
Global HPC Challenge Benchmarks in Chapel†
Revision 2.1.1 — November 2008 Release (w/ corrections)

Bradford L. Chamberlain, Steven J. Deitz
Samuel A. Figueroa, David M. Iten

Chapel Team
Cray Inc.

chapel info@cray.com

Andrew Stone
Department of Computer Science

Colorado State University
stonea@cs.colostate.edu

Abstract—Chapel is a new parallel programming language
being developed by Cray Inc. as part of its participation in
DARPA’s High Productivity Computing Systems program. This
report describes Chapel implementations of the global HPC
Challenge benchmarks for STREAM Triad, Random Access,
FFT, and HPL. Chapel is a work in progress. As such, this
report serves as a snapshot of our current status as we work
toward implementations of the HPCC benchmarks that are
elegant and efficient. The highlights of our submission this
year include: (i) the first publicly-released performance results
for Chapel including a 1.69 TFlop/s execution of STREAM
Triad; (ii) distributed memory executions of STREAM and RA
implemented using Chapel’s user-defined distribution strategy;
(iii) our first executions of FFT at full problem sizes; (iv) our
first version of HPL with a focus on exploiting locality. All codes
in this report compile and execute correctly with version 0.8
of the Chapel compiler. The full code listings are provided in
appendices to this report.

I. INTRODUCTION

Chapel [3] is a new parallel programming language being
developed by Cray Inc. as part of its participation in DARPA’s
High Productivity Computing Systems (HPCS) program.1,2

The Chapel team is working to design and implement a lan-
guage that improves parallel programmability, portability, and
code robustness as compared to current programming models
while producing programs with performance comparable to or
better than MPI. Chapel is very much a work in progress, and
as such, this article should be viewed as a snapshot of Chapel’s
current status rather than the final word on its capabilities.

In this article, we present our current Chapel imple-
mentations of four of the global HPC Challenge (HPCC)
benchmarks3,4—STREAM Triad (STREAM), Random Ac-
cess (RA), 1D Fast Fourier Transform (FFT), and High Per-
formance Linpack (HPL). We provide performance results for
the STREAM and RA benchmarks on up to 512 nodes of
a Cray XT4, running at the full problem size for STREAM

†This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0001. This
research used resources of the National Center for Computational Sciences at
Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

1http://www.darpa.mil/IPTO/programs/hpcs/hpcs.asp
2http://www.highproductivity.org/
3http://icl.cs.utk.edu/hpcc/
4http://www.hpcchallenge.org/

but a reduced problem size (219 table elements per node)
for RA due to long execution times. Our FFT and HPL
implementations do not yet run on multiple nodes, nor do
they achieve competitive performance on a single node, so
we provide an overview of the codes themselves and a status
report on their implementations.

For the 2006 HPC Challenge competition, we submitted
earlier (yet very similar) versions of the STREAM, RA, and
FFT benchmarks as an introduction to the Chapel language and
an indicator of where we were headed. Since then, the Chapel
compiler has achieved a number of important milestones:

• December 2006: First limited release of Chapel (subse-
quent limited releases were made available in June 2007,
December 2007, and March 2008)

• July 2007: First Chapel codes executing across nodes of
a distributed memory platform

• March 2008: First complete support for Chapel’s task
parallel features on distributed memory platforms

• September 2008: First codes executing using Chapel’s
distributed domains and arrays

• November 2008: First public release of Chapel

The September 2008 milestone is particularly noteworthy
for a few reasons. First, because our HPCC benchmark
implementations rely on distributed domains and arrays in
order to execute at scale on distributed memory platforms.
Second, because Chapel’s support for distributed domains and
arrays has long been considered one of its most promising
productivity contributions (not to mention one of our most
daunting research challenges). Third, because our distributions
are themselves implemented in Chapel using the same mecha-
nisms that advanced programmers would use to write their own
distributions. In particular, for the 1D Block distributions used
in this report, the Chapel compiler has no specific semantic
knowledge about what a Block distribution is. It only knows
that, as with any Chapel distribution, Block1D provides a set of
classes that support well-defined interfaces including methods
to locate, access, and iterate over domain indices and array
elements.

Because our support for distributed domains and arrays
is scarcely a month old, most of our effort in preparing
our entry this year has gone into ensuring that the codes

work correctly on distributed memory machines rather than
optimizing the performance of Chapel distributions. To this
end, our performance results include a discussion of the
current scalability bottlenecks and our plans for addressing
them in the coming year.

The rest of this report is organized as follows. The next
section gives a summary of our code sizes as required by
the competition while Section III describes the experimental
platform used in the preparation of this report. Sections IV, V,
VI, and VII each give a brief overview of one of the bench-
marks, describing our approach in Chapel, our implementation
status, and our next steps. Section VIII concludes with a
brief summary. Our complete source listings are provided in
Appendices A–E.

II. CODE SIZE SUMMARY

The following table categorizes and counts the number of
lines of code utilized by our HPCC implementations:

Benchmark Code
STREAM Random Problem

line count type Triad Access FFT HPL Size
Kernel computation 2 3 + 25 = 28 57 50 0
Kernel declarations 11 20 + 13 = 33 22 63 34
Total kernel 13 23 + 38 = 61 79 113 34
Initialization 9 1 + 9 = 10 26 8 0
Verification 8 9 + 0 = 9 11 16 0
Results and Output 32 21 + 0 = 21 21 39 21
Total Benchmark 62 54 + 47 = 101 137 176 55
Debug and Test 7 3 + 0 = 3 3 1 0
Comments 72 94 + 31 = 125 109 170 39
Blank 27 23 + 8 = 31 40 61 8
Total Program 168 174 + 86 = 260 289 408 102

The line counts for each benchmark are represented using
a column of the table. The final data column represents
the shared HPCCProblemSize module that is used by the
benchmarks to automatically compute the appropriate problem
size for a machine and to print it. For the Random Access
benchmark, each entry is expressed as a sum—the first value
represents the benchmark module itself, the second represents
a helper module used to define the stream of pseudo-random
update values, and the final value is the sum of the two.

The rows of the table are used to group the lines of code
into various categories and running totals. The first two rows
indicate the number of lines required to express the kernel of
the computation and its supporting declarations, respectively.
For example, in the STREAM Triad benchmark, writing the
computation takes two lines of code, while its supporting
variable and subroutine declarations require eleven lines of
code. The next row presents the sum of these values to
indicate the total number of lines required to express the kernel
computation—thirteen in the case of STREAM.

The next three rows of the table count lines of code related
to setup, verification, and tear-down for the benchmark. Ini-
tialization indicates the number of lines devoted to initializing
the problem’s data set, Verification counts the lines used to
check that the computed results are correct, and Results and
Output gives the number of lines for computing and outputting
results for timing and performance. These three rows are then
combined with the previous subtotal giving the number of

source lines used to implement the benchmark and output
its results. This subtotal should be interpreted as the SLOC
(Source Lines of Code) count for the benchmark as specified.

The Debug and Test row indicates the number of lines
added to make the codes more useful in our nightly regression
testing system, while the Comments row indicates the number
of comment lines and the Blank row indicates the number of
blank lines. These values are added to the previous subtotal to
give the total number of lines in each program, and they serve
as a checksum against the line number labels that appear in
the appendices.

The next table compares the total SLOC for the standard
HPCC reference implementations with that of our Chapel
codes:

Benchmark Code
STREAM Random

Triad Access FFT HPL
HPCC SLOC 433 1668 1406 11,674
Chapel SLOC 117 156 192 231
SLOC Ratio 3.70 10.69 7.32 50.53

The HPCC SLOC results are the sum of the Framework and
Parallel numbers reported for the reference versions of the
benchmarks in the table from the HPCC website’s FAQ.5 The
Chapel result for each code is obtained by summing its Total
Benchmark result from the previous table with that of the
Problem Size module (55 lines) to compute the problem size.

This table shows that our Chapel codes are approximately
3.7–50× smaller than the reference implementations. Note that
this isn’t an apples-to-apples comparison since some of the
HPCC codes implement several variations on an algorithm
while our benchmarks implement a single algorithm. More-
over, it is commonly understood that shorter codes are not
necessarily easier to understand. That said, having browsed
both source bases, we believe that our Chapel implementations
are not only succinct, but also clearer representations of the
benchmarks than the reference implementations, and that they
would serve as a better reference for future programmers
tackling the HPC Challenge benchmarks.

III. EXPERIMENTAL PLATFORM

This section describes the experimental platform that we
used in preparing this report. Our performance results were
obtained on Jaguar, a Cray XT4 located at Oak Ridge National
Laboratory (ORNL). The following table provides a brief
overview of Jaguar:

machine characteristic value
compute nodes 7,832
compute node processor 2.1 GHz AMD Opteron
cores per node 4
total usable RAM per node 7.68 GB
(as reported by /proc/meminfo)

5http://www.hpcchallenge.org/faq/index.html

In terms of software, our experiments were conducted
using our current version of the Chapel compiler which
uses a source-to-C compilation approach for portability. On
Jaguar, we used Cray’s PrgEnv-gnu programming environ-
ment module which provides a Cray C compiler wrapper
around gcc. We used this compiler to compile both Chapel’s
generated C code and the standard reference implementation
of the HPCC benchmarks. Our runtime libraries use POSIX
threads (pthreads) to implement tasks and Berkeley’s GASNet
communication library [2] for inter-process coordination and
data transfer. The software versions and settings that we used
are given in the following table:

software version
flags/settings

chpl 0.8
––fast

PrgEnv-gnu 2.0.49a
cc, gcc 4.2.0

-target=linux -O3 -std=c99
––param max-inline-insns-single=35000
––param inline-unit-growth=10000
––param large-function-growth=200000

pthreads NPTL
GASNet 1.12.0

conduit=portals, segment=fast
GASNET MAX SEGSIZE 4294967296

The Chapel flag “––fast” turns off a number of run-
time checks that are enabled by default for safety, includ-
ing guards against out-of-bounds array accesses, null pointer
dereferences, and violations of locality assertions. The flags
used for the C compilation were chosen by GASNet’s auto-
configuration process and were used both for the gener-
ated Chapel code and the HPCC reference implementations.
The GASNet conduit and segment choices are the recom-
mended settings for running on a Cray XT. The GAS-
NET MAX SEGSIZE setting is required to support data set
sizes larger than the default of 2GB per node.

IV. STREAM TRIAD

The STREAM Triad benchmark asks the programmer to
generate two vectors of random 64-bit floating-point values,
b and c, and to compute a = b + α · c for a scalar value α.
We express this computation in our entry this year using the
following lines of Chapel code:
forall (a, b, c) in (A, B, C) do
a = b + alpha * c;

This pair of statements says to iterate in parallel over the
vectors A, B, and C in a zippered manner, referring to
corresponding elements as a, b, and c for the purposes of the
loop body. Within the loop, standard multiplication, addition,
and assignment are applied to the component scalar values.

The distributed implementation of these vectors and the
parallel implementation of the loop are both controlled by the
distribution of A, B, and C, specified using a series of three
declarations. The first:

const BlockDist = new Block1D(bbox=[1..m],
tasksPerLocale=tasksPerLocale);

creates a distribution named BlockDist and assigns it a
new instance of the distribution class Block1D which maps
1D indices across the set of locales6 executing the program.
Block1D computes this mapping by partitioning the specified
bounding box, 1 . . .m, across the locales using evenly-sized
blocks (±1). It also takes an argument tasksPerLocale
indicating how many tasks should be used on each locale to
implement parallel loops over the distribution’s domains and
arrays. Here, we are passing it a configuration constant of the
same name that can be used to vary this number from one
execution of the program to the next.

The second declaration:

const ProblemSpace: domain(1, int(64))
distributed BlockDist = [1..m];

creates a domain—a first-class language concept representing
an index set—to describe the set of indices that define the
problem space. This domain, ProblemSpace, is declared to be
a 1-dimensional domain of 64-bit integer indices, distributed
using the BlockDist distribution created previously. It is
initialized to store the index set 1 . . . m which will be divided
between the locales according to the mapping defined by
BlockDist.

The third declaration:

var A, B, C: [ProblemSpace] elemType;

creates our three vectors, A, B, and C, specifying that each
index in ProblemSpace should be mapped to a variable
of type elemType (defined previously to be a 64-bit real
floating-point value). These vectors are implemented using
ProblemSpace’s distribution and therefore have their ele-
ments mapped to the locales’ memories in a blocked manner
according to BlockDist.

Chapel distributions like Block1D not only map domain
indices and array elements to locales, they also serve as
recipes for mapping high-level operations—such as the forall
loop used for the Triad computation—down to the individual
data structures and tasks that will implement the computation
across the locales. In the case of a zippered forall loop like
this one, the compiler rewrites the loop using leader/follower
iterators defined by the distribution which specify how zip-
pered parallel iteration should be implemented for its domains
and arrays. The distribution itself is written in Chapel using
standard features such as coforall loops to create tasks and
on-clauses to specify the locales on which the tasks should
run.

As mentioned earlier, the Chapel compiler contains no
semantic knowledge specific to Block1D distributions. It only
knows that, as a distribution, Block1D will support a standard

6A locale in Chapel is an architectural unit of locality. Locales have the
ability to execute computation and store data. Tasks running within a locale
are considered to have uniform access to local data; they can also access
data in other locales, but with greater overhead. On a commodity cluster, a
multicore processor or SMP node would typically be considered a locale. On
jaguar, it is a single quadcore node.

interface of methods and iterators that it can target when low-
ering and optimizing high-level operations on its domains and
arrays. This philosophy forms the basis of our plan to support
user-defined distributions in Chapel and to implement Chapel’s
Standard Distribution Library using this same mechanism. To
our knowledge, this is the first time that such capabilities have
been implemented in a global-view parallel language, and the
first time that parallel zippered iteration has been implemented
using a leader/follower iterator scheme. This report constitutes
the first public mention of these concepts in print, and we
intend to write technical papers describing our approach in
more detail in the coming year.

We ran our Chapel STREAM Triad benchmark on Jaguar
using up to 512 locales (nodes). The problem sizes that we
used and their respective memory requirements are summa-
rized in this table:

STREAM Characteristic Chapel HPCC
number of vectors 3 3
element size (in bytes) 8 8
per-locale problem size 85,985,408 87,469,200
per-locale memory required 1.92 GB 1.95 GB
percent of available memory 25.0% 25.3%

The Chapel problem size was automatically computed using
the HPCCProblemSize module given in Appendix E. The
reference version of HPCC does not support the direct speci-
fication of STREAM’s problem size—only indirectly through
the size of a 2D HPL matrix size—so the problem size for the
HPCC version represents a size that we were able to coerce
it into running which approximates the Chapel problem size.

The following table gives an indication of our single-locale,
single-task execution times:

Single-Task
STREAM Version Performance
HPCC Single 4.506 GB/s
HPCC Star 4.505 GB/s
Chapel ––local 4.030 GB/s
Chapel 4.038 GB/s

HPCC Single and HPCC Star are the standard HPCC re-
sults for the reference implementation of STREAM Triad.
The Chapel ––local entry refers to a run of the Chapel
benchmark compiled with a flag that asserts to the compiler
that it will only be run on one locale, removing parallel
overheads related to distributed memory execution. Chapel
is the multi-locale executable running on a single locale. As
can be seen, the Chapel implementations lag the reference
version by approximately 9–10%, due primarily to the parallel
loops that are generated in the code which are degenerate
for this single-locale, single-task run. Previously, we have
demonstrated a sequential Chapel STREAM implementation
with performance identical to hand-coded sequential C and
Fortran on desktop workstations, so this gives us some hope
of closing this scalar performance gap.

Our multi-locale performance results are shown in the
following graph:

0

500

1000

1500

2000

2500

51225612864321
Number of Locales

STREAM Triad Performance (in GB/s)

HPCC (extrapolated)
Chapel (1 task/locale)

Since the reference implementation of HPCC Stream does not
compute an aggregate GB/s performance when executing on
multiple nodes, we extrapolated its performance by taking
the 1-node HPCC Star timing and scaling it linearly with
the number of locales. This is a reasonable assumption given
that the multi-node reference implementation simply executes
multiple copies of the single-node computation, each with its
own local timing loop and no communication.

Although STREAM Triad is an embarrassingly parallel
benchmark, our current Chapel compiler does not generate
the perfect scaling that one should expect. The culprit is our
current implementation of the leader iterator in the Block1D
distribution. In particular, the leader spawns off a task on
each of the remote locales one after the other, introducing
O(p) overhead to the forall loop when running on p locales.
Similarly, the synchronization used to terminate the leader is
performed by having each of the p locales indicate to the leader
that they have completed their local work. As the number of
locales increases, these linear bottlenecks start to cut into our
scalability as should be expected. Apart from these startup
and teardown overheads, the computation itself is completely
local and ought to result in perfect speedup as we demonstrate
below.

Note that due to long queuing times leading up to SC08, we
only had time to run each experiment once. Thus, we believe
that some characteristics of our results, such as the dip at 128
locales in this graph, are due to an insufficient number of
experimental runs rather than something deeper.

As mentioned above, our implementation of STREAM
supports the ability to run a user-specified number of tasks per
locale to take advantage of intra-locale parallelism—in this
case the 4 cores on each node. We ran our implementation
varying the number of tasks from 1 to 5 and show those
performance results here:

0

500

1000

1500

2000

2500

51225612864321
Number of Locales

STREAM Triad Performance (in GB/s)

HPCC (extrapolated)
Chapel (1 task/locale)
Chapel (2 tasks/locale)
Chapel (3 tasks/locale)
Chapel (4 tasks/locale)
Chapel (5 tasks/locale)

Interestingly, while the 3- and 4 task/locale numbers are quite
competitive (and often the fastest at lower numbers of locales),
from 64 locales onwards, the 2 task/locale case becomes the
best, achieving a maximum of 1.69 TFlop/s on 512 locales.
Even at its best, though, the Chapel implementation continues
to lag behind the single task per locale MPI implementation
by a significant margin due to the startup/teardown reasons
described above.

As our Chapel implementation matures, we expect that
the performance of our submission will improve until it
matches that of the SPMD reference version. In the short-
term, we will be replacing the linear creation of tasks in the
Block1D leader with a tree-based task spawning scheme in
order to replace the O(p) startup and teardown costs with an
O(log p) version that ought to greatly reduce the overheads
that we are currently seeing. This technique requires support
for recursive leader iterators which we do not yet support in
our implementation. In the longer-term, we plan to implement
compiler optimizations for code segments like STREAM that
can be implemented using a traditional SPMD execution. This
supports Chapel’s philosophy that programmers should not
be constrained to SPMD programming models as they are
in many current languages, but rather that SPMD should be
an important common case of parallel execution to support
and optimize for. Applying such an optimization to STREAM
would move the creation and destruction of tasks into the
program’s initialization and teardown, removing the overheads
from the user’s code as in a traditional MPI execution.

Today, performance-minded Chapel programmers can man-
ually remove these overheads from their code by programming
Chapel in a more explicit SPMD style similar to MPI. This
supports Chapel’s multiresolution design philosophy which
says that in providing high-level abstractions, a language
should not prevent the programmer from dropping down to
lower levels, closer to the machine. In particular, a version of
STREAM can be written in which an explicit coforall loop and
on-clause are used to create a task on each locale outside of the
timing loop as in the reference version of the benchmark. The
program would then manually fragment the problem space into
per-locale chunks, performing the computation on the local

chunks. In this version, separate timings could be taken on
each locale and combined using reductions after the coforall
loop as in the MPI version. A simplified version of this
approach that omits details of initialization, multiple trials,
and verification would appear as follows:

var localGBs: [LocaleSpace] real;

coforall loc in Locales do
on loc {

const myProblemSpace: domain(1, indexType)
= BlockPartition(ProblemSpace,

here.id, numLocales);

var myA, myB, myC: [myProblemSpace] elemType;

const startTime = getCurrentTime();
local {
for (a, b, c) in (myA, myB, myC) do
a = b + alpha * c;

}
const execTime = getCurrentTime() - startTime;

localGBs(here.id) = timeToGFlops(execTime);
}

const avgGBs = (+ reduce localGBs) / numLocales;

Note that our ability to abandon Chapel’s global-view array
abstractions and elegantly step into an explicit SPMD-style
programming model is in stark contrast to most previous
languages with support for global arrays. We believe that such
multiresolution capabilities are of the utmost importance for
languages like Chapel that want to support both programma-
bility and performance, if for no other reason than to work
around cases where the compiler or high-level abstractions fail
them. Furthermore, we believe our SPMD implementation of
STREAM is far more elegant than the equivalent MPI program
due to Chapel’s support for global-view task parallelism at the
language level.

Comparing the SPMD-style Chapel results with the HPCC
reference implementation in terms of average GBs per locale,
we see that the Chapel version does perform quite competi-
tively once the task startup and teardown has been removed
from the timing loop:

0

2

4

6

8

10

12

25612864321
Number of Locales

STREAM Triad Performance (GB/s per locale)

HPCC (4 MPI procs/node)
HPCC (OpenMP)
Chapel (4 tasks/locale)
Chapel (1 task/locale)
HPCC (1 MPI proc/node)

This graph shows the HPCC reference code running in three
configurations: (a) 4 MPI processes per node, (b) 1 MPI
process per node using 4 OpenMP threads per process, and
(c) 1 MPI process per node. The Chapel is run with 4 tasks
per locale and with 1 task per locale. As can be seen, running
4 tasks per locale results in approximately 6 GB/s per locale
whether the tasks are implemented using Chapel, MPI, or
OpenMP. Meanwhile, running 1 task per locale results in
similar performance for Chapel or MPI of 4 GB/s. These
results confirm our hypothesis that task startup and teardown
overheads are the cause of our STREAM entry’s current lack
of scalability.

As in the previous graph, we did not have time to run
multiple trials of these experiments, nor to run the 512 locale
experiments. Due to this, we interpret the outlier values (1
MPI task on 256 nodes and 4 MPI tasks on 8 nodes) as being
anomalous rather than an indication of a scalability problem.

As we have argued, in the case of our STREAM im-
plementation we believe that our scalability overheads are
due primarily to the immaturity of our distributed array
implementation rather than a fundamental flaw in Chapel’s
design. For this reason we chose not to pursue an explicitly
fragmented STREAM implementation like the one above as
our official submission to the HPCC competition—it is not
the approach we wish to promote for Chapel. That said, even
when our compiler is mature, there will always be cases when
a performance-driven programmer will want to dive below the
high-level abstractions and program as close to the machine
as possible. Chapel’s support for multiresolution parallel pro-
gramming enables this better than previous languages while
still permitting the programmer to use higher-level abstractions
in sections of the code where performance is not as critical.

As a closing note, readers who are familiar with Chapel
may notice that our STREAM Triad entry this year differs
from our traditional one-statement version, which appears as
follows:

A = B + alpha * C;

This version uses promotion by applying the scalar operators
+ and * to the vectors A, B, and C, resulting in semantics
that are identical to the zippered parallel iteration of our
forall-loop-based entry. While the promotion-based version
works correctly today, the use of promoted operators currently
thwarts a crucial compiler analysis that optimizes our leader/-
follower iterators for well-aligned cases like this one. This is
again a symptom of the immaturity of our distributed array
implementation, and we expect that our 2009 HPC Challenge
entry will demonstrate the one-statement promoted version at
scale.

V. RANDOM ACCESS (RA)

The Random Access benchmark computes pseudo-random
updates to a large distributed table T of 64-bit unsigned integer
values. As in STREAM, our distributed memory implementa-
tion uses Block1D distributions—one to distribute the set of
NU table updates represented using a domain named Updates,

and a second to distribute the table T and its corresponding
domain.

The core of the Chapel implementation can be summarized
by the following three lines of code:

forall (_, r) in (Updates, RAStream()) do
on T(r & indexMask) do

T(r & indexMask) ˆ=r;

As in STREAM, we use a parallel zippered iteration to express
the main computation but rather than traversing arrays, this
forall loop iterates over Updates and RAStream()—an iterator
defined elsewhere in the benchmark to generate the pseudo-
random stream of values. Each random value is referred to as r
for the purposes of the loop body while the values representing
the update indices are neither named nor used (as indicated
by the underscore).

Since the table location corresponding to r is increasingly
likely to be owned by a remote locale as the number of locales
grows, we use an on-clause to specify that the update should be
computed on the locale that owns the target table element. This
results in the creation of a remote task, passing it the value r,
and having it perform the update, after which it signals to the
main loop that it is done.

Though the above version of RA works in our current
implementation, the version of RA that we used for our timings
(and which appears in the appendices) uses a different on-
clause than the one above. In particular, our compiler does
not currently optimize the table access appearing within the
on-clause by realizing that it does not need to access the array
element in question, but only needs to determine the locale on
which it lives. As a result, today, the version above results in
an unnecessary remote communication in order to access that
value of T , only to drop it on the floor. To manually optimize
this away, we rewrite the on clause as follows in our entry:

on T.domain.dist.ind2loc(r & indexMask) do

This expression says “Access T ’s distribution and call its
index-to-locale mapping function to determine which locale
owns the index r & indexMask.” Once we implement
the optimization described above, we will be able to re-
place this with the simpler and more elegant reference to
T(r & indexMask).

As permitted by the benchmark, our RA implementation
contains races since two iterations of the loop could attempt to
update the same table location simultaneously, in which case
one could miss the other’s write. In practice, we never saw
this cause more than a handful of conflicts for any of our exe-
cutions. Our verification loop uses Chapel’s atomic statement
to indicate that each update should be implemented safely,
without conflicts. This feature is currently unimplemented,
suggesting that our verification loop is likely to increase the
number of errors due to races. We are currently working
with researchers at the University of Notre Dame and ORNL
to add software transactional memory (STM) mechanisms to
Chapel’s runtime libraries in support of its atomic blocks. This
will build on previous work we conducted with UIUC that

demonstrated the potential of supporting STM on distributed
memory architectures [1].

While the official benchmark also permits updates to be
batched to amortize the communication overheads, in this
entry, we have opted to take a pure update-at-a-time approach
for the sake of elegance and to see how far we can push the
performance of this implementation.

Our RA problem sizes are given in the following table:

RA Characteristic Chapel HPCC
number of tables 1 1
element size (in bytes) 8 8
per-locale problem size 219 227

number of updates per locale 221 229

per-locale memory required 0.0039 GB 1.00 GB
percent of available memory 0.05% 13.0%

We did not run the official problem size and number of updates
in Chapel due to the amount of time required to execute them.
We chose the problem size here due to the amount that we
estimated we would be able to run in time for this release’s
deadline. That said, we found that our results on a given
number of locales scaled fairly linearly as the problem size
and number of updates increased, which is not surprising since
the work in our implementation is not influenced by the table
size and should scale linearly with NU . In retrospect, it also
appears that we did not configure the reference HPCC version
correctly since we did not meet the 25% threshold.7

The following table gives our single-task, single-locale
performance results for RA:

RA Version Performance
HPCC Single 0.0105 GUPS
HPCC Star 0.0105 GUPS
HPCC MPI 0.0102 GUPS
Chapel ––local 0.0209 GUPS
Chapel 0.00099 GUPS

The HPCC Single, Star, and MPI entries are the standard
HPCC timings using the optimized Sandia algorithm. As in
our STREAM results, the Chapel ––local results represent
a compilation of the benchmark in which the compiler can
assume it will never be run on more than one locale. As can
be seen, this results in a very nice GUPS figure due to the fact
that the compiler can optimize away all of the on-clauses and
inter-locale communication that the implementation typically
assumes it will need. Running our multi-locale implementation
on a single locale results in a major performance hit due to the
overheads of spawning tasks, resulting in a GUPS figure that is
an order of magnitude worse than the HPCC implementation.
In future work, we will investigate the root causes of this
performance gap to see how much of it is due to our element-
by-element implementation versus our early support for multi-
locale parallelism.

7This may indicate something about the productivity of having your user
reverse engineer their desired 1D problem size based on the problem size of
an all-but-unrelated 2D benchmark.

The following graph shows our performance as we increase
the number of locales:

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

643216841
Number of Locales

RA Performance (in GUPS)

Chapel (1 task/locale)

We chose not to plot against the reference HPCC version
due to the different approaches taken and the difference in
magnitude between our results. We should also note that
these performance results are from our previous version of
the benchmark that was hard-coded to only execute a single
task per locale. In practice, the multiple task-per-locale imple-
mentation that we list in this report and include in our v0.8
release has resulted in improved GUPS performance over the
single-task version, but we were not able to get timings for
more than 16 locales in time for this release and so will report
on that version in a future draft of this paper.

As one would expect given our implementation, our GUPS
rate drops significantly as we move from one locale to two
since an ever-increasing fraction of the on clauses that had
been able to execute locally on a single locale must now create
tasks on remote locales. However, once we have taken that
performance hit, our execution scales linearly through the 64-
locale timings that we were able to run. At the time of this
writing, we have not had a chance to successfully get our 128-
and 256-locale executions through the queues.

While the performance gaps between the HPCC implemen-
tation and our implementation and between 1 locale and 2 are
large, we have had almost no time to investigate and optimize
the causes and are confident that improvements can be made.
Moreover, the fact that we are scaling linearly after taking
those hits is encouraging since large parallel machines are not
always used to get speedups compared to uniprocessor timings,
but also to run increasingly large data set sizes.

One variation on this year’s entry that we are exploring
uses a “fire and forget” approach in which remote tasks are
launched asynchronously using a begin statement, leaving the
forall loop free to start working on the next iteration. This
represents an interesting approach because it would be difficult
to write elegantly in MPI and other conventional parallel
programming models due to their reliance on a cooperating
executables model of parallelism. In Chapel, we would write
this as follows:

sync {
forall (_, r) in (Updates, RAStream()) do
on T(r & indexMask) do

begin T(r & indexMask) ˆ=r;
}

The sync statement ensures that all tasks created within its
dynamic scope using begin statements will have terminated be-
fore execution continues—in other words, that all the updates
are complete. Our current implementation of this approach
has a memory leak that prevents it from executing at large
problem sizes, so this version is currently an avenue for future
exploration.

As mentioned above, we are also exploring using multiple
tasks per locale—optionally oversubscribing the processor
cores—with the goal of keeping the processors busy and
hiding the network latency associated with firing off remote
tasks and waiting on them.

Due to the overheads of remote task spawning on con-
ventional architectures, we will also be exploring versions
of RA that batch their updates, as in the MPI reference
implementation, to see how the elegance and performance of
such versions in Chapel compares with MPI.

VI. FAST FOURIER TRANSFORM (FFT)

The FFT benchmark asks the programmer to compute a
1D discrete Fourier transform on a vector of pseudo-random
values. Our implementation uses a radix-4 algorithm in order
to take advantage of its improved Flops-to-memory operations
ratio. This affects the elegance of the code somewhat, but still
results in an implementation that is clearer to read than most
publicly-available C/Fortran implementations.

As described in our 2006 HPC Challenge entry, we believe
that the strengths of our FFT implementation are its clean
expression of the multiple levels of the parallelism in the
algorithm; its use of a generic butterfly routine to support
real or complex multipliers with a single source routine; and
its use of domain striding and vector slicing to express the
FFT’s access patterns in a concise yet readable way. Our FFT
implementation has changed in only minor ways since the
2006 competition:
• The main loop over the phases of the DFFT has been

cleaned up by pushing the logic that enumerates the pow-
ers of four defining the stride and span of the butterflies
into a user-defined iterator, genDFTStrideSpan().

• The almost-universally reviled “open interval” syntax in
which [0..n) served as sugar for the range 0 . . . n− 1
has been replaced with a more general and powerful
range operator, #, that specifies the number of values in
the range. As examples, “lo..#num” starts at lo and
counts num elements while “lo.. by str #num”
starts at lo and enumerates num elements stride by str.
This operator allowed us to simplify a number of range
arithmetic expressions in our original entry. For example,
the strided range example above would have appeared as
the less-clear “[0..num) * str + lo” in our 2006
entry.

• Rather than passing the radix-element vector slice into
butterfly() using an inout intent (intended to create
a local copy of the vector on the locale implementing
the butterfly), we now do an explicit copy to and from
the slice within the butterfly routine. We made change
in order to make the copy more explicit and avoid
the semantic question of whether or not a copy of a
distributed array slice should remain distributed or be
localized.

• Identifier names have generally been improved in hopes
of making the code more comprehensible.

The bulk of our work on FFT in recent months has been
focused on plugging memory leaks which have prevented it
from executing at the full problem size. Since implementation
on the Chapel compiler began, we have been overly cavalier
about failing to free compiler-allocated memory due to a
combination of competing priorities and our long-term plan to
address the issue via garbage collection. During the past year,
memory leaks have become a growing concern for us, both
due to their impact on the problem sizes we can run and their
impact on performance. While all of our HPCC benchmarks
suffered from memory leaks in 2006, FFT has required the
most effort due to its heavy use of array slice descriptors and
array copies within its inner loops, all of which were being
leaked.

In the weeks leading up to this release, we have been
able to get our compiler generating code that cleans up these
temporaries, permitting us to compile and run FFT at the
full problem size on a single locale for the first time. So
far, we have only had the chance to perform initial perfor-
mance comparisons against a C version of FFT on which
our implementation was based. Anecdotally, the performance
difference between the codes is around a factor of four. This
is encouraging given that the Chapel compiler currently does
nothing to optimize the general domains and arrays used
to implement its vector butterfly slices, all of which should
be amenable to a lighter-weight implementation given their
invariant nature and short lifetimes. That said, we recognize
that FFT is a challenging code to tune and anticipate that
additional work will be required when comparing against more
highly-optimized versions.

Our FFT implementation is currently unable to run on
multiple locales due to the fact that our Block1D distribution
is not yet mature enough to support the array slices used in the
benchmark. This should not require significant effort, but as
the HPC Challenge deadline approached, we decided to focus
most of our efforts on the scalability of STREAM and RA
rather than on the generalization of the Block1D distribution.

Our next steps with FFT are to tune the single-locale
performance, to finish the multi-locale implementation, and to
make our memory deallocation more robust. We also plan to
explore the use of redistributing the vector’s domain midway
through the FFT’s phases in order to guarantee that all of the
butterflies are local to a single locale when running on 2k

locales.

VII. HIGH PERFORMANCE LINPACK (HPL)

The HPL benchmark requires the user to solve a dense
LU factorization problem using pivoting. Our 2006 HPC
Challenge entry did not include an HPL implementation, and
this year’s entry marks our team’s first implementation of LU
written with an eye toward scalability and locality. The version
of the code in this paper compiles and executes correctly
with our current compiler, but has not yet been run on the
full problem size due to memory leaks, nor evaluated for
performance due to time constraints.

While we have approached this implementation with an eye
toward locality, it does not yet execute using multiple locales
due to its need for multidimensional block-cyclic and repli-
cated distributions. We have started the implementation of both
of these distributions in Chapel, but they are not yet mature
enough to support codes of HPL’s complexity. In spite of this,
as we have worked through the algorithm, we have mentally
anticipated the introduction of these distributions in order to
remain aware of which accesses will be local vs. remote.
Moreover, for key routines like schurComplement, we have
used Chapel’s local-statement to assert that communication
should not be required for the component dgemm operations.
By default, such assertions are checked at runtime, though the
checks may be turned off for production runs using a compiler
flag.

Our implementation benefits from Chapel’s support for mul-
tidimensional domains/arrays, array views, and domain/array
slicing. Our implementation particularly benefits from the
use of unbounded ranges and the #-operator, both of which
eliminate opportunities for introducing trivial errors in bounds
arithmetic when slicing into the distributed array+vector Ab.
While we anticipate a lot of work ahead of us to get HPL
running at competitive speeds, we believe that Chapel’s clean
implementation of HPL will simplify future changes to the
code and to the compiler’s analysis and optimization. We also
anticipate using HPL as a motivating case for our language
interoperability features in order to demonstrate a version
that will pass slices of our distributed block-cyclic array
into BLAS routines to take advantage of their highly-tuned
implementations on each platform. Over time, we plan to write
a tutorial-like document that walks through our HPL code in
detail as we have done previously for STREAM, RA, and FFT.

Our current implementation of HPL is very synchronous in
that it performs the various stages of the algorithm sequen-
tially, one after the other. Once we get this version executing
competitively with an equivalent hand-coded version, we plan
to explore a more asynchronous/dataflow-based implementa-
tion using Chapel’s begin statements and synchronization vari-
ables to execute stages of the algorithm in parallel, pipelining
the computation to avoid well-known bottlenecks in step-by-
step implementations like ours. We realize that HPL is a well-
studied benchmark and invite comments from experienced
HPL programmers as to how we might improve our code for
efficiency and clarity.

VIII. SUMMARY AND FUTURE WORK

As stated at the outset, we have written this report to serve
as an opportunity for the parallel programming community to
peek over our shoulders by providing a snapshot of our current
status with Chapel. This report makes it clear that Chapel is
not yet ready for prime-time, yet we never intended for that
to be our thesis this year. Rather, we are encouraged by the
milestones that we have achieved since submitting our single-
threaded, single-locale, memory-hogging implementations of
STREAM, RA, and FFT in 2006. Moreover, we wish to
point out how similar this year’s entries are to their 2006
counterparts which were written with (eventual) large-scale
parallel execution in mind.

We think it’s worth repeating that the experimental results
in this paper are based on a distributed array capability that is
scarcely a month old, using a distribution written in Chapel,
and without embedding any knowledge of block distributions
into our compiler or runtime libraries. In the weeks leading
up to this release, we came up with more ideas for new
optimizations to our initial implementation than we had the
time to pursue, and our inability to implement more than a
handful of them in time for this deadline was a frequent but
pleasant source of frustration.

We clearly have our work cut out for us before next
year’s competition. At this point, we anticipate focusing our
efforts on performance optimizations, particularly in the area
of automated locality inference and optimization. While we
have made great strides in terms of memory leaks, HPL makes
it clear that we still have more work ahead of us before the
compiler can be considered a good steward of system memory.
We also plan to build on our distribution story by fleshing out
the missing capabilities for the Block1D distribution and by
adding support for other standard distributions such as multi-
dimensional Block, Block-Cyclic, and Replicated distributions
using the same interface and mechanisms that we have for
Block1D.

Though some amount of the coming year will be focused
on improving the performance of the HPCC benchmarks,
we also expect to spend a fair amount of time looking
at more advanced computations, such as those that make
greater use of dynamic and task-based parallelism; and those
that use hierarchical, sparse, and unstructured data structures.
We invite members of the community with favorite parallel
coding challenges to contact us and explore how they might
be expressed, implemented, and optimized in Chapel as our
compiler continues to mature.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge our
former team members, Mary Beth Hribar and Wayne A. Wong,
who were instrumental in developing the original versions of
these benchmarks for the 2006 HPC Challenge competition.
We’d also like to thank John Lewis and Adrian Tate for their
linear algebra expertise which enabled us to create our first
reasonable version of HPL in Chapel. Thanks also to Paul
Casella, Eric Jones, Mike Karo, and Steve Whalen for their

role in helping us get our experimental results up and running
in short order. Finally, we want to thank all of Chapel’s past
contributors and early users for helping us reach this stage.

REFERENCES

[1] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain.
Software transactional memory for large scale clusters. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 247–258, New York, NY, USA,
2008. ACM.

[2] Dan Bonachea. GASNet specification, v1.1. Technical Report CSD-02-
1207, University of California – Berkeley, Berkeley, CA, October 2002.

[3] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel
programmability and the Chapel language. International Journal of High
Performance Computing Applications, 21(3):291–312, August 2007.

APPENDIX A
STREAM TRIAD IN CHAPEL

1 //
2 // Use standard modules for Block distributions, Timing routines, Type
3 // utility functions, and Random numbers
4 //
5 use BlockDist, Time, Types, Random;

7 //
8 // Use shared user module for computing HPCC problem sizes
9 //

10 use HPCCProblemSize;

12 //
13 // The number of vectors and element type of those vectors
14 //
15 const numVectors = 3;
16 type elemType = real(64);

18 //
19 // Configuration constants to set the problem size (m) and the scalar
20 // multiplier, alpha
21 //
22 config const m = computeProblemSize(numVectors, elemType),
23 alpha = 3.0;

25 //
26 // Configuration constants to set the number of trials to run and the
27 // amount of error to permit in the verification
28 //
29 config const numTrials = 10,
30 epsilon = 0.0;

32 //
33 // The number of tasks to use per Chapel locale
34 //
35 config const tasksPerLocale = min reduce Locales.numCores;

37 //
38 // Configuration constants to indicate whether or not to use a
39 // pseudo-random seed (based on the clock) or a fixed seed; and to
40 // specify the fixed seed explicitly
41 //
42 config const useRandomSeed = true,
43 seed = if useRandomSeed then SeedGenerator.clockMS else 314159265;

45 //
46 // Configuration constants to control what’s printed -- benchmark
47 // parameters, input and output arrays, and/or statistics
48 //
49 config const printParams = true,
50 printArrays = false,
51 printStats = true;

53 //
54 // The program entry point
55 //
56 def main() {
57 printConfiguration(); // print the problem size, number of trials, etc.

59 //
60 // BlockDist is a 1D block distribution that is computed by blocking
61 // the bounding box 1..m across the set of locales
62 //
63 const BlockDist = new Block1D(bbox=[1..m], tasksPerLocale=tasksPerLocale);

65 //
66 // ProblemSpace describes the index set for the three vectors. It
67 // is a 1D domain storing 64-bit ints and is distributed according
68 // to BlockDist. It contains the indices 1..m.
69 //
70 const ProblemSpace: domain(1, int(64)) distributed BlockDist = [1..m];

72 //
73 // A, B, and C are the three distributed vectors, declared to store
74 // a variable of type elemType for each index in ProblemSpace.
75 //
76 var A, B, C: [ProblemSpace] elemType;

78 initVectors(B, C); // Initialize the input vectors, B and C

80 var execTime: [1..numTrials] real; // an array of timings

82 for trial in 1..numTrials { // loop over the trials
83 const startTime = getCurrentTime(); // capture the start time

85 //
86 // The main loop: Iterate over the vectors A, B, and C in a
87 // parallel, zippered manner storing the elements as a, b, and c.
88 // Compute the multiply-add on b and c, storing the result to a.
89 //
90 forall (a, b, c) in (A, B, C) do
91 a = b + alpha * c;

93 execTime(trial) = getCurrentTime() - startTime; // store the elapsed time
94 }

96 const validAnswer = verifyResults(A, B, C); // verify...
97 printResults(validAnswer, execTime); // ...and print the results
98 }

100 //
101 // Print the problem size and number of trials
102 //
103 def printConfiguration() {
104 if (printParams) {
105 if (printStats) then printLocalesTasks(tasksPerLocale);
106 printProblemSize(elemType, numVectors, m);

107 writeln("Number of trials = ", numTrials, "\n");
108 }
109 }

111 //
112 // Initialize vectors B and C using a random stream of values and
113 // optionally print them to the console
114 //
115 def initVectors(B, C) {
116 var randlist = new RandomStream(seed);

118 randlist.fillRandom(B);
119 randlist.fillRandom(C);

121 if (printArrays) {
122 writeln("B is: ", B, "\n");
123 writeln("C is: ", C, "\n");
124 }
125 }

127 //
128 // Verify that the computation is correct
129 //
130 def verifyResults(A, B, C) {
131 if (printArrays) then writeln("A is: ", A, "\n"); // optionally print A

133 //
134 // recompute the computation, destructively storing into B to save space
135 //
136 forall (b, c) in (B, C) do
137 b += alpha *c;

139 if (printArrays) then writeln("A-hat is: ", B, "\n"); // and A-hat too

141 //
142 // Compute the infinity-norm by computing the maximum reduction of the
143 // absolute value of A’s elements minus the new result computed in B.
144 // "[i in I]" represents an expression-level loop: "forall i in I"
145 //
146 const infNorm = max reduce [(a,b) in (A,B)] abs(a - b);

148 return (infNorm <= epsilon); // return whether the error is acceptable
149 }

151 //
152 // Print out success/failure, the timings, and the GB/s value
153 //
154 def printResults(successful, execTimes) {
155 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
156 if (printStats) {
157 const totalTime = + reduce execTimes,
158 avgTime = totalTime / numTrials,
159 minTime = min reduce execTimes;
160 writeln("Execution time:");
161 writeln(" tot = ", totalTime);
162 writeln(" avg = ", avgTime);
163 writeln(" min = ", minTime);

165 const GBPerSec = numVectors * numBytes(elemType) * (m / minTime) * 1e-9;
166 writeln("Performance (GB/s) = ", GBPerSec);
167 }
168 }

APPENDIX B
RANDOM ACCESS IN CHAPEL

A. Random Access: Benchmark Module
1 //
2 // Use standard modules for Block distributions and Timing routines
3 //
4 use BlockDist, Time;

6 //
7 // Use the user modules for computing HPCC problem sizes and for
8 // defining RA’s random stream of values
9 //

10 use HPCCProblemSize, RARandomStream;

12 //
13 // The number of tables as well as the element and index types of
14 // that table
15 //
16 const numTables = 1;
17 type elemType = randType,
18 indexType = randType;

20 //
21 // Configuration constants defining log2(problem size) -- n -- and
22 // the number of updates -- N_U
23 //
24 config const n = computeProblemSize(numTables, elemType,
25 returnLog2=true, retType=indexType),
26 N_U = 2**(n+2);

28 //
29 // Constants defining the problem size (m) and a bit mask for table
30 // indexing
31 //
32 const m = 2**n,
33 indexMask = m-1;

35 //
36 // Configuration constant defining the number of errors to allow (as a
37 // fraction of the number of updates, N_U)
38 //
39 config const errorTolerance = 1e-2;

41 //
42 // The number of tasks to use per Chapel locale
43 //
44 config const tasksPerLocale = min reduce Locales.numCores;

46 //
47 // Configuration constants to control what’s printed -- benchmark
48 // parameters, input and output arrays, and/or statistics
49 //
50 config const printParams = true,
51 printArrays = false,
52 printStats = true;

54 //
55 // TableDist is a 1D block distribution for domains storing indices
56 // of type "indexType", and it is computed by blocking the bounding
57 // box 0..m-1 across the set of locales. UpdateDist is a similar
58 // distribution that is computed by blocking the indices 0..N_U-1
59 // across the locales.
60 //
61 const TableDist = new Block1D(indexType, bbox=[0..m-1],
62 tasksPerLocale=tasksPerLocale),
63 UpdateDist = new Block1D(indexType, bbox=[0..N_U-1],
64 tasksPerLocale=tasksPerLocale);

66 //
67 // TableSpace describes the index set for the table. It is a 1D
68 // domain storing indices of type indexType, it is distributed
69 // according to TableDist, and it contains the indices 0..m-1.
70 // Updates is an index set describing the set of updates to be made.
71 // It is distributed according to UpdateDist and contains the
72 // indices 0..N_U-1.
73 //
74 const TableSpace: domain(1, indexType) distributed TableDist = [0..m-1],
75 Updates: domain(1, indexType) distributed UpdateDist = [0..N_U-1];

77 //
78 // T is the distributed table itself, storing a variable of type
79 // elemType for each index in TableSpace.
80 //
81 var T: [TableSpace] elemType;

83 //
84 // The program entry point
85 //
86 def main() {
87 printConfiguration(); // print the problem size, number of trials, etc.

89 //
90 // In parallel, initialize the table such that each position
91 // contains its index. "[i in TableSpace]" is shorthand for "forall
92 // i in TableSpace"
93 //
94 [i in TableSpace] T(i) = i;

96 const startTime = getCurrentTime(); // capture the start time

98 //
99 // The main computation: Iterate over the set of updates and the

100 // stream of random values in a parallel, zippered manner, dropping
101 // the update index on the ground ("_") and storing the random value
102 // in r. Use an on-clause to force the table update to be executed on
103 // the locale which owns the table element in question to minimize
104 // communications. Compute the update using r both to compute the

105 // index and as the update value.
106 //
107 forall (_, r) in (Updates, RAStream()) do
108 on T.domain.dist.ind2loc(r & indexMask) do
109 T(r & indexMask) ˆ= r;

111 const execTime = getCurrentTime() - startTime; // capture the elapsed time

113 const validAnswer = verifyResults(); // verify the updates
114 printResults(validAnswer, execTime); // print the results
115 }

117 //
118 // Print the problem size and number of updates
119 //
120 def printConfiguration() {
121 if (printParams) {
122 if (printStats) then printLocalesTasks(tasksPerLocale);
123 printProblemSize(elemType, numTables, m);
124 writeln("Number of updates = ", N_U, "\n");
125 }
126 }

128 //
129 // Verify that the computation is correct
130 //
131 def verifyResults() {
132 //
133 // Print the table, if requested
134 //
135 if (printArrays) then writeln("After updates, T is: ", T, "\n");

137 //
138 // Reverse the updates by recomputing them, this time using an
139 // atomic statement to ensure no conflicting updates
140 //
141 forall (_, r) in (Updates, RAStream()) do
142 on T.domain.dist.ind2loc(r & indexMask) do
143 atomic T(r & indexMask) ˆ= r;

145 //
146 // Print the table again after the updates have been reversed
147 //
148 if (printArrays) then writeln("After verification, T is: ", T, "\n");

150 //
151 // Compute the number of table positions that weren’t reverted
152 // correctly. This is an indication of the number of conflicting
153 // updates.
154 //
155 const numErrors = + reduce [i in TableSpace] (T(i) != i);
156 if (printStats) then writeln("Number of errors is: ", numErrors, "\n");

158 //
159 // Return whether or not the number of errors was within the benchmark’s
160 // tolerance.
161 //
162 return numErrors <= (errorTolerance * N_U);
163 }

165 //
166 // Print out success/failure, the execution time, and the GUPS value
167 //
168 def printResults(successful, execTime) {
169 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
170 if (printStats) {
171 writeln("Execution time = ", execTime);
172 writeln("Performance (GUPS) = ", (N_U / execTime) * 1e-9);
173 }
174 }

B. Random Access: Random Value Generation Module

1 //
2 // A helper module for the RA benchmark that defines the random stream
3 // of values
4 //
5 module RARandomStream {
6 param randWidth = 64; // the bit-width of the random numbers
7 type randType = uint(randWidth); // the type of the random numbers

9 //
10 // bitDom is a non-distributed domain whose indices correspond to
11 // the bit positions in the random values. m2 is a table of helper
12 // values used to fast-forward through the random stream.
13 //
14 const bitDom = [0..#randWidth],
15 m2: [bitDom] randType = computeM2Vals(randWidth);

17 //
18 // A serial iterator for the random stream that resets the stream
19 // to its 0th element and yields values endlessly.
20 //
21 def RAStream() {
22 var val = getNthRandom(0);
23 while (1) {
24 getNextRandom(val);
25 yield val;
26 }
27 }

29 //
30 // A "follower" iterator for the random stream that takes a range of
31 // 0-based indices (follower) and yields the pseudo-random values
32 // corresponding to those indices. Follower iterators like these
33 // are required for parallel zippered iteration.
34 //
35 def RAStream(param tag: iterator, follower) where tag == iterator.follower {
36 var val = getNthRandom(follower.low);

37 for follower {
38 getNextRandom(val);
39 yield val;
40 }
41 }

43 //
44 // A helper function for "fast-forwarding" the random stream to
45 // position n in O(log2(n)) time
46 //
47 def getNthRandom(in n: uint(64)) {
48 param period = 0x7fffffffffffffff/7;

50 n %= period;
51 if (n == 0) then return 0x1;
52 var ran: randType = 0x2;
53 for i in 0..log2(n)-1 by -1 {
54 var val: randType = 0;
55 for j in bitDom do
56 if ((ran >> j) & 1) then val ˆ= m2(j);
57 ran = val;
58 if ((n >> i) & 1) then getNextRandom(ran);
59 }
60 return ran;
61 }

63 //
64 // A helper function for advancing a value from the random stream,
65 // x, to the next value
66 //
67 def getNextRandom(inout x) {
68 param POLY = 0x7;
69 param hiRandBit = 0x1:randType << (randWidth-1);

71 x = (x << 1) ˆ (if (x & hiRandBit) then POLY else 0);
72 }

74 //
75 // A helper function for computing the values of the helper array,
76 // m2
77 //
78 def computeM2Vals(numVals) {
79 var nextVal = 0x1: randType;
80 for i in 1..numVals {
81 yield nextVal;
82 getNextRandom(nextVal);
83 getNextRandom(nextVal);
84 }
85 }
86 }

APPENDIX C
FFT IN CHAPEL

1 //
2 // Use standard modules for Bit operations, Random numbers, and Timing
3 //
4 use BitOps, Random, Time;

6 //
7 // Use shared user module for computing HPCC problem sizes
8 //
9 use HPCCProblemSize;

11 const radix = 4; // the radix of this FFT implementation

13 const numVectors = 2; // the number of vectors to be stored
14 type elemType = complex(128); // the element type of the vectors

16 //
17 // A configuration constant defining log2(problem size) -- n -- and a
18 // constant defining the problem size itself -- m
19 //
20 config const n = computeProblemSize(numVectors, elemType, returnLog2 = true);
21 const m = 2**n;

23 //
24 // Configuration constants defining the epsilon and threshold values
25 // used to verify the result
26 //
27 config const epsilon = 2.0 ** -51.0,
28 threshold = 16.0;

30 //
31 // Configuration constants to indicate whether or not to use a
32 // pseudo-random seed (based on the clock) or a fixed seed; and to
33 // specify the fixed seed explicitly
34 //
35 config const useRandomSeed = true,
36 seed = if useRandomSeed then SeedGenerator.clockMS else 314159265;

38 //
39 // Configuration constants to control what’s printed -- benchmark
40 // parameters, input and output arrays, and/or statistics
41 //
42 config const printParams = true,
43 printArrays = false,
44 printStats = true;

46 //
47 // The program entry point
48 //
49 def main() {
50 printConfiguration(); // print the problem size

52 //
53 // TwiddleDom describes the index set used to define the vector of
54 // twiddle values and is a 1D domain indexed by 64-bit ints from 0
55 // to m/4-1. Twiddles is the vector of twiddle values.
56 //
57 const TwiddleDom: domain(1, int(64)) = [0..m/4-1];
58 var Twiddles: [TwiddleDom] elemType;

60 //
61 // ProblemDom describes the index set used to define the input and
62 // output vectors and is also a 1D domain indexed by 64-bit ints
63 // from 0 to m-1. Z and z are the vectors themselves
64 //
65 const ProblemDom: domain(1, int(64)) = [0..m-1];
66 var Z, z: [ProblemDom] elemType;

68 initVectors(Twiddles, z); // initialize twiddles and input vector z

70 const startTime = getCurrentTime(); // capture the start time

72 Z = conjg(z); // store the conjugate of z in Z
73 bitReverseShuffle(Z); // permute Z
74 dfft(Z, Twiddles); // compute the discrete Fourier transform

76 const execTime = getCurrentTime() - startTime; // store the elapsed time

78 const validAnswer = verifyResults(z, Z, Twiddles); // validate the answer
79 printResults(validAnswer, execTime); // print the results
80 }

82 //
83 // compute the discrete fast Fourier transform of a vector A declared
84 // over domain ADom using twiddle vector W
85 //
86 def dfft(A: [?ADom], W) {
87 const numElements = A.numElements;

89 //
90 // loop over the phases of the DFT sequentially using custom
91 // iterator genDFTStrideSpan that yields the stride and span for
92 // each bank of butterfly calculations
93 //
94 for (str, span) in genDFTStrideSpan(numElements) {
95 //
96 // loop in parallel over each of the banks of butterflies with
97 // shared twiddle factors, zippering with the unbounded range
98 // 0.. to get the base twiddle indices
99 //

100 forall (bankStart, twidIndex) in (ADom by 2*span, 0..) {
101 //
102 // compute the first set of multipliers for the low bank
103 //
104 var wk2 = W(twidIndex),
105 wk1 = W(2*twidIndex),
106 wk3 = (wk1.re - 2 * wk2.im * wk1.im,

107 2 * wk2.im * wk1.re - wk1.im):elemType;

109 //
110 // loop in parallel over the low bank, computing butterflies
111 // Note: lo..#num == lo, lo+1, lo+2, ..., lo+num-1
112 // lo.. by str #num == lo, lo+str, lo+2*str, ... lo+(num-1)*str
113 //
114 forall lo in bankStart..#str do
115 butterfly(wk1, wk2, wk3, A[lo.. by str #radix]);

117 //
118 // update the multipliers for the high bank
119 //
120 wk1 = W(2*twidIndex+1);
121 wk3 = (wk1.re - 2 * wk2.re * wk1.im,
122 2 * wk2.re * wk1.re - wk1.im):elemType;
123 wk2 *= 1.0i;

125 //
126 // loop in parallel over the high bank, computing butterflies
127 //
128 forall lo in bankStart+span..#str do
129 butterfly(wk1, wk2, wk3, A[lo.. by str #radix]);
130 }
131 }

133 //
134 // Do the last set of butterflies...
135 //
136 const str = radix**log4(numElements-1);
137 //
138 // ...using the radix-4 butterflies with 1.0 multipliers if the
139 // problem size is a power of 4
140 //
141 if (str*radix == numElements) then
142 forall lo in 0..#str do
143 butterfly(1.0, 1.0, 1.0, A[lo.. by str #radix]);
144 //
145 // ...otherwise using a simple radix-2 butterfly scheme
146 //
147 else
148 forall lo in 0..#str {
149 const a = A(lo),
150 b = A(lo+str);
151 A(lo) = a + b;
152 A(lo+str) = a - b;
153 }
154 }

156 //
157 // this is the radix-4 butterfly routine that takes multipliers wk1,
158 // wk2, and wk3 and a 4-element array (slice) A.
159 //
160 def butterfly(wk1, wk2, wk3, A) {
161 var X: [0..#radix] elemType = A; // make a local copy of A on this locale
162 var x0 = X(0) + X(1),
163 x1 = X(0) - X(1),
164 x2 = X(2) + X(3),
165 x3rot = (X(2) - X(3))*1.0i;

167 X(0) = x0 + x2; // compute the butterfly in-place on X
168 x0 -= x2;
169 X(2) = wk2 * x0;
170 x0 = x1 + x3rot;
171 X(1) = wk1 * x0;
172 x0 = x1 - x3rot;
173 X(3) = wk3 * x0;

175 A = X; // copy the result back into A
176 }

178 //
179 // this iterator generates the stride and span values for the phases
180 // of the DFFT simply by yielding tuples: (radix**i, radix**(i+1))
181 //
182 def genDFTStrideSpan(numElements) {
183 var stride = 1;
184 for 1..log4(numElements-1) {
185 const span = stride * radix;
186 yield (stride, span);
187 stride = span;
188 }
189 }

191 //
192 // Print the problem size
193 //
194 def printConfiguration() {
195 if (printParams) {
196 if (printStats) then printLocalesTasks(tasksPerLocale=1);
197 printProblemSize(elemType, numVectors, m);
198 }
199 }

201 //
202 // Initialize the twiddle vector and random input vector and
203 // optionally print them to the console
204 //
205 def initVectors(Twiddles, z) {
206 computeTwiddles(Twiddles);
207 bitReverseShuffle(Twiddles);

209 fillRandom(z, seed);

211 if (printArrays) {
212 writeln("After initialization, Twiddles is: ", Twiddles, "\n");
213 writeln("z is: ", z, "\n");
214 }
215 }

217 //

218 // Compute the twiddle vector values
219 //
220 def computeTwiddles(Twiddles) {
221 const numTwdls = Twiddles.numElements,
222 delta = 2.0 * atan(1.0) / numTwdls;

224 Twiddles(0) = 1.0;
225 Twiddles(numTwdls/2) = let x = cos(delta * numTwdls/2)
226 in (x, x): elemType;
227 forall i in 1..numTwdls/2-1 {
228 const x = cos(delta*i),
229 y = sin(delta*i);
230 Twiddles(i) = (x, y): elemType;
231 Twiddles(numTwdls - i) = (y, x): elemType;
232 }
233 }

235 //
236 // Perform a permutation of the argument vector by reversing the bits
237 // of the indices
238 //
239 def bitReverseShuffle(Vect: [?Dom]) {
240 const numBits = log2(Vect.numElements),
241 Perm: [i in Dom] Vect.eltType = Vect(bitReverse(i, revBits=numBits));
242 Vect = Perm;
243 }

245 //
246 // Reverse the low revBits bits of val
247 //
248 def bitReverse(val: ?valType, revBits = 64) {
249 param mask = 0x0102040810204080;
250 const valReverse64 = bitMatMultOr(mask, bitMatMultOr(val:uint(64), mask)),
251 valReverse = bitRotLeft(valReverse64, revBits);
252 return valReverse: valType;
253 }

255 //
256 // Compute the log base 4 of x
257 //
258 def log4(x) return logBasePow2(x, 2);

260 //
261 // verify that the results are correct by reapplying the dfft and then
262 // calculating the maximum error, comparing against epsilon
263 //
264 def verifyResults(z, Z, Twiddles) {
265 if (printArrays) then writeln("After FFT, Z is: ", Z, "\n");

267 Z = conjg(Z) / m;
268 bitReverseShuffle(Z);
269 dfft(Z, Twiddles);

271 if (printArrays) then writeln("After inverse FFT, Z is: ", Z, "\n");

273 var maxerr = max reduce sqrt((z.re - Z.re)**2 + (z.im - Z.im)**2);
274 maxerr /= (epsilon * n);
275 if (printStats) then writeln("error = ", maxerr);

277 return (maxerr < threshold);
278 }

280 //
281 // print out sucess/failure, the timing, and the Gflop/s value
282 //
283 def printResults(successful, execTime) {
284 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
285 if (printStats) {
286 writeln("Execution time = ", execTime);
287 writeln("Performance (Gflop/s) = ", 5 * (m * n / execTime) * 1e-9);
288 }
289 }

APPENDIX D
HPL IN CHAPEL

1 //
2 // Use standard modules for vector and matrix Norms, Random numbers
3 // and Timing routines
4 //
5 use Norm, Random, Time;

7 //
8 // Use the user module for computing HPCC problem sizes
9 //

10 use HPCCProblemSize;

12 //
13 // The number of matrices and the element type of those matrices
14 //
15 const numMatrices = 1;
16 type indexType = int,
17 elemType = real;

19 //
20 // Configuration constants indicating the problem size (n) and the
21 // block size (blkSize)
22 //
23 config const n = computeProblemSize(numMatrices, elemType, rank=2,
24 memFraction=2, retType=indexType),
25 blkSize = 5;

27 //
28 // Configuration constant used for verification thresholds
29 //
30 config const epsilon = 2.0e-15;

32 //
33 // Configuration constants to indicate whether or not to use a
34 // pseudo-random seed (based on the clock) or a fixed seed; and to
35 // specify the fixed seed explicitly
36 //
37 config const useRandomSeed = true,
38 seed = if useRandomSeed then SeedGenerator.clockMS else 31415;

40 //
41 // Configuration constants to control what’s printed -- benchmark
42 // parameters, input and output arrays, and/or statistics
43 //
44 config const printParams = true,
45 printArrays = false,
46 printStats = true;

48 //
49 // The program entry point
50 //
51 def main() {
52 printConfiguration();

54 //
55 // MatVectSpace is a 2D domain of type indexType that represents the
56 // n x n matrix adjacent to the column vector b. MatrixSpace is a
57 // subdomain that is created by slicing into MatVectSpace,
58 // inheriting all of its rows and its low column bound. As our
59 // standard distribution library is filled out, MatVectSpace will be
60 // distributed using a BlockCyclic(blkSize) distribution.
61 //
62 const MatVectSpace: domain(2, indexType) = [1..n, 1..n+1],
63 MatrixSpace = MatVectSpace[.., ..n];

65 var Ab : [MatVectSpace] elemType, // the matrix A and vector b
66 piv: [1..n] indexType, // a vector of pivot values
67 x : [1..n] elemType; // the solution vector, x

69 var A => Ab[MatrixSpace], // an alias for the Matrix part of Ab
70 b => Ab[.., n+1]; // an alias for the last column of Ab

72 initAB(Ab);

74 const startTime = getCurrentTime(); // capture the start time

76 LUFactorize(n, Ab, piv); // compute the LU factorization

78 x = backwardSub(n, A, b); // perform the back substitution

80 const execTime = getCurrentTime() - startTime; // store the elapsed time

82 //
83 // Validate the answer and print the results
84 const validAnswer = verifyResults(Ab, MatrixSpace, x);
85 printResults(validAnswer, execTime);
86 }

88 //
89 // blocked LU factorization with pivoting for matrix augmented with
90 // vector of RHS values.
91 //
92 def LUFactorize(n: indexType, Ab: [1..n, 1..n+1] elemType,
93 piv: [1..n] indexType) {
94 const AbD = Ab.domain; // alias Ab.domain to save typing

96 // Initialize the pivot vector to represent the initially unpivoted matrix.
97 piv = 1..n;

99 /* The following diagram illustrates how we partition the matrix.
100 Each iteration of the loop increments a variable blk by blkSize;
101 point (blk, blk) is the upper-left location of the currently
102 unfactored matrix (the dotted region represents the areas
103 factored in prior iterations). The unfactored matrix is
104 partioned into four subdomains: tl, tr, bl, and br, and an
105 additional domain (not shown), l, that is the union of tl and bl.

107 (point blk, blk)
108 +-------//------------------+
109 |......//...................|
110 |.....//....................|
111 |....+-----+----------------|
112 |....| | |
113 |....| tl | tr |
114 |....| | |
115 |....+-----+----------------|
116 |....| | |
117 |....| | |
118 |....| bl | br |
119 |....| | |
120 |....| | |
121 +----+-----+----------------+
122 */
123 for blk in 1..n by blkSize {
124 const tl = AbD[blk..#blkSize, blk..#blkSize],
125 tr = AbD[blk..#blkSize, blk+blkSize..],
126 bl = AbD[blk+blkSize.., blk..#blkSize],
127 br = AbD[blk+blkSize.., blk+blkSize..],
128 l = AbD[blk.., blk..#blkSize];

130 //
131 // Now that we’ve sliced and diced Ab properly, do the blocked-LU
132 // computation:
133 //
134 panelSolve(Ab, l, piv);
135 if (tr.numIndices > 0) then
136 updateBlockRow(Ab, tl, tr);

138 //
139 // update trailing submatrix (if any)
140 //
141 if (br.numIndices > 0) then
142 schurComplement(Ab, blk);
143 }
144 }

146 //
147 // Distributed matrix-multiply for HPL. The idea behind this algorithm is that
148 // some point the matrix will be partioned as shown in the following diagram:
149 //
150 // [1]----+-----+-----+-----+
151 // | |bbbbb|bbbbb|bbbbb| Solve for the dotted region by
152 // | |bbbbb|bbbbb|bbbbb| multiplying the ’a’ and ’b’ region.
153 // | |bbbbb|bbbbb|bbbbb| The ’a’ region is a block column, the
154 // +----[2]----+-----+-----+ ’b’ region is a block row.
155 // |aaaaa|.....|.....|.....|
156 // |aaaaa|.....|.....|.....| The vertex labeled [1] is location
157 // |aaaaa|.....|.....|.....| (ptOp, ptOp) in the code below.
158 // +-----+-----+-----+-----+
159 // |aaaaa|.....|.....|.....| The vertex labeled [2] is location
160 // |aaaaa|.....|.....|.....| (ptSol, ptSol)
161 // |aaaaa|.....|.....|.....|
162 // +-----+-----+-----+-----+
163 //
164 // Every locale with a block of data in the dotted region updates
165 // itself by multiplying the neighboring a-region block to its left
166 // with the neighboring b-region block above it and subtracting its
167 // current data from the result of this multiplication. To ensure that
168 // all locales have local copies of the data needed to perform this
169 // multiplication we copy the data A and B data into the replA and
170 // replB arrays, which will use a dimensional (block-cyclic,
171 // replicated-block) distribution (or vice-versa) to ensure that every
172 // locale only stores one copy of each block it requires for all of
173 // its rows/columns.
174 //
175 def schurComplement(Ab: [1..n, 1..n+1] elemType, ptOp: indexType) {
176 const AbD = Ab.domain;

178 //
179 // Calculate location of ptSol (see diagram above)
180 //
181 const ptSol = ptOp+blkSize;

183 //
184 // Copy data into replicated array so every processor has a local copy
185 // of the data it will need to perform a local matrix-multiply. These
186 // replicated distributions aren’t implemented yet, but imagine that
187 // they look something like the following:
188 //
189 //var replAbD: domain(2)
190 // distributed new Dimensional(BlkCyc(blkSize), Replicated))
191 // = AbD[ptSol.., 1..#blkSize];
192 //
193 const replAD: domain(2) = AbD[ptSol.., ptOp..#blkSize],
194 replBD: domain(2) = AbD[ptOp..#blkSize, ptSol..];

196 const replA : [replAD] elemType = Ab[ptSol.., ptOp..#blkSize],
197 replB : [replBD] elemType = Ab[ptOp..#blkSize, ptSol..];

199 // do local matrix-multiply on a block-by-block basis
200 forall (row,col) in AbD[ptSol.., ptSol..] by (blkSize, blkSize) {
201 //
202 // At this point, the dgemms should all be local, so assert that
203 // fact
204 //
205 local {
206 const aBlkD = replAD[row..#blkSize, ptOp..#blkSize],
207 bBlkD = replBD[ptOp..#blkSize, col..#blkSize],
208 cBlkD = AbD[row..#blkSize, col..#blkSize];

210 dgemm(aBlkD.dim(1).length,
211 aBlkD.dim(2).length,
212 bBlkD.dim(2).length,
213 replA(aBlkD),
214 replB(bBlkD),
215 Ab(cBlkD));
216 }
217 }

218 }

220 //
221 // calculate C = C - A * B.
222 //
223 def dgemm(p: indexType, // number of rows in A
224 q: indexType, // number of cols in A, number of rows in B
225 r: indexType, // number of cols in B
226 A: [1..p, 1..q] ?t,
227 B: [1..q, 1..r] t,
228 C: [1..p, 1..r] t) {
229 // Calculate (i,j) using a dot product of a row of A and a column of B.
230 for i in 1..p do
231 for j in 1..r do
232 for k in 1..q do
233 C[i,j] -= A[i, k] * B[k, j];
234 }

236 //
237 // do unblocked-LU decomposition within the specified panel, update the
238 // pivot vector accordingly
239 //
240 def panelSolve(Ab: [] ?t,
241 panel: domain(2, indexType),
242 piv: [] indexType) {
243 const pnlRows = panel.dim(1),
244 pnlCols = panel.dim(2);

246 //
247 // Ideally some type of assertion to ensure panel is embedded in Ab’s
248 // domain
249 //
250 assert(piv.domain.dim(1) == Ab.domain.dim(1));

252 if (pnlCols.length == 0) then return;

254 for k in pnlCols { // iterate through the columns
255 var col = panel[k.., k..k];

257 // If there are no rows below the current column return
258 if col.dim(1).length == 0 then return;

260 // Find the pivot, the element with the largest absolute value.
261 const (_, (pivotRow, _)) = maxloc reduce(abs(Ab(col)), col),
262 pivot = Ab[pivotRow, k];

264 // Swap the current row with the pivot row
265 piv[k] <=> piv[pivotRow];

267 Ab[k, ..] <=> Ab[pivotRow, ..];

269 if (pivot == 0) then
270 halt("Matrix can not be factorized");

272 // divide all values below and in the same col as the pivot by
273 // the pivot
274 if k+1 <= pnlRows.high then
275 Ab(col)[k+1.., k..k] /= pivot;

277 // update all other values below the pivot
278 if k+1 <= pnlRows.high && k+1 <= pnlCols.high then
279 forall (i,j) in panel[k+1.., k+1..] do
280 Ab[i,j] -= Ab[i,k] * Ab[k,j];
281 }
282 }

284 //
285 // Update the block row (tr for top-right) portion of the matrix in a
286 // blocked LU decomposition. Each step of the LU decomposition will
287 // solve a block (tl for top-left) portion of a matrix. This function
288 // solves the rows to the right of the block.
289 //
290 def updateBlockRow(Ab: [] ?t, tl: domain(2), tr: domain(2)) {
291 const tlRows = tl.dim(1),
292 tlCols = tl.dim(2),
293 trRows = tr.dim(1),
294 trCols = tr.dim(2);

296 assert(tlCols == trRows);

298 //
299 // Ultimately, we will probably want to do some replication of the
300 // tl block in order to make this operation completely localized as
301 // in the dgemm. We have not yet undertaken that optimization.
302 //
303 for i in trRows do
304 forall j in trCols do
305 for k in tlRows.low..i-1 do
306 Ab[i, j] -= Ab[i, k] * Ab[k,j];
307 }

309 //
310 // compute the backwards substitution
311 //
312 def backwardSub(n: int,
313 A: [1..n, 1..n] elemType,
314 b: [1..n] elemType) {
315 var x: [b.domain] elemType;

317 for i in [b.domain by -1] {
318 x[i] = b[i];

320 for j in [i+1..b.domain.high] do
321 x[i] -= A[i,j] * x[j];

323 x[i] /= A[i,i];
324 }

326 return x;
327 }

329 //
330 // print out the problem size and block size if requested
331 //
332 def printConfiguration() {
333 if (printParams) {
334 if (printStats) then printLocalesTasks(tasksPerLocale=1);
335 printProblemSize(elemType, numMatrices, n, rank=2);
336 writeln("block size = ", blkSize, "\n");
337 }
338 }

340 //
341 // construct an n by n+1 matrix filled with random values and scale
342 // it to be in the range -1.0..1.0
343 //
344 def initAB(Ab: [] elemType) {
345 fillRandom(Ab, seed);
346 Ab = Ab * 2.0 - 1.0;
347 }

349 //
350 // calculate norms and residuals to verify the results
351 //
352 def verifyResults(Ab, MatrixSpace, x) {
353 var A => Ab[MatrixSpace],
354 b => Ab[.., n+1];

356 initAB(Ab);

358 const axmbNorm = norm(gaxpyMinus(n, n, A, x, b), normType.normInf);

360 const a1norm = norm(A, normType.norm1),
361 aInfNorm = norm(A, normType.normInf),
362 x1Norm = norm(x, normType.norm1),
363 xInfNorm = norm(x, normType.normInf);

365 const resid1 = axmbNorm / (epsilon * a1norm * n),
366 resid2 = axmbNorm / (epsilon * a1norm * x1Norm),
367 resid3 = axmbNorm / (epsilon * aInfNorm * xInfNorm);

369 if (printStats) {
370 writeln("resid1: ", resid1);
371 writeln("resid2: ", resid2);
372 writeln("resid3: ", resid3);
373 }

375 return max(resid1, resid2, resid3) < 16.0;
376 }

378 //
379 // print success/failure, the execution time and the Gflop/s value
380 //
381 def printResults(successful, execTime) {
382 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
383 if (printStats) {
384 writeln("Execution time = ", execTime);
385 const GflopPerSec = ((2.0/3.0) * n**3 + (3.0/2.0) * n**2) / execTime * 10e-9;
386 writeln("Performance (Gflop/s) = ", GflopPerSec);
387 }
388 }

390 //
391 // simple matrix-vector multiplication, solve equation A*x-y
392 //
393 def gaxpyMinus(n: indexType,
394 m: indexType,
395 A: [1..n, 1..m],
396 x: [1..m],
397 y: [1..n]) {
398 var res: [1..n] elemType;

400 for i in 1..n do
401 for j in 1..m do
402 res[i] += A[i,j]*x[j];

404 for i in 1..n do
405 res[i] -= y[i];

407 return res;
408 }

APPENDIX E
HPCC PROBLEM SIZE COMPUTATION IN CHAPEL

1 //
2 // A shared module for computing the appropriate problem size for the
3 // HPCC benchmarks
4 //
5 module HPCCProblemSize {
6 //
7 // Use the standard modules for reasoning about Memory and Types
8 //
9 use Memory, Types;

11 //
12 // The main routine for computing the problem size
13 //
14 def computeProblemSize(numArrays: int, // #arrays in the benchmark
15 type elemType, // the element type of those arrays
16 rank=1, // rank of the arrays
17 returnLog2=false, // whether to return log2(probSize)
18 memFraction=4, // fraction of mem to use (eg, 1/4)
19 type retType = int(64)): retType { // type to return
20 //
21 // Compute the total memory available to the benchmark using a sum
22 // reduction over the amount of physical memory (in bytes) owned
23 // by the set of locales on which we’re running. Then compute the
24 // number of bytes we want to use as defined by memFraction and the
25 // number that will be required by each index in the problem size.
26 //
27 const totalMem = + reduce Locales.physicalMemory(unit = MemUnits.Bytes),
28 memoryTarget = totalMem / memFraction,
29 bytesPerIndex = numArrays * numBytes(elemType);

31 //
32 // Use these values to compute a base number of indices
33 //
34 var numIndices = memoryTarget / bytesPerIndex;

36 //
37 // If the user requested a 2**n problem size, compute appropriate
38 // values for numIndices and lgProblemSize
39 //
40 var lgProblemSize = log2(numIndices);
41 if (returnLog2) {
42 if rank != 1 then
43 halt("computeProblemSize() can’t compute 2D 2**n problem sizes yet");
44 numIndices = 2**lgProblemSize;
45 if (numIndices * bytesPerIndex <= memoryTarget) {
46 numIndices *= 2;
47 lgProblemSize += 1;
48 }
49 }

51 //
52 // Compute the smallest amount of memory that any locale owns
53 // using a min reduction and ensure that it is sufficient to hold
54 // an even portion of the problem size.
55 //
56 const smallestMem = min reduce Locales.physicalMemory(unit = MemUnits.Bytes);
57 if ((numIndices * bytesPerIndex)/numLocales > smallestMem) then
58 halt("System is too heterogeneous: blocked data won’t fit into memory");

60 //
61 // return the problem size as requested by the callee
62 //
63 if returnLog2 then
64 return lgProblemSize: retType;
65 else
66 select rank {
67 when 1 do return numIndices: retType;
68 when 2 do return ceil(sqrt(numIndices)): retType;
69 otherwise halt("Unexpected rank in computeProblemSize");
70 }
71 }

73 //
74 // Print out the machine configuration used to run the job
75 //
76 def printLocalesTasks(tasksPerLocale=1) {
77 writeln("Number of Locales = ", numLocales);
78 writeln("Tasks per locale = ", tasksPerLocale);
79 }

81 //
82 // Print out the problem size, #bytes per array, and total memory
83 // required by the arrays
84 //
85 def printProblemSize(type elemType, numArrays, problemSize: ?psType,
86 param rank=1) {
87 const bytesPerArray = problemSize**rank * numBytes(elemType),
88 totalMemInGB = (numArrays * bytesPerArray:real) / (1024**3),
89 lgProbSize = log2(problemSize):psType;

91 write("Problem size = ", problemSize);
92 for i in 2..rank do write(" x ", problemSize);
93 if (2**lgProbSize == problemSize) {
94 write(" (2**", lgProbSize);
95 for i in 2..rank do write(" x 2**", lgProbSize);
96 write(")");
97 }
98 writeln();
99 writeln("Bytes per array = ", bytesPerArray);

100 writeln("Total memory required (GB) = ", totalMemInGB);
101 }
102 }

