
Parallelizing a Sparse Domain Distribution in

Chapel

Randy Dodgen

CS380P Spring 2010 - Final Project

May 17, 2010

Cray, Inc.'s Chapel programming language seeks to provide syntactic and
library support for a variety of parallel-programming concepts. Data-parallel
applications are supported via the concepts of domains and distributions. A
Chapel domain represents some set of indices, under which arrays may be de-
clared and accessed. These domains can be used to represent dense, arithmetic
sets of indices, as one would �nd in `arrays' of many other languages. However,
Chapel domains extend further, and can describe other varieties of index sets -
sparse, for example. In Chapel, a distribution provides a storage representation
for domains and their associated arrays of data, and may expose concurrency
in how it provides access to the stored indices and data elements. The focus of
this project is extension of one of Chapel's currently-serial sparse distributions
to admit more concurrency.

Please also see the README in the randy/ directory of the submission.

1 Motivation

The current Chapel release includes a number of distributions. For example,
the block distribution can perform a typical block allocation of data to some
number of machines. The block distribution, however, supports only arithmetic
domains. Support exists for sparse domains, but the needed distributions have
not been fully implemented. While the block distribution provides concurrency
when accessing elements distributed across machines as well as those on the
same machine, the current sparse distributions have not yet been parallelized.

This project entails extension of Chapel's sparse distributions. It was se-
lected due to the potential bene�t to the Chapel language, as well as the op-
portunity to get familiar with the languages strengths and weaknesses.

Speci�cally, the goals were to extend the existing compressed sparse row
(CSR) distribution to take advantage of multiple cores, and then multiple ma-
chines (locales). The multiple-core version was planned as a milestone on the
way to a complete multiple-locale version.

1

2 Distribution Structure

2.1 Distributions, domains, and arrays

The Chapel project aims to support user-de�ned distributions, written in Chapel.
All distributions provided in the current release are written this way. The
Chapel library provides base classes to represent distributions, domains, and
arrays, with a de�ned interface by which glue code and the compiler can em-
ploy a distribution.

To de�ne a distribution, one provides at minimum three classes:

• The distribution, which must act as a factory for creating domains. A
distribution class may implement one or multiple factory methods, corre-
sponding to the domain types supported (sparse, arithmetic, etc.)

• The domain, which de�nes a set of indices. Major operations include tests
for membership, iteration, and in the case of sparse domains, addition and
removal of individual indices from the set. Domains must also behave as
a factory for arrays. There may be multiple domains associated with a
single distribution instance.

• The array, which translates indices in the domain to actual data. The
array must provide iteration over its data elements, as well as a means to
translate a valid index into a data element. There may be multiple array
instances per domain.

2.2 Leaders and Followers

In addition to providing the means of storage, domains and arrays are them-
selves responsible for introducing concurrency during iteration. The end-user of
a distribution (and its generated domains and arrays) is presented with a sim-
ple interface to this concurrency; he declares blocks of parallel iteration, with
iterations understood to occur in no guaranteed ordering. For example, for a
domain myDom, the loop body will execute for each index in the domain:

f o r a l l i in myDom { . . . }

Iteration over arrays produces values, instead of indices. Of course, values
and indices in isolation are of limited utility. Iteration of multiple items can be
'zippered':

f o r a l l (i , va l) in (myDom, myArray) { . . . }

Assuming that myArray is an array with the domain myDom, this example will
produce a loop iteration per pair of index and value, and myDom(i) would equal
val. This relation suggests that the parallel iteration is not entirely independent
and unconstrained. Zippering domains, arrays, and other iterable constructs in
this manner requires that each participant agree on iteration order to some
degree.

2

The distribution interface has a concept of 'leader' and 'follower' iterators.
This tackles the issue of multiple iterable items, each with their own ideas of
how to manage concurrency; in the prior example, one of myDom and myArr

serves as the leader, and both serve as followers. The leader uses Chapel's
constructs for task and locality management to spawn tasks (perhaps also on
remote locales), and within each task, generates items to control the follower.
Each generated item invokes all of the follower iterators. For a particular item,
the followers must agree on a semantically meaningful, serial iteration order;
followers processing the same item from the leader have their generated data
`zipped' together, and each of the resulting tuples is a result item for the parallel
zippered iteration (in the examples above, each tuple induces a loop iteration).

Consequently, for some set of iterable items to be zippered, they must be
able to agree on a protocol for the data being passed from leader to followers.
This is an issue that needs attention in the future; currently, interoperability
between arrays and domains of di�erent types is limited.

3 Design

The CSR distribution as packaged in the Chapel 1.1 distribution was modi�ed
in two stages - �rst to produce a multicore version, and then further to produce
a multiple-locale version.

3.1 Multicore

The original CSR distribution generated no concurrency. The leader iterators
generated a single, meaningless item in order to transfer control to single in-
stances of the followers. E�ort in producing a multicore version centered on
re-working the leader / follower iterators in the domain and array classes to
admit some amount of concurrency. The multi-core design was successfully
implemented, although performance results were disappointing (See results).

3.1.1 Work Division

The internal structure that CSR prescribes is conductive to iteration across rows,
rather than columns. Iterating over an entire row requires only determining the
start and stop indices within the data arrays. In fact, since adjacent rows are
stored contiguously, one can iterate across a range of rows, given only the start
of the �rst row and the end of the last row. As such, the multicore CSR was
designed to divide work on row boundaries.

A function was implemented to divide a CSR domain's row range into some
number of chunks of adjacent rows, as evenly as possible. Since each chunk
corresponds to work for a parallel task, the number of chunks in which to divide
the row range must by convention respect a number of run-time con�guration
parameters (controlling the maximum tasks per locale for data-parallel iterators,
etc.)

3

3.1.2 Leader / Follower Protocol

The default distribution for sparse domains (separate from CSR, although also
fully serial) currently makes assumptions regarding interoperability (as men-
tioned, interoperability is an open issue). The default sparse distribution re-
quires and enforces that its leaders / followers only pair with leaders / followers
of directly related arrays or domains (an array can pair with a sibling array, or
its own domain).

For simplicity, these assumptions were adopted into the multicore CSR im-
plementation. Given those, any leader / follower protocol could be adopted
among the CSR classes. The protocol implemented involves a simple wrapper
type, which contains a row range. The domain and array leaders generate in-
stances of it based on the work division described, and followers can walk their
CSR structures with the bene�t of contiguous rows.

This approach took advantage of Chapel's pervasive usage of generic types
/ functions, and its function resolution rules. Incompatible leaders / followers
would eliminate the 'real' leaders / followers (due to their speci�c type require-
ment, for the private CSR type), and instead attempt to instantiate the general,
type-unspeci�ed versions. These versions, on selection, generate a descriptive
error at compile time. This method was adapted from the existing CSR and
default sparse distribution code.

3.1.3 Limitations

A number of shortcomings are detailed in the source for the multicore CSR
distribution. Key issues are outlined here.

For simplicity in work division, the runtime parameter controlling minimum
granularity is ignored - it would be preferable to observe it in some fashion, to
allow control over the thread to data ratio.

The work division is based on evenly allocating number of rows, rather than
number of elements. It may be more e�ective to allocate at row granularity, but
to select work-item boundaries so as to have approximately the same number
of non-zeroes in each work-item.

3.2 Multi-locale

3.2.1 Idiomatic Multi-locale Structure

The multi-locale block distribution was used as a model for re-structuring the
CSR distribution for multiple-locale support. The pattern seen in the block
distribution is presented in all of the multi-locale distributions examined.

In the idiomatic structure, each of the three classes forming a distribution
package - array, domain, and distribution - gain a 'local' variant. The local
companions of the three main classes exist per-locale, and store the actual data.
They do not implement the actual distribution interface, nor do they inherit
the associated base classes; they are purely a structural idiom for internal book-
keeping.

4

The main classes, in implementing the distribution interface, typically dele-
gate to a particular, local instance corresponding to the right locale. To facilitate
this, each class keeps an array of its local instances, indexed under the same
domain as the array of target locales. For example, in response to the call to
access an item by index, the block distribution calculates the owning block (and
thus locale) for that index, and retrieves the data from that locale's instance.

3.2.2 Implementation Status

Extension to multi-locale operation from the multi-core base was not completed;
most of the implementation is �nished, but needs debugging and testing. The
multi-core distribution was modi�ed to split each of the main classes into global
and local versions. The global versions populate their arrays of per-locale local
instances, and delegate to them for most operations. A few operations were
disabled (and intentionally crash if called), and are annotated as such in the
source.

3.2.3 Work Division

The issue of work division for a distribution has the challenge that it must sup-
port multiple domains at once, and make considerations for e�cient zippering
of them and their arrays. Choosing new work divisions as domains are added
would be costly.

The multi-locale CSR takes another hint from the block distribution. The
block distribution takes a boundingBox parameter on construction, allocates
blocks of it per locale, and subsequently uses that allocation as a mapping from
domain index to owning locale. For some of the domains sharing an instance of
the block distribution, there may exist domain indices outside of the bounding
box. Indices outside of the bounding box map to the `closest' locale. Thus,
for a poor pairing of bounding-box and domain, the distribution could map all
indices in that domain to the same locale.

Multi-locale CSR behaves similarly, but with a restricted problem. Since all
CSR domains are of rank 2, and since rows are allocated as indivisble units, its
`bounding box' equivalently can be a range of rows. The user speci�es this as
distributedRowRange to the CSR constructor. Rows are divided as evenly as
possible inside the distributed row range; the locales owning the highest and
lowest rows of this range are responsible for rows outside of the distributed
range.

4 Benchmark

Sparse matrix-vector multiplication was selected to provide a performance bench-
mark for the CSRmodi�cations. It was selected since it plays to CSR's strengths.
Since each unit of execution in parallel iteration of a CSR domain, as imple-
mented, walks across contiguous rows, each execution unit will simply walk the

5

dense vector with a regular pattern of access. Since there are no dependen-
cies between elements in the sparse matrix, only an e�cient parallel iteration is
needed; expense lookups by element index are not required.

The multiplication loop went through a few iterations. The �rst was elegant,
utilizing slicing of domains via ranges, and a plus-reduction:

var r e s u l t : [1 . . matrix_rows] r e a l =
[row in 1 . . matrix_rows] + reduce (matrix (row , 1 . .) ∗ vec to r) ;

Unfortunately, though this worked for dense domains, slicing is not cur-
rently supported for sparse domains. Further, there was no clear guarantee
that vector would be accessed in the multiple-locale case - each parallel itera-
tion may induce communication to the locale owning vector. Though at some
point, there may exist an automatic optimization to replicate const arrays, this
is currently not the case (this was determined via Brad Chamberlain).

The �nal iteration is instead:

f o r a l l ((i , j) , va l) in (MatrixDom , matrix) do l o c a l {
l o c a lRe su l tVec t o r s (here . id) (i) +=

val ∗ r ep lVecto r (here . id) (j) ;
}

This introduces a number of optimizations. A special Private distribu-
tion (applied to localResultVectors and replVector) is used to provide local
result vectors to accumulate into, and replicated copies of the vector. The
Private distribution can only produces one-dimensional arithmetic domains,
with an index per locale The data for each index is stored on the locale with
the corresponding ID. It is thus guaranteed that indexing a Private-distributed
domain with here.id (the current locale's ID) will be local. In the above usage,
the element type of the Private domains are Before the multiplication loop, the
vector is stored to every index in replVector. There is a local result vector per
locale, and they are summed after the multiplication loop to produce the �nal
result. A local block wraps the loop body; this results in an assertion that no
communication occurs within the block, as was the goal.

Due to further advice from Brad Chamberlain, the matrix is explicitly zip-
pered with its domain, resulting in the domain leading (generating row ranges),
and the domain and matrix following (producing co-ordinates and values). It
may appear more natural to instead iterate over only the domain, and use
the resulting indices to index the matrix within the loop body. In the future,
both alternatives should result in the same behavior, but as explained by Brad
Chamberlain, the compiler does not currently perform this optimization.

5 Testing

5.1 Benchmark Support

The SPMV benchmark was designed to aide in testing. A compile-time constant
controls the matrix domain and distribution. This allows the same code to be

6

compiled multiple times, producing multiple binaries from which to collect data.
The provided Make�le produces binaries in the following con�gurations:

• Dense arithmetic domain, using a block distribution

• Sparse domain, using the (multicore) CSR distribution

• Sparse domain, using the default and currently serial sparse distribution
(COO)

If the special debug make target is used, an additional binary is produced, which
prints trace information for debugging the CSR distribution.

The benchmark prints certain con�guration information (speci�cally, the
number of tasks per locale used by the parallel iterators, and the number of lo-
cales), and collects timing data for the multiplication loop. With these facilities,
data was collected for the CSR and dense block con�gurations.

5.2 Generation of Matrices and Vectors

A number of matrices and vectors were generated for testing. All generated ma-
trices were square. A matrix was generated for each combination of dimension
2K, 4K, 6K, 8K, and 10K, and sparisty 70%, 80%, and 90%. A single vector
was generated for each dimension. No special sparsity patterns were considered;
non-zeroes should be distributed roughly uniformly. The code used to generate
these input �les is included in the submission.

5.3 Veri�cation of Result Vectors

The threaded SPMV implementation from assignment 3 was used to generate
correct answers for each matrix. The job submission script runs a veri�cation
script after each benchmark execution, and signals a failure if the correct /
Chapel result vectors di�er beyond some threshold.

5.4 Correctness

Although the multicore CSR distribution allows the correct answer to be gener-
ated, it is unlikely that it is yet correct. The benchmark requires a small subset
of a fairly large API. It would be interesting to determine There are likely func-
tions left unimplemented, that will cause compilation failures for other usages.
At least some of these operations, such as slicing, have not yet been extended
to sparse domains.

6 Results

Results are attached, and are also available as randy/spmv_results.pdf in the
submission. No speedup greater than 1.0 was achieved for multi-core CSR. For

7

all tested inputs, multi-core CSR took over 6 times longer when using sixteen
or four tasks, versus when number of tasks was restricted to 1.

This would have been extremely disappointing, had the benchmark not also
been tested with a dense, block-distributed matrix. The single-locale dense re-
sults are almost identical to the multi-core CSR results. This suggests that some
issue exists either in Chapel or the particular Chapel con�guration employed on
Ranger to collect this data.

7 Acknowledgements

Many thanks are owed to Brad Chamberlain for patiently explaining the current
distribution interface, and various performance pitfalls. Since the interface is
not yet stable or documented, this would not have been possible without his
help.

This work is based on the Chapel 1.1 distribution, released on April 15th,
2010. It is under a BSD license. The included language speci�cation was a
helpful reference.

The random vector generator used and included is copyright Benjamin Hiller,
and is also under a BSD license.

8

