
Using Chapel to Implement Dense Linear Algebra Libraries

Joe Elizondo and Samuel Palmer
Department of Computer Science University of Texas at Austin

Email: {elizondo, spalmer}@cs.utexas.edu

May 16, 2010

Abstract
This paper evaluates the parallel global-view language Chapel’s ability to implement dense linear

algebra libraries. Both programmability and performance characteristics at the current stage of Chapel’s
implementation are considered but since many of Chapel’s compiler optimizations are not implemented
our emphasis is on programmability. Our conclusion is that in its current development state Chapel
lacks the data locality features required to implement efficient dense linear algebra operations but should
be considered again once the complete language and compiler optimizations are implemented.

1 Introduction

For the scientific computing community interest in fast linear algebra libraries is alive and well because
scientists are always seeking to reduce the computation time required to solve large problems. The authors
of these libraries are always looking for optimizations in software, compilers, and hardware to make their
libraries faster. To this select group of scientific library developers a new partitioned global address space
language like Chapel is of interest for a number of reasons. One reason is the possibility for Chapel to
have dense linear algebra functions built in that allow the programmer to write code quickly and exploit
parallelism with little effort. If so then the question becomes performance. How do these operations
compare to the performance achieved by their current library? Otherwise library developers might see an
opportunity to implement a library on this new platform. Programming a parallel dense linear algebra
library in a global-view language is presumably easier than using a local-view language like MPI combined
with C++. In addition, the most popular parallel dense linear algebra libraries, e.g. ScaLAPACK, are
surprisingly inefficient and a library that is properly implemented can outperform these libraries without
many additional optimizations[5]. If a library written in Chapel can achieve performance comparable to
ScaLAPACK then ease of programming may make it preferable in cases where a matrix operation does not
already exist in the library and the problem size is such that any additional computation time is negligible.
For library developers with no formal introduction to Chapel all of these scenarios are possible and make
experimenting with the language worthwhile.

For the Formal Linear Algebra Methods Environment (FLAME) group at the University of Texas at
Austin, Chapel poses interesting possibilities. Much labor has gone into writing parallel linear algebra
libraries using MPI and C (PLAPACK[7]) and currently MPI and C++ (Elemental[5, 6]). These libraries
were built using matrix theory and methodology that results in some of the fastest linear algebra algorithms
available. These libraries, however, are far from simple and if a new operation needs to be introduced a
user would need a decent amount of experience and understanding of collective communication with MPI
in order to successfully add the operation to the library. The FLAME framework and API, however, is one
of the cleanest ways to express dense linear algebra operations. Matrix indices are abstracted away and
more attractive methods are provided to partition matrices for computations. libFLAME already lends

1

itself to parallelization through the use of matrix partitioning so it seems natural to implement it in a
parallel language like Chapel. The question then becomes: is it possible to use the FLAME approach for
deriving algorithms and the FLAME/C API with Chapel to write a parallel linear algebra library? Finding
the answer to this question is the goal of this work. We were informed by Chapel developers from the
start that the compiler was not optimized so achieving comparable performance would not be possible and
competing against any benchmark (including ScaLAPACK) would not be valuable. Despite this we set
out to learn, under the assumption of a compiler that generates optimized code, whether Chapel presents
a good layer of abstraction for parallel dense linear algebra algorithms; whether it allows us to express
the formalisms of the FLAME methodology; whether it allows us to express the necessary distributions
required to partition a matrix over a mesh of processors for parallel computation; and whether it allows us to
express the communication required to perform matrix operations on matrices that have been partitioned
across many processors. We attempt to determine if Chapel satisfies these conditions by implementing
several variations of general matrix-matrix multiply (GEMM) algorithms from libFLAME and a scalable
matrix multiplication algorithm. The results of our findings are reported in this paper. Section 2 gives an
overview of the FLAME API. Section 3 discusses our Chapel shared memory implementation of a matrix
multiplication algorithm from libFLAME. Section 4 discusses our attempt to implement a blocked multi-
locale matrix multiplication algorithm in Chapel. Section 5 discusses our Chapel implementation of a
scalable matrix multiplication algorithm called SUMMA and Section 6 summarizes our conclusions.

2 FLAME Overview

We now discuss the FLAME API [10] and the motivation for implementing parallel algorithms in Chapel
via the API. The algorithms used in the FLAME libraries are derived using a formal methodology and
verification process. They are expressed using a notation that applies the mathematical specification for
the routine in a step by step manner that is easy to visualize and understand. The API was designed so
that the clarity of this derivation process is not lost when notation is translated to code form. Using the
API the algorithm can be coded using a high level of abstraction that hides the indices that would usually
be involved when coding the algorithms. The code partitions and repartitions matrices while performing
the mathematical computation in the same manner expressed by the FLAME notation. This high level
of abstraction makes it easier to think about different variations of the algorithms. The API also exposes
critical sections in the code which provides hints to how they could be parallelized. Figures 1 and 2 show
the similarities between FLAME algorithm notation and code expressed in the FLAME API.

Aside from the linear algebra routines that do the bulk of the computation, libFLAME’s API is made
up of numerous auxiliary functions, objects, type definitions, partitioning functions, validation functions,
etc. All of this code had to be rewritten in Chapel. We were disappointed by Chapel’s current level of
support for calling C routines and manipulating C data. The insufficient support for external C code meant
that we could not reuse any existing code and in many cases the changes that were made during translation
were purely syntactic.

3 Shared Memory GEMM Implementation

3.1 Description of Algorithm

We implemented a shared memory GEMM algorithm, C := AB + Ĉ, [8] which partitions A along its first
dimension into a collection of vectors, aT

i . The algorithm then performs a series of general matrix vector
multiplication (GEMV) operations, cT

i := aT
i B + ĉT

i , to compute the result. In the FLAME methodology
this partitioning is done by creating “views” of the matrix which allow the programmer to treat partitioned

2

Algorithm: C = AB + Ĉ (Variant 1, Unblocked)

Partition C →
„

CT

CB

«
, A→

„
AT

AB

«
where CT has 0 rows, AT has 0 rows

while m(CT) < m(C) do

Repartition„
CT

CB

«
→

0@ C0

cT
1

C2

1A ,
„

AT

AB

«
→

0@ A0

aT
1

A2

1A
where c1 has 1 row, a1 has 1 row

cT
1 = aT

1 B + cT
1

Continue with„
CT

CB

«
←

0@ C0

cT
1

C2

1A ,
„

AT

AB

«
←

0@ A0

aT
1

A2

1A
endwhile

Figure 1: Unblocked GEMM algorithm expressed in FLAME notation

blocks as independent matrices or vectors[1]. In the sequential implementation of libFLAME this algorithm
would partition the matrix to extract one vector from it at a time, multiply the other matrix by this vector,
and merge the result back into the result matrix.

3.2 Implementation

In order to exploit parallelism our implementation had to deviate from the algorithm’s sequential order of
execution. Our implementation, instead, completes all of the partitioning before it performs any GEMV
operations. After one matrix is completely partitioned into vectors we use the forall Chapel construct to
assign the independent GEMV operations to different threads. Once the GEMV operations complete the
results are merged back into the answer matrix. Completely partitioning the matrix before performing the
GEMV operations requires more memory but allows us to execute the GEMV operations in parallel.

Figure 3 shows the relative speedup when multiplying two 1000×1000 matrices using our shared memory
GEMM implementation as the number of threads increase. The speedup is measured relative to the output
produced when the --serial flag is used to compile the same code. The figure shows that the shared memory
implementation does in fact exhibit speedup as the number of threads increases. In general, the Chapel
implementation of this algorithm compiled with the Chapel version 1.1 compiler is much slower than the
sequential C libFLAME implementation. The average time it took our Chapel GEMM implementation to
multiply two 1000× 1000 matrices on a 16-way SMP compute node with AMD Opteron processors clocked
at 2.3GHz was 4.7238 seconds while the average time it took the sequential libFLAME implementation to
multiply two 1000× 1000 matrices on the same hardware was 0.2658 seconds.

3.3 Issues

The initial goal did not involve rewriting the entire algorithm including the BLAS implementation of
GEMV but upon a survey of Chapel’s interoperability with C we concluded that it would be necessary
since Chapel does not provide enough guarantees on the representation of data. Specifically, the standard
BLAS GEMV requires array parameters to be passed as pointers which do not exist in Chapel. This forced
us to write everything including a simplified version of the BLAS GEMV in Chapel. The immature support
for interoperability with the C language causes us to lose the benefit of using highly optimized BLAS
routines such as those found in the widely used GotoBLAS[4].

3

37 FLA_Error FLA_Gemm_nn_unb_var1(FLA_Obj alpha, FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C)
38 {
39 FLA_Obj AT, A0,
40 AB, a1t,
41 A2;
42
43 FLA_Obj CT, C0,
44 CB, c1t,
45 C2;
46
47 FLA_Scal_external(beta, C);
48
49 FLA_Part_2x1(A, &AT,
50 &AB, 0, FLA_TOP);
51
52 FLA_Part_2x1(C, &CT,
53 &CB, 0, FLA_TOP);
54
55 while (FLA_Obj_length(AT) < FLA_Obj_length(A)){
56
57 FLA_Repart_2x1_to_3x1(AT, &A0,
58 /* ** */ /* *** */
59 &a1t,
60 AB, &A2, 1, FLA_BOTTOM);
61
62 FLA_Repart_2x1_to_3x1(CT, &C0,
63 /* ** */ /* *** */
64 &c1t,
65 CB, &C2, 1, FLA_BOTTOM);
66
67 /*--*/
68
69 /* c1t = a1t * B + c1t */
70 /* c1t’ = B’ * a1t’ + c1t’ */
71 FLA_Gemv_external(FLA_TRANSPOSE, alpha, B, a1t, FLA_ONE, c1t);
72
73 /*--*/
74
75 FLA_Cont_with_3x1_to_2x1(&AT, A0,
76 a1t,
77 /* ** */ /* *** */
78 &AB, A2, FLA_TOP);
79
80 FLA_Cont_with_3x1_to_2x1(&CT, C0,
81 c1t,
82 /* ** */ /* *** */
83 &CB, C2, FLA_TOP);
84
85 }
86
87 return FLA_SUCCESS;
88 }

Figure 2: Unblocked GEMM algorithm implemented in C using the FLAME API

4

Figure 3: Relative speedup achieved as the number of threads increases in our shared memory implementation. Speedup is
relative to the same Chapel code compiled with the --serial flag.

4 Blocked Multi-Locale GEMM Implementation

4.1 Description of Algorithm

Even though support for multiple locales is still in its early stages we decided to implement a blocked
GEMM algorithm, C := AB + Ĉ, that used multiple locales to evaluate the ease of reasoning about and
programming with Chapel’s data locality features. The blocked GEMM algorithm that we implemented
partitions A into panels along the first dimension and B into panels along the second dimension. The
algorithm then performs a series of general panel-panel multiplies, C := AiBi + Ĉ. According to [8] this
algorithm performs better than the other blocked GEMM algorithms in libFLAME.

4.2 Implementation and Issues

The largest roadblock that we encountered was that while the Chapel developers intend to add support
for user defined domain maps there is currently only support for standard block distributions and standard
cyclic distributions. These were inadequate for our needs so we implemented an algorithm that explicitly
moved data between locales when necessary. Once the appropriate data was moved to a locale we made
use of the local construct in Chapel to explicitly tell the compiler that all data references were local. The
implementation of the local construct enables the compiler to perform performance optimizations but does
not statically check if the data references will be local. In Chapel if a programmer makes a non-local
reference inside a local block a runtime error will occur. The compiler should have enough information
to be able to statically decide at compile-time if non-local references are made and give a compile-time
error instead of a runtime error. The Chapel Language Specification 0.795 [3] does not in fact define the
semantics of the local construct but it can be deduced from the discussion in [2] that it provides a boost in
performance to explicitly assert that all references are local.

Using the current implementation of the Chapel compiler (version 1.1) our implementation induced

5

Figure 4: Remote communication increases faster than the problem size in our implementation. The red (bottom) line shows
a linear increase and the blue (top) line shows the increase observed in our implementation.

much more data movement than we had intended. When multiplying two 100× 100 matrices with a block
size of ten our implementation induced 228,400 remote data communications. Without the use of user
defined domain maps it is very difficult to reason about how many remote operations will be used to
implement a given statement in Chapel which results in poor performance. Figure 4 shows that in our
implementation of the blocked GEMM algorithm the amount of data communication grows faster than the
problem size. This would most likely not have been the case if a user defined domain map had been used
to manage our data locality. For this reason it is too early to decide if Chapel will eventually be able to
efficiently handle the data movement involved in this blocked GEMM algorithm.

5 SUMMA Implementation

5.1 Description

Though not part of libFLAME we decided to implement a scalable matrix multiplication algorithm called
SUMMA [9]. SUMMA has a number of benefits in that it not only achieves high performance but is also
relatively simple compared to its predecessors. This algorithm is only practical in a parallel environment so it
wouldn’t make sense for the sequential FLAME library to include it. However, SUMMA tests multiple facets
of Chapel’s programmability so its implementation is a good exercise. The key to achieving performance
benefits is replication. We give a high level explanation of the algorithm for the sake of clarity before
discussing our implementation and issues encountered.

5.1.1 Unblocked SUMMA

Assume we have a group of computation nodes that can be logically arranged into a r× c mesh, each node
can be indexed by Pij , where i is the node’s row and j is the node’s column. To simplify the explanation
assume we have two matrices A and B where A is r × n and B is n× c. In practice this simplification can
be removed by using a block-cyclic distribution along the rows and columns of nodes. We replicate row ai

along node row pi and column bj along node column pj . Each node can then perform a rank-one update
in parallel to compute Cij = ai ∗ bj . The idea is that the communication overhead for replicating each row

6

// replicated distributions aren’t implemented yet, but imagine that
// they look something like the following:
// var replAbD: domain(2)
// dmapped new Dimensional(BlkCyc(blkSize),Replicated))
// = AbD[start.., 1..#blkSize];

// actual code to achieve the distributed replication
// Notice the replicated domains must be declared INSIDE the "on" block
for pnl in 1..n by blkcols
{

loc1 = (loc1 + 1) % numLocales;
loc1cnt = loc1cnt + 1;
on Locales(loc1)
{

var start: int = pnl;
var replAbD: domain(2) = AbD[1.., start..start+blkcols-1];
var replAb : [replAD] real = Ab[1.., start..start+blkcols-1];

...

Figure 5: Example adapted from Chapel HPL HPC Challenge 2009 entry [2] demonstrating how to replicate data across
locales.

and column should be small compared to the performance gain achieved by having to perform only a single
rank-one update on each node.

5.1.2 Blocked SUMMA

Van de Geijn and Watts [9] found that even better performance can be achieved by formulating the com-
putations as matrix-matrix multiplications instead of rank-one updates. The idea is that communication
is reduced because more data is being sent to each node and smaller blocks can take advantage of data
locality better than entire rows or columns. Our implementation of the blocked SUMMA algorithm takes
in two arguments for block size call them s and t. It partitions matrix A into m× t groups of columns, or
column panels, and partitions matrix B into t× n row panels. Each panel of matrix B is replicated across
its respective row in the mesh of nodes. For example, Bj

0, where j is the node column index, is replicated
across node row p0. The m × t panels of matrix A are then partitioned further into s × t blocks that are
block-mapped to their corresponding logical position in the mesh of nodes. The algorithm then performs a
GEMM operation in parallel on each node to compute block Cij = Aij ∗Bj

l , where l is the index of a block
of rows in B.

5.2 Issues

We encountered significant programmability issues during all aspects of the algorithm’s implementation.
Chapel’s current limitations with domain mapping forced us to do replication by placing data onto a locale
(node) explicitly using the "on" keyword, as shown in Figure 5. In addition to being difficult to read this
approach meant that to compute C all computation had to be done at every iteration of the innermost
loop otherwise the names of the replicated data fall out of scope and can no longer be accessed. This also
increases the communication required to compute an answer. We would ideally like to leave C partitioned
over the mesh of nodes so that the only communication cost is in the replication of data. In Chapel however,
if we leave C partitioned we have no way to access C’s component blocks. In order to return an answer we
have to send all the computed data from each node back to a single node that holds the original reference to
C. Figure 6 shows the increase in communication that this incurs. Again, it would be nice to see if Chapel’s

7

Figure 6: Remote communication required for our blocked SUMMA Chapel implementation measured using the same
technique as in Figure 4. Squares show the large increase in communication required to store C on one node. Diamonds show
communication for the ideal case where C is partitioned across the mesh of nodes.

user defined domain maps and replicated distributions could handle this algorithm elegantly, however, at
this stage in Chapel’s development this was not possible.

6 Conclusions

It is still too early in the development of Chapel to reach any final conclusions regarding Chapel’s ability to
implement parallel linear algebra libraries. The results from our shared memory GEMM implementation
show that relative speedup is possible as the number of threads increases which is promising. If optimizations
continue to be added to the Chapel compiler it may become possible to achieve performance that surpasses
the sequential C implementation of libFLAME. From a programmability point of view the biggest deterrent
for library developers at this point in Chapel’s development is the lack of data locality features. The inability
to create user defined domain maps across locales is a major issue when attempting to implement efficient
linear algebra algorithms. Once this feature is implemented in the Chapel compiler another evaluation
should be conducted. In the compiler’s current state it is too difficult to manage data locality for some of
the proven parallel GEMM algorithms.

References

[1] Bientinesi, P., Quintana-Ortí, E. S., and van de Geijn, R. A. Representing linear algebra algo-
rithms in code: The FLAME application programming interfaces. ACM Transactions on Mathematical
Software 31, 1 (Mar. 2005), 27–59.

[2] Chamberlain, B. L., Choi, S.-E., Choi, S.-E., and Iten, D. Hpc challenge benchmarks in chapel.
HPC Challenge Awards Competition at SC09 (November 2009).

[3] Cray Inc. Chapel Language Specification 0.795, April 2010.

8

[4] Goto, K. Texas advanced computing center: Tacc projects.

[5] Poulson, J. Elemental: A New Framework for Distributed Memory Dense Matrix Computations.
Supercomputing 2010, Apr. 2010.

[6] Poulson, J., and van de Geijn, R. A. Rethinking Distributed Memory Dense Linear Algebra.
Apr. 2010.

[7] van de Geijn, R. A. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[8] van de Geijn, R. A., and Quintana-Ortí, E. S. The Science of Programming Matrix Computa-
tions. www.lulu.com, 2008.

[9] van de Geijn, R. A., and Watts, J. Summa: Scalable universal matrix multiplication algorithm.
Concurrency: Practice and Experience 9, 4 (April 1997), 255–274.

[10] Zee, F. G. V. libflame: The Complete Reference. www.lulu.com, 2009.

9

