are declared
using the class keyword and use heap-allocated storage. Records support value semantics while classes support ref-
erence semantics. For example, assigning between variables of record type will result in a copy of the record members
by default. In contrast, assigning between variables of class type results in the two variables aliasing a single object.
Records can be thought of as being similar to C++ structs while classes are similar to Java classes.

Chapel also supports tuple types that permit a collection of values to be bundled in a lightweight manner. Tuples are
useful for creating functions that generate multiple values, as an alternative to adopting the conventional approach of
returning one value directly and the others through output arguments. Chapel also uses tuples as the indices for multi-
dimensional arrays, supporting a rank-independent programming style. The following code illustrates some simple
uses of tuples in practice:

var t: (int, real) = (1, 2.3); // a tuple ’t’ with int and real components

var (i, r) = t; // de-tuple ’t’ into new variables ’i’ and ’r’

...t[1]... // refer to ’t’s first (integer) component

var coord1: (real, real, real), // a homogeneous 3-tuple of reals
coord2: 3*real; // an equivalent way to declare coord1

Range and Array Types Another built-in type in Chapel is the range, used to represent a regular sequence of integer
values. For example, the range 1..n represents the integers between 1 and n inclusive, while 0.. represents all of
the non-negative integers. Chapel’s ranges tend to be used to control loops, and also to declare and operate on arrays.
Ranges support a number of operators including intersection ([]), prefix/suffix selection (#), striding (by), and setting
the alignment of a strided range (align). The following Chapel code illustrates some range values and operators:

1..9 // represents 1, 2, 3, ..., 9
1..9 by 2 // represents 1, 3, 5, 7, 9
1..9 by -1 // represents 9, 8, 7, ..., 1
9..1 // represents an empty range
1..9 # 3 // represents 1, 2, 3
1..9 # -3 // represents 7, 8, 9
1..9[6.. by 2] // represents 6, 8
lo..hi by 2 align 1 // represents the odd integers between ’lo’ and ’hi’ (inclusive)

Chapel has extensive support for arrays, described in greater detail in Section 9.3.3. However, to introduce the
concept, the following declarations create three array variables.

var Hist: [-3..3] int, // a 1D array of integers
Mat: [0..#n, 0..#n] complex, // a 2D array of complexes
Tri: [i in 1..n] [1..i] real; // a "triangular" skyline array

The first example declares a 1D array, Hist, whose indices range from -3 to 3, and whose elements are integers. The
second declaration creates a 2D n×n array of complex values, Mat, which uses 0-based indexing. The final example is
a 1D skyline array named Tri that uses 1-based indexing. Each of Tri’s elements is a 1-based 1D array of reals whose
length is equal to its index in the outer array. This essentially creates a triangular array of arrays4.

Type Inference Chapel supports type inference as a means of writing code that is both concise and flexible. For
example, the type specifier of a variable or constant declaration can be elided when an initialization expression is
provided. In such cases, the Chapel compiler infers the type of the identifier to be that of the initialization expression.
The following code illustrates some examples:

4Note that at the time of this writing, skyline arrays like this are not yet supported; arrays of arrays are supported but must use the same domain
for all inner array elements.

9.3. CHAPEL FEATURE OVERVIEW 9

param pi = 3.1415; // ’3.1415’ is a real, so ’pi’ is too
var count = 0; // ’0’ is an integer, so ’count’ is too
const area = 2*r; // if ’r’ is an int/real/complex, ’area’ will be too
var len = computeLen(); // ’len’ is whatever type computeLen() returns

The first two declarations are fairly straightforward—the type of each initializing literal expression is well-defined by
Chapel (real and int respectively), so the identifiers being declared have matching type. In the third line, area’s type
is based on the type resulting from multiplying r by an integer. If r were an int, area would be an int; if it were a
real, area would return a real; etc. In the final line, len will be whatever type the procedure computeLen() returns.
Note that these final two forms have the advantage of making these declarations flexible with respect to changes in the
types of r and computeLen() at the cost of making the declarations a little less self-documenting—a reader would
need to know the types of r and computeLen() in order to determine the types of area and len.

Chapel’s type inference also applies to function declarations: a function’s argument and return types may be omitted.
Omitted argument types are inferred by the compiler by inspecting the function’s callsites and adopting the types of
the corresponding actual arguments. Such function declarations are generic, and the compiler will create distinct
instantiations for each unique callsite type signature, resulting in a capability much like C++’s template functions. If
a function’s return type is omitted, it is inferred by unifying the types of the expressions generated by its return
statements.

As a simple example, consider the abs() function shown previously, but written in its type-inferred form:

proc abs(x) { // ’x’s type and the return type of abs() are inferred
if (x < 0) then
return -x;

else
return x;

}

In this version of abs(), the formal argument x has no type specifier, and no return type is given. As a result, abs()
may be called with any type that supports less-than comparison against integers and the unary negation operator—
integers, floating point values, complex values, or any user-defined type that supports these operators. The compiler
infers the return type of abs() by noting that both of the returned expressions have the same type as x5, in which
case the return type will match the argument type. If the function is called within a user’s program as abs(3) and
abs(4.5), the compiler would create both int and real instantiations of abs().

For-loops and Iterators Chapel’s for-loops are different than C’s, both syntactically and semantically. In Chapel,
for-loops are used to iterate over data structures and to invoke iterator functions. Chapel’s for-loops declare iteration
variables that represent the values yielded by the iterand expression. These variables are local to a single iteration of
the loop’s body. The following statements demonstrate some simple for-loops:

for i in 1..n do // print 1, 2, 3, ..., n
writeln(i);

for elem in Mat do // increment all elements in Mat
elem += 1;

The first loop iterates over the range 1..n, referring to the integer values using the iteration variable i. Each iteration
of the loop’s body gets its own local private copy of i, so it cannot be used to carry values across distinct iterations. In
addition, a range’s iteration variables are constant, and therefore may not be reassigned within the loop body.

The second loop iterates over the Mat array, referring to its elements using the iteration variable elem, which is
once again local and private to the loop body. When iterating over an array, the iteration variable refers to the array’s
elements; thus, assignments to it will modify the array’s values. Here, the loop has the effect of iterating over all of
the array’s values, incrementing each by one.

Chapel loops can also be used to iterate over multiple iterands in a lockstep manner, known as zippered iteration.
As an example, the following loop performs a zippered iteration over the elements of Hist and the unbounded range
1..:

for (elem, i) in zip(Hist, 1..) do
writeln("Element #", i, " of Hist is: ", elem);

5assuming that unary negative preserves x’s type—if not, the compiler will attempt to find a unifying type that supports both returned expressions.

10 CHAPTER 9. CHAPEL

In addition to looping over standard data types, Chapel programmers can write their own iterator functions that can
be used to drive for-loops. As a simple example, the following declaration creates an iterator which generates the first
n elements of the Fibonacci sequence:

iter fib(n) { // generates ’n’ fibonacci numbers
var current = 0, // ’current’ and ’next’ store two consecutive

next = 1; // values from the sequence

for i in 1..n {
yield current; // yield the current value
current += next; // increment it by the next
current <=> next; // swap the two values

}
}

Iterator functions generate results for their callsites by using yield statements. For example, in the Fibonacci iterator
above, each iteration yields its value of current back to the callsite. Execution continues after the yield statement until
the iterator returns (either via a return statement or by falling out of the function).

Iterator functions are typically invoked using for-loops. For example, the following loop would print out the first n
Fibonacci numbers:

for (f,i) in (fib(n), 1..n) do
writeln("fib(", i, ") = ", f);

In this example, the iteration variable f takes on the values generated by fib()’s yield statements.
Iterators were included in Chapel for their benefit in abstracting loop implementation details away from the loops

themselves, providing reuse and customization benefits similar to traditional functions. While many users initially
worry that iterators may incur unnecessary performance overheads, it is important to note that most iterators, like the
Fibonacci example above, can be implemented simply by inlining the iterator’s body into the loop invocation and then
replacing the yield statement with the loop body.

Other Base Language Features In addition to the features described here, Chapel’s base language also supports a
number of additional constructs, including: enumerated types and type unions; type queries; configuration variables
that support command-line options for overriding their default values; function and operator overloading and disam-
biguation; default argument values and match-by-name argument passing; meta-programming features for compile-
time computation and code transformation; modules for namespace management; and I/O to files, strings, memory,
and general data streams.

9.3.2 Task Parallel Features

As mentioned in Section 9.2.2, all parallelism in Chapel is ultimately implemented using tasks—units of computation
that can and should be executed in parallel. All Chapel programs begin with a single task that initializes the program’s
modules and executes the user’s main() procedure. This section provides an overview of Chapel’s concepts for
creating tasks and synchronizing between them.

Unstructured Task Parallelism The simplest way to create a task in Chapel is by prefixing a statement with the
begin keyword. This creates a new task that will execute the statement and then terminate. Meanwhile, the original
task goes on to execute the statements that follow. As a trivial example, the following code uses a begin statement to
create a task to execute the compound statement while the original task continues with the writeln() that follows it.

writeln("The original task prints this");
begin {

writeln("A second task will be created to print this");
computeSomething(); // it will then compute something
writeln("The second task will terminate after printing this");

}
writeln("The original task may print this before the second task completes");

Because the two tasks in this example can execute concurrently, the final writeln() could be printed before the
second and third writeln()s, between them, or after them, depending on how the tasks are scheduled.

9.3. CHAPEL FEATURE OVERVIEW 11

Tasks in Chapel are anonymous, so there is no direct way to name a task directly. The two ways in which a user
can check for task completion are through the sync keyword or by synchronizing with it through shared variables,
described below.

The Sync Statement Chapel’s sync keyword prefixes a statement and causes the task encountering it to wait for all
tasks created within the statement’s dynamic scope to complete before proceeding. As an example, the use of the sync
statement in the following code will wait for all the tasks generated by a recursive binary tree traversal to complete
before the original task continues.

sync { traverseTree(root); }
writeln("All tasks created by traverseTree() are now guaranteed to be done");

proc traverseTree(Node node) {
processNode(node);

if (node.left != nil) then // If there is a left child...
begin traverseTree(node.left); // ...create a task to visit it

if (node.right != nil) then // Ditto for the right child...
begin traverseTree(node.right);

}

As can be seen, the sync statement is a big hammer. For finer-grain interactions between tasks, programmers should
use special variable types that support data-centric synchronization—Chapel’s synchronization and atomic variable
types—described in the following sections.

Synchronization Variables A Chapel synchronization variable is like a normal variable, except that in addition to
storing its value, it also stores a full/empty state that is used to guard reads and writes. As mentioned in Section 9.1.2,
this concept was adopted from the similar Tera MTA and Cray XMT features [1, 18]. By default, a read of a synchro-
nization variable blocks until the variable is full, reads the value, and leaves the variable in the empty state. Similarly,
a write blocks until the variable is empty, writes the new value, and then leaves it full.

As a simple example, the following code implements a bounded-buffer producer/consumer idiom using an array of
synchronization variables to implement the buffer:

1 var buff$: [0..#buffsize] sync real;

3 begin producer(numUpdates); // create a task to run the producer
4 consumer(); // while the original task runs the consumer

6 proc producer(numUpdates) {
7 var writeloc = 0;
8 for i in 1..numUpdates {
9 buff$[writeloc] = nextVal(); // this write blocks until ’empty’, leaving it ’full’

10 writeloc = (writeloc + 1) % buffsize;
11 }
12 buff$[writeloc] = NaN; // write a sentinel to indicate end
13 }

15 proc consumer() {
16 var readloc = 0;
17 do {
18 const val = buff$[readloc]; // this read blocks until ’full’, leaving ’empty’
19 processVal(val);
20 readloc = (readloc + 1) % buffsize;
21 } while (val != NaN);
22 }

In this program, line 1 declares an array, buff$, whose elements are of type sync real. Thus, each element is a
synchronized floating point value that carries a full/empty state along with its value. Because the array’s declaration
does not contain an initialization expression, its elements start in the empty state. Since incorrect accesses to synchro-
nization variables can result in deadlock, Chapel programmers typically name them using a $ by convention, in order
to alert readers to their presence and avoid introducing inadvertent reads or writes that may never complete.

12 CHAPTER 9. CHAPEL

Continuing the example, line 3 creates a task to execute the producer while the original task continues on to line 4
where it executes the consumer. The two tasks each sit in a tight loop, writing (lines 8–11) or reading (lines 17–21)
buff$ ’s elements, respectively. Note that the typical safety checks required to prevent the producer from overwriting
elements or the consumer from getting ahead of the producer are not required in this implementation—the full/empty
state associated with each buff$ element naturally prevents these error cases from occurring.

In addition to the default read/write semantics, synchronization variables support a number of methods that permit
other modes of reading/writing their values. For example the readFF() method provides a way to read a synchro-
nization variable, blocking until it is full, but leaving it full rather than empty. Similarly, readXX() permits the task
to peek at a synchronization variable’s value regardless of the full/empty state.

In addition to providing a controlled way of sharing data, synchronization variables also play an important role
in defining Chapel’s memory consistency model. Typical Chapel variables are implemented using a relaxed memory
consistency model for the sake of performance which makes them an unreliable choice for coordinating between tasks.
By contrast, loads and stores cannot be reordered past synchronization variable accesses, which also serve as memory
fences. This permits synchronization variables to be used as a means of coordinating data sharing for larger, more
relaxed data structures.

As an example, the following code fragment hands off a buffer of data, (buff) between two tasks:

1 var buff: [1..n] real;
2 var buffReady$: sync bool;

4 begin {
5 fillBuffer(buff);
6 buffReady$ = true; // signal that the buffer is ready by setting its state to ’full’
7 }

9 {
10 const val = buffReady$; // block until buffReady$ becomes full
11 processArray(buff);
12 }

The first task (lines 4–7) fills buff and then signals to the other task that the buffer is ready by filling the synchronization
variable buffReady$. Meanwhile the original task (lines 9–12) blocks on the buffReady$ flag until it is full (line 10) and
only accesses the buffer once it is. Note that using a normal variable for buffReady$ would not be guaranteed to work
since it would be subject to relaxed consistency and therefore could have its loads/stores reordered with respect to buff
by either the compiler or architecture. Making buff into an array of synchronization variables would also achieve the
desired result, but would add significant overhead to every access to buff.

Chapel supports a variation of synchronization variables that are called single-assignment variables. They are
almost identical except that once their full/empty state is set to full, it can never be emptied. As a result, default reads
of single-assignment variables use the readFF() semantics described above.

Single-assignment variables (and synchronization variables, for that matter) can be used to express future-oriented
parallelism in Chapel by storing the result of a begin statement into them. As an example, consider the following
code snippet:

var area1$, area2$: single real;

begin area1$ = computeArea(shape1);
begin area2$ = computeArea(shape2);

doSomethingElse();

const totalArea = area1$ + area2$,
areaDiff = abs(area$ - area2$);

This program creates two single-assignment variables, area1$ and area2$. It then uses begin statements to create a
pair of tasks, each of which computes the area of a shape and stores the result into its respective single-assignment
variable. Meanwhile, the original task goes on to do something else and then, when it’s done, computes the total area
by reading the two single-assignment variables. If the helper tasks have not yet generated their results, it will block due
to the full/empty semantics of the single-assignment variables. Due to the single-assignment semantics, the variables
can then be read again without blocking to compute areaDiff, the magnitude of the difference between the areas.

9.3. CHAPEL FEATURE OVERVIEW 13

Atomic Variables Chapel also supports data-centric coordination between tasks using atomic variables. These are
variables that support a set of common atomic operations which are guaranteed to complete without another task
seeing an intermediate or incomplete result. Chapel’s atomic variables are modeled after those being incorporated into
the ISO C1x standard, and benefit from the design work done there.

As an example of using atomic variables, consider the following program which uses atomic variables to compute
a histogram in a manner that ensures that tasks will not lose updates due to read-read-write-write issues:

var hist: [0..#histSize] atomic int;

forall elem in Mat {
const bucket = computeBucket(elem);
hist[bucket].add(1);

}

This program uses a forall loop (to be introduced in Section 9.3.3) to perform a parallel iteration over an array named
Mat. For each element, elem, the corresponding bucket number is computed and incremented. The increment is
performed using the add() method for atomic variables, causing the argument value to be accumulated atomically
into the histogram element. Since multiple tasks may update a single bucket value simultaneously, using a normal
array of integers and incrementing them using addition could cause two tasks to read the same value before either had
written its update, causing one of the updates to be lost. Proper use of atomic variables can guard against such races
in a reasonably lightweight manner.

Structured Parallelism In addition to the begin keyword, Chapel supports two statements that create groups of
tasks in a structured manner. The first of these is the cobegin statement—a compound statement in which a distinct
task is created for each of its component statements. The cobegin statement also makes the original task wait for
its child tasks to complete before proceeding. Note that this differs from the semantics of the sync statement in that
only the tasks created directly by the cobegin are waited on; any others follow normal fire-and-forget semantics.
Although the cobegin statement can be implemented using begin statements and synchronization variables, that
approach adds a considerable cost in verbosity for the user and fails to convey the intent as clearly to the compiler for
the purpose of optimization.

As a simple example, the producer/consumer tasks from the earlier bounded buffer example could have been created
with a cobegin as follows:

cobegin {
producer(numUpdates);
consumer();

}
writeln("We won’t get here until producer() and consumer() are done");

Chapel’s other form of structured parallelism is the coforall-loop which is like a traditional for-loop except that it
creates a distinct task for each iteration of the loop body. Like the cobegin statement, coforall has an implicit join
that causes the original task to wait for all of its children to complete before proceeding.

As an example, the following loop creates a distinct task for each element in an array:

coforall elem in Mat do
processElement(elem);

writeln("This won’t be printed until all elements have been processed");

For a very large array, a coforall-loop would probably be overkill, since you would typically not want to create a
distinct task for every array element. In such cases, programmers would typically use the data-parallel constructs of
the following section instead. In practice, the coforall loop tends to be used when the number of iterations is close
to the target hardware’s natural degree of parallelism, or when true concurrency between iterations is required.

9.3.3 Data Parallelism

Chapel’s task-parallel features support very explicit parallel programming with all the related hazards, such as race
conditions and deadlock. In contrast, Chapel’s data-parallel features support a more abstract, implicitly parallel style
of programming that is typically easier to use. The primary features for data parallelism are forall-loops, ranges,
domains, and arrays, described in this section.

14 CHAPTER 9. CHAPEL

forall-loops The forall-loop is Chapel’s data parallel loop construct. Syntactically, it is similar to for-loops and
coforall-loops. As a simple example, the following code uses a forall-loop to iterate over a range in parallel:

forall i in 1..n {
A[i] += 1;

}

The net effect of this loop is to increment elements 1 through n of array A in parallel.
Unlike for-loops, which are executed using a single task, and coforall-loops, which use a task per iteration, forall

loops use an arbitrary number of tasks, as determined by the loop’s iterand. For example, in the forall-loop above, the
range value 1..n would determine the number of tasks used to execute this loop. For typical iterands, this choice is
based on the amount of hardware parallelism available. Many parallel iterators also have arguments that permit the
user to specify or influence the number of tasks used to execute the loop. Forall-loops also support zippered iteration
in which corresponding elements are generated together in parallel.

Because the number of tasks used to implement a forall-loop is not known a priori, forall-loops must be serializ-
able. That is, it must be legal to execute the loop using a single task. A consequence of this is that there cannot be
synchronization dependences between distinct iterations of the loop, since there is no guarantee that they would be
executed by distinct tasks.

Forall loops also support expression level forms and a shorthand syntax using square brackets. For example, the
forall loop above could have been written: [i in 1..n] A[i] += 1;. The syntactic similarity between shorthand
forall loops and array type specifiers is intentional—one can read an array type like [1..n] string as “for all indices
from 1 to n, store a string.”

As part of Chapel’s multiresolution approach, advanced users can implement their own parallel iterators which can
be invoked using forall-loops. This is done by writing special iterator functions called leader-follower iterators which
create the tasks to implement the loop and determine how the iteration space will be divided amongst them. Leader-
follower iterators are implemented using Chapel’s lower-level features, including task parallelism and base language
concepts. With this mechanism, users can write very simple iterators that statically partition the iteration space, as
well as more complex ones that decompose the iteration space dynamically. The details of authoring leader-follower
iterators are beyond the scope of this chapter; interested readers are referred to the literature and Chapel release for
further details and examples [6].

Domains and Arrays In Chapel, a domain is a first-class language concept that represents an index set. Domains are
used to drive loops and to declare and operate on arrays. The following code declares constant domains that describe
the size and shape of the arrays declared in Section 9.3.1:

const HistSpace: domain(1) = {-3..3},
MatSpace = {0..#n, 0..#n},
Rows = {1..n},
Cols: [Rows] domain(1) = [i in Rows] {1..i};

The first line declares a 1-dimensional domain describing the index set from −3 to 3, inclusive. The second and third
lines use Chapel’s type inference to declare a 2D n × n domain and a 1D n-element domain. The final declaration
declares an array of domains, using a forall loop to initialize each element based on its index.

Given these domains, the original array declarations could be rewritten as follows:
var Hist: [HistSpace] int,

Mat: [MatSpace] complex,
Tri: [i in Rows] [Cols[i]] real;

The original declarations were equivalent to these ones; they simply resulted in the creation of anonymous domains.
The benefit of naming domains is that it permits an index set to be referred to symbolically throughout a program,
providing readers and the compiler with a clearer indication of the relationships between arrays and iteration spaces.
As an example, the following loop can be proven to require no array bounds checks since HistSpace is the domain
used to declare Hist.

forall i in HistSpace do
Hist[i] = 0;

In addition to dense rectangular domains and arrays, Chapel supports a variety of other domain types including
associative, sparse, and unstructured domains. Associative domains store a set of index values of arbitrary type, such
as strings, floating point values, or class object references. An associative array can be thought of as providing a hash

9.3. CHAPEL FEATURE OVERVIEW 15

table or dictionary capability, mapping the domain’s indices to array elements. Unstructured domains have anonymous
indices and are designed to represent pointer-based data structures like unstructured graphs. Sparse domains represent
arbitrary subsets of a parent domain’s index set. Their arrays store an implicit “zero” value for any index that is within
the parent domain but not the child.

All of Chapel’s domain types support a rich set of operations including serial and parallel iteration, membership
tests, and intersection. Regular domains also support operators and methods that permit new domains to be created
from them; for example, one such method simplifies the creation of boundary conditions.

Chapel’s arrays support a rich set of operations including serial and parallel iteration, random access, slicing, re-
shaping, aliasing, and reindexing. Arrays can also be logically reallocated by re-assigning their domain variables.
When a domain’s index set is modified, all arrays declared in terms of that domain are logically reallocated to reflect
the domain’s new index set. Array values corresponding to indices that persist between the old and new domain values
are preserved.

Promotion In addition to explicit forall-loops, data-parallelism in Chapel can also be expressed using promotion of
scalar functions and operators. When a domain or array argument is passed to a function or operator that is expecting
a scalar argument, the function is invoked in parallel across all of the domain’s indices or array’s elements. These
promotions are equivalent to forall-loops, but often result in a more compact expression of parallelism. As an example,
the forall loop shown just above to zero out Hist could be written as Hist = 0;—effectively, a promotion of the scalar
assignment operator.

When multiple scalar arguments are promoted, the resulting expression is equivalent to a zippered forall-loop. For
example, given the standard exp() function for exponentiation, the statement exp(A, B) with conforming arrays A
and B would be equivalent to the following forall-loop expression:

forall (a, b) in zip(A, B) do exp(a, b);

Note that both standard and user-defined functions and operators can be promoted in Chapel.

Reductions and Scans Chapel’s other major data-parallel features are reduction and scan expressions. Reductions
can be used to flatten one or more dimensions of a collection of values while scans are used to compute parallel prefix
operations. As an example, the following statement computes the largest sum of squares value over corresponding
elements of A and B:

var biggest = max reduce (A**2 + B**2);

Note that the exponentiation and plus operators are promoted in this example.
Chapel provides a number of standard reduction and scan operators, such as sum, product, logical and bitwise

operations, and max/min (with or without location information). Users can also write their own reduction and scan
operators by specifying functions to accumulate and combine input and state values. Though this topic is beyond the
scope of this paper, our approach can be viewed in the release or read about in the literature [11].

9.3.4 Locality Features

Chapel’s final feature area permits a programmer to control and reason about locality. At the low level, a Chapel
programmer can explicitly control the system resource on which a task is run, or a variable is allocated. At a higher
level, Chapel programmers can specify how domains and arrays are distributed amongst the system’s nodes, resulting
in distributed-memory data-parallelism. This section touches on both styles.

The Locale Type The core feature for Chapel’s locality features is the locale type. Locales represent units of
the target system architecture that are useful for reasoning about locality and affinity. For most conventional parallel
architectures, a locale tends to describe a compute node, such as a multicore or SMP processor. Due to Chapel’s PGAS
memory model, tasks executing within a given locale can access lexically visible variables whether they are allocated
locally or on a remote locale. However, Chapel’s performance model says that variable accesses within a task’s locale
will be cheaper than remote ones. This approach supports productivity through Chapel’s global namespace, while still
supporting the ability to obtain scalable performance by being sensitive to where tasks execute relative to the data they
access.

16 CHAPTER 9. CHAPEL

When executing a Chapel program, users specify the number of locales on which it should execute using an
execution-time command-line flag. Within the Chapel source code, these locales can be referred to symbolically
using a built-in, zero-based 1D array named Locales, which stores numLocales locale values. This array stores locale
values representing the system resources on which the program is executing and permits the user to refer to and query
them. Like any other array, Locales can be queried, reshaped, sliced, reindexed, etc.

As a simple example, the following statement computes the total amount of memory available to the locales on
which a Chapel program is running:

const totalMem = + reduce Locales.physicalMemory();

This idiom uses a physicalMemory() method that is supported by the locale type, promoting it across the entire
Locales array. It then uses a reduction to sum the individual memory sizes into a single value, totalMem. Other locale
methods support queries such as the number of processor cores, the number of tasks or threads executing, the callstack
limit, the locale’s name, its ID, and so forth.

On-Clauses Chapel programmers specify that a statement should execute on a specific locale using an on-clause.
The on-clause takes a single operand that specifies which locale to use. If the expression is a variable, the statement
will execute on the locale within which that locale is stored. As an example, consider the following statements:

on Locales[numLocales-1] do
writeln("Hello from the last locale");

on node.left do
traverseTree(node.left);

The first statement causes a message to be printed from the last locale on which the program is executing. The second
statement specifies that the traverseTree() function should execute on whichever locale owns node’s left child. In
practice, data-driven on-clauses like this tend to be preferable since they embed fewer assumptions into the code about
the number of locales on which the program is running.

It is important to emphasize that on-clauses do not introduce parallelism into a program, keeping with Chapel’s
theme of using distinct concepts for parallelism and locality. However, on-clauses and parallel constructs compose
naturally. For example, to launch an asynchronous remote task to traverse the left subtree above, we could have used:

begin on node.left do
traverseTree(node.left);

Another common idiom is to launch a task per locale via a coforall-loop like the following:

coforall loc in Locales do
on loc do

writeln("Hello from locale ", loc.name);

This loop effectively generates traditional SPMD-like parallelism.
Within a Chapel program, the locale on which a task is running, or within which a variable is stored, can be queried.

All variables support a .locale method that returns the locale in which it is allocated. For tasks, a built-in variable,
here, can be used to query the locale on which the current task is executing.

Domain Maps, Layouts, and Distributions Chapel’s locales can also be used to create global-view, distributed
arrays. Every Chapel domain is defined in terms of a domain map that specifies how it, and its arrays, should be
implemented. When no domain map is specified (as in the preceding sections), a default domain map is used, and it
maps the domain’s indices and array’s elements to the current locale (here). Domain maps like these which target a
single locale are referred to as layouts since they only specify how domains and arrays are stored in local memory.
Domain maps can also target multiple locales as a means of storing distributed index sets and arrays; these are referred
to as distributions.

As a simple example of a distribution, the following re-definition of MatSpace from Section 9.3.3 would result in a
distributed Block-Cyclic implementation of its index set and of the Mat array that was declared in terms of it:

const MatSpace = {0..#n, 0..#n} dmapped BlockCyclic(startIdx=(0,0),
blocksize=(8,8));

9.4. WRAP-UP 17

This declaration says that MatSpace’s domain map should be an instance of the BlockCyclic distribution. Its arguments
specify that 8 × 8 blocks should be dealt out to the locales, starting at index (0, 0). By default, it will target all of
the locales on which the program is running, reshaping them into a square-ish virtual array of locales. The user can
also pass an array of target locales as an optional argument to the BlockCyclic constructor as a means of precisely
controlling which locales the distribution should target.

Note that because of Chapel’s global namespace and global-view arrays, a change to a domain declaration like this
is the only thing required to convert a shared-memory parallel program into one that supports distributed-memory
execution. Forall-loops over distributed domains/arrays are typically implemented such that each locale iterates over
the indices/elements that it owns locally, providing a natural model for locality.

User-Defined Domain Maps As part of Chapel’s multiresolution design, advanced users can author their own do-
main maps as a means of controlling the distribution and layout of domains and arrays, as well as the implementation
details of their iterators, accessor functions, etc. Creating a domain map requires creating three descriptor classes, one
to represent the domain map, a second to represent one of its domains, and a third to represent an array. These descrip-
tors must support a required interface that the compiler targets when lowering high-level global-view operations down
to the per-locale data structures and operations required to implement them. They can also support optional interfaces
that the compiler can use for optimization purposes, when defined.

Domain maps are considered the highest-level feature in Chapel’s feature set because they tend to be written using
data parallel features, task parallel features, locality features, and the base language. As an example, the BlockCyclic
domain map shown above uses on-clauses to create local descriptors on each target locale to represent its portion of the
global domain or array. It uses local domains, arrays, and data parallel operators to implement each locale’s portion
of the global array. It uses task parallelism and on-clauses to implement parallel iterators that execute using the target
locales. And of course it uses classes, iterators, generics, and type inference from the base language to do all of this in
a productive way.

As part of its research goals, all arrays in Chapel are implemented using the same domain map framework that a
programmer in the field would use. This is done to avoid a situation in which standard “built-in” domain maps perform
well but user-defined domain maps result in a significant performance penalty. Instead the Chapel team has chosen
to use the same framework for all arrays as a forcing function to ensure that user-defined domain maps can achieve
acceptable performance.

A more detailed description of user-defined domain maps is beyond the scope of this chapter. Interested readers
are referred to the Chapel release and literature for more information about, and examples of, user-defined domain
maps [8, 5].

9.4 Wrap-up

Project Status As mentioned in Section 9.1, Chapel remains a work-in-progress. The vast majority of features
described in this chapter are implemented and work correctly today with a few exceptions: (1) skyline arrays as
described in this chapter are not yet implemented; today’s arrays of arrays must have inner arrays that share a common
domain; (2) partial reductions/scans in which a subset of an arrays dimensions are collapsed/scanned have not yet
been specified or implemented for Chapel, though we consider them to be a crucial feature. Workarounds for both of
these areas exist for users who require these capabilities today. Performance for Chapel programs remains hit-or-miss
depending on the specific idioms being used. Sometimes it is competitive with current technologies, while at other
times it can be orders of magnitude slower.

User reaction to Chapel has been increasingly positive as the project has progressed. Initially, there was a great deal
of skepticism about the decision to pursue a new language, largely due to lingering frustration about HPF’s failure
in the 1990’s. As the community heard more about Chapel and grew to understand its philosophical and practical
differences from HPF, pessimism gave way to curiosity and cautious optimism. At present, many potential users seem
to believe that a mature implementation of Chapel would be a very attractive thing, though there remains a healthy
degree of skepticism over whether it can be achieved, whether for technical or logistical reasons (e.g., level of effort
required). The current performance is a non-starter for many users, while others are happy that it’s faster than Matlab
or Python and would prefer to see effort spent on fleshing out missing features in the language rather than performance
improvements.

18 CHAPTER 9. CHAPEL

Future Directions There are a number of areas where Chapel could stand to be improved compared to its current
definition. In some cases, these are features that the Chapel team anticipated but did not have the means to address
under the HPCS program; in other cases, there are gaps in the language that have been revealed through early user
experiences.

In the base language, the main feature that Chapel is lacking is a capability for handling exceptional conditions,
whether using traditional exceptions or some other capability more customized to parallel execution. This was a
known lack in the original design, but one that has become increasingly important as the number of early Chapel users
grows. Other areas for improvement in the base language (some of which are already underway) include a language
representation of OOP interfaces, improved support for interoperability with other languages, and a more productive
memory management story (e.g., the option to create garbage collected objects vs. those that are managed manually).

The main feature lacking from Chapel’s task parallel concepts is the notion of identifying logical teams of tasks.
This capability would give users the ability to wait for a group of tasks to complete using finer-grain control than
the current sync statement. We also expect task teams to support operations like barriers, broadcasts, reductions,
and eurekas in which one task could signal that its team members should cease executing. Task teams could also
serve as a means of assigning different execution policies to tasks, such as “permit these tasks to be work-stolen and
load-balanced” vs. “these tasks should be bound to their own threads and run to completion.” One other feature that
has been considered for task parallelism is a means for distinguishing tasks that must be executed concurrently for
correctness (such as those used to implement the producer-consumer example in Section 9.3.2) from those that may
be serialized if too many tasks already exist (such as the ones used to implement the recursive tree search in the same
section).

Chapel’s current definition of locales is very adept at describing horizontal locality such as that which exists between
nodes of a commodity cluster or early petascale system. However, once a system’s compute nodes involve Non-
Uniform Memory Access (NUMA) domains or heterogeneous resources, Chapel programmers have no way to target
code to specific processors or memories. To this end, the Chapel team is working on adding a concept of hierarchical
locales to represent architectural substructures or realms of locality within a node (i.e., vertical locality). The idea
is that a programmer could use Chapel’s on-clauses to specify that a task should run on a specific processor type or
instance, or to allocate a variable using a specific memory. An obvious challenge is that the more the architectural
structure is embedded into the source code, the less portable the code is likely to be to systems with a different
architecture.

Within Chapel’s data parallel features, there are a number of planned improvements to its framework for defining
parallel iterators, both to improve performance and flexibility. The Chapel team is also considering the inclusion of
special replicated array dimensions similar to ZPL’s flood and grid dimensions [10].

More generally, as Chapel considers the next generation of machine architectures, issues of energy efficiency and
resilience to system failure are considered to be of increasing importance, so these are areas where future work is
expected as well.

Overall, the Chapel language and compiler have demonstrated a great deal of promise with respect to general,
productive, multiresolution parallel programming. We urge potential users to give Chapel a try and to report back with
feedback and areas for improvement. We also encourage evaluations of the language to focus less on what Chapel’s
current performance happens to be, and more on whether or not the language will be able to generate acceptable
performance once the implementation is brought up to product grade. A revolutionary scalable parallel programming
language is unlikely to materialize overnight, so we urge the parallel programming community to exercise patience
rather than giving up hope prematurely. And, being an open source project, we encourage members of the community
to help us improve Chapel.

REFERENCES 19

References

[1] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield, and Burton Smith. The
Tera computer system. In Proceedings of the 4th International Conference on Supercomputing, ICS ’90, pages
1–6, New York, NY, USA, 1990. ACM.

[2] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain˙ Software transactional memory for large
scale clusters. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practi ce of Parallel Pro-
gramming, 2008.

[3] D. Callahan, B. Chamberlain, and H. Zima. The Cascade High Productivity Language. 9th International Work-
shop on High-Level Parallel Programming Models and Supportive Environments, pages 52–60, April 2004.

[4] Bradford L. Chamberlain. The Design and Implementation of a Region-Based Parallel Language. PhD thesis,
University of Washington, November 2001.

[5] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, David Iten, and Vassily Litvinov. Authoring user-
defined domain maps in Chapel. In Cray Users Group (CUG) 2011, Fairbanks, AK, May 2011.

[6] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz and Angeles Navarro. User-defined parallel zippered
iterators in Chapel. In PGAS 2011: Fifth Conference on Partitioned Global Address Spa ce Programming Models,
October 2011.

[7] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. ZPL: A machine independent programming language for parallel computers. IEEE Transactions on
Software Engineering, 26(3):197–211, March 2000.

[8] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun Choi. User-defined distributions and layouts
in Chapel: Philosophy and framework. In HotPAR ‘10: Proceedings of the 2nd USENIX Workshop on Hot Topics,
June 2010.

[9] Cray Inc., Seattle, WA. Chapel language specification (version 0.82), October 2011. (Available from
http://chapel.cray.com/).

[10] Steven J. Deitz. High-Level Programming Language Abstractions for Advanced and Dynamic Parallel Compu-
tations. PhD thesis, University of Washington, February 2005.

[11] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and Lawrence Snyder. Global-view abstractions for
user-defined reductions and scans. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 40–47. ACM Press, 2006.

[12] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Report ECS-LFCS-86-2, Univer-
sity of Edinburgh, Edinburgh EH9 3JZ, March 1986.

[13] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Performance Fortran: an historical
object lesson. In Proceedings of the third ACM SIGPLAN conference on History of programming languages,
HOPL III, pages 7–1–7–22, New York, NY, USA, 2007. ACM.

[14] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction mechanisms in CLU. Commu-
nications of the ACM, 20(8):564–576, August 1977.

[15] Martin Odersky, Philippe Altherr, Vincent Cremat, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay
Mihaylov, Michel Schinz, and Erik Stenman adn Matthias Zenger. An overview of the Scala programming lan-
guage. Technical Report IC/2004/64, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland,
2004.

[16] John B. Plevyak. Optimization of Object-Oriented and Concurrent Programs. PhD thesis, University of Illinois
Urbana-Champaign, 1996.

20 CHAPTER 9. CHAPEL

[17] Adrian Prantl, Thomas Epperly, Shams Imam, and Vivek Sarkar. Interfacing Chapel with traditional HPC pro-
gramming languages. In In Proceedings of the Fifth Conference on Partitioned Global Address Space Program-
ming Models, Galveston Island, Texas, USA, October 2011.

[18] Mike Ringenburg and Sung-Eun Choi. Optimizing loop-level parallelism in Cray XMT (TM) applicat ions. In
Cray Users Group (CUG) 2009), Atlanta, GA, May 2009.

[19] Srinivas Sridharan, Jeffrey S. Vetter, Bradford L. Chamberlain, Peter M. Kogge, and Steven J. Deitz. A scalable
implementation of language-based software transactional memory for distributed memory systems. Technical
Report FTGTR-2011-02, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, May 2011.

	Chapel
	A Brief History of Chapel
	Inception
	Initial Directions
	Phases of Development

	Chapel's Motivating Themes
	General Parallelism
	Multithreaded Programming and Execution Models
	Global-View Programming
	Multiresolution Design
	Locality Control
	Data-Centric Synchronization
	Establish Roles for Users vs. the Compiler
	Reduce Gap Between Mainstream and HPC Languages
	Start From Scratch (but strive for familiarity)
	Shoot for the Moon
	Portable, Open Source
	Summary

	Chapel Feature Overview
	Base Language Features
	Task Parallel Features
	Data Parallelism
	Locality Features

	Wrap-up

