BigInteger¶
Usage
use BigInteger;
or
import BigInteger;
Provides a ‘bigint’ type and supporting math operations.
The bigint
record supports arithmetic operations on arbitrary
precision integers in a manner that is broadly consistent with
the conventional operations on primitive fixed length integers.
The current implementation is based on the low-level types and
functions defined in the GMP module i.e. it is implemented using the
GNU Multiple Precision Integer Arithmetic library (GMP). More specifically
the record bigint
wraps the GMP type mpz_t
.
The primary benefits of bigint
over mpz_t
are
support for multi-locale programs
the convenience of arithmetic operator overloads
automatic memory management of GMP data structures
In addition to the expected set of operations, this record provides a number of methods that wrap GMP functions in a natural way:
use BigInteger;
var a = new bigint(234958444);
const b = new bigint("4847382292989382987395534934347");
var c = new bigint();
writeln(a * b);
c.fac(100);
writeln(c);
Casting and declarations can be used to create bigint
records as
well:
use BigInteger;
var a = 234958444: bigint;
const b = "4847382292989382987395534934347": bigint;
var c: bigint;
Warning
Creating a bigint
from an integer literal that is larger than
max(uint(64))
would cause integer overflow before the
bigint
is created, and so results in a compile-time error.
Strings should be used instead of integer literals for cases
like this:
// These would result in integer overflow and cause compile-time errors
var bad1 = 4847382292989382987395534934347: bigint;
var bad2 = new bigint(4847382292989382987395534934347);
// These give the desired result
var good1 = "4847382292989382987395534934347": bigint;
var good2 = new bigint("4847382292989382987395534934347");
Wrapping an mpz_t
in a bigint
record may introduce a
measurable overhead in some cases.
The GMP library defines a low-level API that is based on side-effecting compound operations. The documentation recommends that one prefer to reuse a small number of existing mpz_t structures rather than using many values of short duration.
Matching this style using bigint
records and the compound
assignment operators is likely to provide comparable performance to an
implementation based on mpz_t
. So, for example:
x = b
x *= c;
x += a;
is likely to achieve better performance than:
x = a + b * c;
The Chapel compiler currently introduces two short lived temporaries for the intermediate results of the binary operators.
The operators on bigint
include variations that accept Chapel
integers e.g.:
var a = new bigint("9738639463465935");
var b = 9395739153 * a;
The Chapel int(64) literal is converted to an underlying, platform-specific C integer, to invoke the underlying GMP primitive function. This example is likely to work well on popular 64-bit platforms but to fail on common 32-bit platforms. Runtime checks are used to ensure the Chapel types can safely be cast to the platform-specific types. Ths program will halt if the Chapel value cannot be represented using the GMP scalar type.
The checks are controlled by the compiler options --[no-]cast-checks
,
--fast
, etc.
Casting from bigint
to integral
and real
types is also
supported. Values that are too large for the resultant type are
truncated. GMP primitives are used to first cast to platform-specific C
types, which are then cast to Chapel types. As a result, casting to
64-bit types on 32-bit platforms may result in additional truncation.
Additionally, casting a negative bigint
to a uint
will result in
the absolute value truncated to fit within the type.:
var a = new bigint(-1);
writeln(a:uint); // prints "1"
See GMP
for more information on how to use GMP with Chapel.
- enum Round { DOWN = -1, ZERO = 0, UP = 1 }¶
Warning
The enum Round is deprecated, please use the enum round instead
- enum round { down = -1, zero = 0, up = 1 }¶
An enumeration of the different rounding strategies, for use with e.g.
divQ
to determine how to round the quotient when performing the computation.round.down
indicates that the quotient should be rounded down towards -infinity and any remainder should have the same sign as the denominator.round.zero
indicates that the quotient should be rounded towards zero and any remainder should have the same sign as the numerator.round.up
indicates that the quotient should be rounded up towards +infinity and any remainder should have the opposite sign as the denominator.
- record bigint¶
- proc init()¶
- proc init(const ref num: bigint)
- proc init=(const ref num: bigint)¶
- proc init(num: int)
- proc init(num: uint)
- proc init=(num: integral)
- proc init(str: string, base: int = 0)
- proc init(str: string, base: int = 0, out error: errorCode)
- proc size(): c_size_t¶
Warning
bigint.size() is deprecated
- proc sizeinbase(base: int): uint¶
Warning
bigint.sizeinbase() is deprecated, use bigint.sizeInBase() instead
- proc sizeInBase(base: int): int¶
Determine the size of
this
measured in number of digits in the givenbase
. The sign ofthis
is ignored, only the absolute value is used.- Arguments
base :
int
– The base in which to compute the number of digits used to representthis
. Can be between 2 and 62.- Returns
The size of
this
measured in number of digits in the givenbase
. Will either be exact or 1 too big. Ifbase
is a power of 2, will always be exact. Ifthis
is 0, will always return 1.- Return type
int
- proc numLimbs: uint¶
Warning
This method is deprecated, please use
GMP.chpl_gmp_mpz_nlimbs
on the mpz field instead
- proc get_limbn(n: integral): uint¶
Warning
This method is deprecated, please use
GMP.chpl_gmp_mpz_getlimbn
on the mpz field instead
- proc getImpl(): __mpz_struct¶
Return the underlying implementation of
bigint
. Currently, the type returned is__mpz_struct
.This method is provided as a convenience but its result may change in the future.
- proc get_d_2exp(): (uint(32), real)¶
Warning
get_d_2exp is deprecated in favor of
bigint.getD2Exp
, which returns (d, exp) instead of (exp, d). Please use that method instead
- proc getD2Exp(): (real, uint(32))¶
Convert
this
to a tuple containing a real (truncated if necessary, by rounding towards zero) and the exponent. The returned tuple fulfills the conditiond * 2^exp == this
whered
is the first value in the tuple andexp
is the second.- Returns
a tuple representing the number in multiple parts,
(d, exp)
, such that their combinationd * 2^exp
is equal tothis
.d
in this case will be in the range0.5 <= abs(d) < 1
, unlessthis
is0
, in which cased == 0.0
andexp == 0
.- Return type
(real, uint(32))
- proc get_str(base: int = 10): string¶
- proc writeThis(writer) throws¶
- operator bigint. = (ref lhs: bigint, const ref rhs: bigint)
- operator bigint. = (ref lhs: bigint, rhs: int)
- operator bigint. = (ref lhs: bigint, rhs: uint)
- operator bigint.+(const ref a: bigint)¶
- operator bigint.-(const ref a: bigint)¶
- operator bigint.~(const ref a: bigint)
- operator bigint.+(const ref a: bigint, const ref b: bigint)
- operator bigint.+(const ref a: bigint, b: int)
- operator bigint.+(a: int, const ref b: bigint)
- operator bigint.+(const ref a: bigint, b: uint)
- operator bigint.+(a: uint, const ref b: bigint)
- operator bigint.-(const ref a: bigint, const ref b: bigint)
- operator bigint.-(const ref a: bigint, b: int)
- operator bigint.-(a: int, const ref b: bigint)
- operator bigint.-(const ref a: bigint, b: uint)
- operator bigint.-(a: uint, const ref b: bigint)
- operator bigint.*(const ref a: bigint, const ref b: bigint)¶
- operator bigint.*(const ref a: bigint, b: int)
- operator bigint.*(a: int, const ref b: bigint)
- operator bigint.*(const ref a: bigint, b: uint)
- operator bigint.*(a: uint, const ref b: bigint)
- operator bigint./(const ref a: bigint, const ref b: bigint): bigint¶
- operator bigint./(const ref a: bigint, b: integral): bigint
Divide
a
byb
, returning the result.
- operator bigint.**(const ref base: bigint, const ref exp: bigint)¶
- operator bigint.**(const ref base: bigint, exp: int)
- operator bigint.**(const ref base: bigint, exp: uint)
- operator bigint.%(const ref a: bigint, const ref b: bigint)
Computes the mod operator on the two arguments, defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.%(const ref a: bigint, b: int)
Computes the mod operator on the two arguments, defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.%(const ref a: bigint, b: uint)
Computes the mod operator on the two arguments, defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.<<(const ref a: bigint, b: int)¶
- operator bigint.<<(const ref a: bigint, b: uint)
- operator bigint.>>(const ref a: bigint, b: int)¶
- operator bigint.>>(const ref a: bigint, b: uint)
- operator bigint.&(const ref a: bigint, const ref b: bigint)
- operator bigint.|(const ref a: bigint, const ref b: bigint)
- operator bigint.^(const ref a: bigint, const ref b: bigint)
- operator bigint.==(const ref a: bigint, const ref b: bigint)¶
- operator bigint.==(const ref a: bigint, b: int)
- operator bigint.==(a: int, const ref b: bigint)
- operator bigint.==(const ref a: bigint, b: uint)
- operator bigint.==(a: uint, const ref b: bigint)
- operator bigint.!=(const ref a: bigint, const ref b: bigint)¶
- operator bigint.!=(const ref a: bigint, b: int)
- operator bigint.!=(a: int, const ref b: bigint)
- operator bigint.!=(const ref a: bigint, b: uint)
- operator bigint.!=(a: uint, const ref b: bigint)
- operator bigint.>(const ref a: bigint, const ref b: bigint)¶
- operator bigint.>(const ref a: bigint, b: int)
- operator bigint.>(a: int, const ref b: bigint)
- operator bigint.>(const ref a: bigint, b: uint)
- operator bigint.>(a: uint, const ref b: bigint)
- operator bigint.<(const ref a: bigint, const ref b: bigint)¶
- operator bigint.<(const ref a: bigint, b: int)
- operator bigint.<(a: int, const ref b: bigint)
- operator bigint.<(const ref a: bigint, b: uint)
- operator bigint.<(a: uint, const ref b: bigint)
- operator bigint.>=(const ref a: bigint, const ref b: bigint)¶
- operator bigint.>=(const ref a: bigint, b: int)
- operator bigint.>=(a: int, const ref b: bigint)
- operator bigint.>=(const ref a: bigint, b: uint)
- operator bigint.>=(a: uint, const ref b: bigint)
- operator bigint.<=(const ref a: bigint, const ref b: bigint)¶
- operator bigint.<=(const ref a: bigint, b: int)
- operator bigint.<=(a: int, const ref b: bigint)
- operator bigint.<=(const ref a: bigint, b: uint)
- operator bigint.<=(a: uint, const ref b: bigint)
- operator bigint.+=(ref a: bigint, const ref b: bigint)¶
- operator bigint.+=(ref a: bigint, b: int)
- operator bigint.+=(ref a: bigint, b: uint)
- operator bigint.-=(ref a: bigint, const ref b: bigint)¶
- operator bigint.-=(ref a: bigint, b: int)
- operator bigint.-=(ref a: bigint, b: uint)
- operator bigint.*=(ref a: bigint, const ref b: bigint)¶
- operator bigint.*=(ref a: bigint, b: int)
- operator bigint.*=(ref a: bigint, b: uint)
- operator bigint./=(ref a: bigint, const ref b: bigint)¶
- operator bigint./=(ref a: bigint, b: integral)
Divide
a
byb
, storing the result ina
.
- operator bigint.**=(ref base: bigint, const ref exp: bigint)¶
- operator bigint.**=(ref base: bigint, exp: int)
- operator bigint.**=(ref base: bigint, exp: uint)
- operator bigint.%=(ref a: bigint, const ref b: bigint)
Mod
a
byb
, storing the result ina
.Here, the modulo operation is defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.%=(ref a: bigint, b: int)
Mod
a
byb
, storing the result ina
.Here, the modulo operation is defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.%=(ref a: bigint, b: uint)
Mod
a
byb
, storing the result ina
.Here, the modulo operation is defined as
a % b = a - b * trunc(a / b)
.The result is always >= 0 if a > 0. It is an error if b == 0.
- operator bigint.&=(ref a: bigint, const ref b: bigint)
- operator bigint.|=(ref a: bigint, const ref b: bigint)
- operator bigint.^=(ref a: bigint, const ref b: bigint)
- operator bigint.<<=(ref a: bigint, b: int)¶
- operator bigint.<<=(ref a: bigint, b: uint)
- operator bigint.>>=(ref a: bigint, b: int)¶
- operator bigint.>>=(ref a: bigint, b: uint)
- operator bigint.<=>(ref a: bigint, ref b: bigint)¶
- proc jacobi(const ref a: bigint, const ref b: bigint): int¶
- proc legendre(const ref a: bigint, const ref p: bigint): int¶
- proc kronecker(const ref a: bigint, const ref b: bigint): int¶
- proc kronecker(const ref a: bigint, b: int): int
- proc kronecker(a: int, const ref b: bigint): int
- proc kronecker(const ref a: bigint, b: uint): int
- proc kronecker(a: uint, const ref b: bigint): int
- proc bigint.divexact(const ref n: bigint, const ref d: bigint)¶
Warning
n and d are deprecated - please use numer and denom respectively
- proc bigint.divexact(const ref n: bigint, d: integral)
Warning
n and d are deprecated - please use numer and denom respectively
- proc bigint.divexact(const ref numer: bigint, const ref denom: bigint)
- proc bigint.divexact(const ref numer: bigint, denom: integral)
Computes
numer/denom
and stores the result inthis
, which is abigint
instance.Warning
divexact
is optimized to handle cases wherenumer/denom
results in an integer. Whennumer/denom
does not produce an integer, this method may produce incorrect results.
- proc bigint.divisible_p(const ref d: bigint): int¶
Warning
bigint.divisible_p is deprecated, use bigint.isDivisible instead
- proc bigint.divisible_p(d: int): int
Warning
bigint.divisible_p is deprecated, use bigint.isDivisible instead
- proc bigint.divisible_p(d: uint): int
Warning
bigint.divisible_p is deprecated, use bigint.isDivisible instead
- proc bigint.isDivisible(const ref div: bigint): bool¶
- proc bigint.isDivisible(div: int): bool
- proc bigint.isDivisible(div: uint): bool
Return
true
ifthis
is exactly divisible bydiv
.this
is divisible bydiv
if there exists an integerq
satisfyingthis = q*div
. Unlike the other division functions,0
is an acceptable value fordiv
and only0
is considered divisible by0
.- Arguments
div :
bigint
,int
oruint
– number to check ifthis
is divisible by- Returns
true
ifthis
is exactly divisible bydiv
,false
otherwise- Return type
bool
- proc bigint.divisible_2exp_p(b: integral): int¶
Warning
bigint.divisible_2exp_p is deprecated, use bigint.isDivisibleBy2Pow instead
- proc bigint.isDivisibleBy2Pow(exp: integral): bool¶
Return
true
ifthis
is exactly divisible by2^exp
.this
is divisible by2^exp
if there exists an integerq
satisfyingthis = q*2^exp
.- Arguments
exp :
integral
– power of 2 to check ifthis
is divisible by- Returns
true
ifthis
is exactly divisible by2^exp
,false
otherwise- Return type
bool
- proc bigint.congruent_p(const ref c: bigint, const ref d: bigint): int¶
Warning
bigint.congruent_p is deprecated, use bigint.isCongruent instead
- proc bigint.congruent_p(c: integral, d: integral): int
Warning
bigint.congruent_p is deprecated, use bigint.isCongruent instead
- proc bigint.isCongruent(const ref con: bigint, const ref mod: bigint): bool¶
- proc bigint.isCongruent(con: integral, mod: integral): bool
Return
true
ifthis
is congruent tocon % mod
.this
is congruent tocon % mod
if there exists an integerq
satisfyingthis = con + q*mod
. Unlike the other division functions,0
is an acceptable value formod
. As a resultthis
andcon
are considered congruent modulo0
only when exactly equal.
- proc bigint.congruent_2exp_p(const ref c: bigint, b: integral): int¶
Warning
bigint.congruent_2exp_p is deprecated, use bigint.isCongruentBy2Pow instead
- proc bigint.isCongruentBy2Pow(const ref con: bigint, modExp: integral): bool¶
Return
true
ifthis
is congruent tocon % 2^modExp
.this
is congruent tocon % 2^modExp
if there exists an integerq
satisfyingthis = con + q*2^modExp
.- Arguments
con :
bigint
orintegral
– number to determine ifthis
is congruent to, modulo2^modExp
.modExp :
integral
– power of 2 to use as the divisor ofcon
when determining ifcon
is congruent tothis
.
- Returns
true
ifthis
is congruent tocon
modulo2^modExp
,false
otherwise.- Return type
bool
- proc bigint.powm(const ref base: bigint, const ref exp: bigint, const ref mod: bigint)¶
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powm(const ref base: bigint, exp: int, const ref mod: bigint)
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powm(const ref base: bigint, exp: uint, const ref mod: bigint)
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powMod(const ref base: bigint, const ref exp: bigint, const ref mod: bigint)¶
- proc bigint.powMod(const ref base: bigint, exp: int, const ref mod: bigint)
- proc bigint.powMod(const ref base: bigint, exp: uint, const ref mod: bigint)
Set
this
to the result of (base
raised toexp
) modulomod
.- Arguments
base :
bigint
– The value to be raised to the power ofexp
before performing a modulo operation on.exp :
bigint
,int
, oruint
– The exponent to raisebase
to the power of prior to the modulo operation. Can be negative if the inverse (1/base
) modulomod
exists.mod :
bigint
– The divisor for the modulo operation.
Warning
The program behavior is undefined if
exp
is negative and the inverse (1/base
) modulomod
does not exist.
- proc bigint.pow(const ref base: bigint, exp: int)¶
- proc bigint.pow(const ref base: bigint, exp: uint)
- proc bigint.pow(base: int, exp: int)
- proc bigint.pow(base: uint, exp: uint)
Set
this
to the result ofbase
raised toexp
.- Arguments
base :
bigint
,int
oruint
– The value to be raised to the power ofexp
.exp :
int
oruint
– The exponent to raisebase
to the power of.
- proc bigint.root(const ref a: bigint, n: uint): int¶
- proc bigint.rootrem(ref rem: bigint, const ref u: bigint, n: uint)¶
- proc bigint.sqrt(const ref a: bigint)¶
- proc bigint.sqrtrem(ref rem: bigint, const ref a: bigint)¶
- proc bigint.perfect_power_p(): int¶
Warning
bigint.perfect_power_p is deprecated, use bigint.isPerfectPower instead
- proc bigint.isPerfectPower(): bool¶
Return
true
ifthis
is a perfect power, i.e., if there exist integersa
andb
withb > 1
, such thatthis = a^b
.Under this definition both 0 and 1 are considered to be perfect powers. Negative values can only be odd perfect powers.
- Returns
true
ifthis
is a perfect power,false
otherwise.
- proc bigint.perfect_square_p(): int¶
Warning
bigint.perfect_square_p is deprecated, use bigint.isPerfectSquare instead
- proc bigint.isPerfectSquare(): bool¶
Return
true
ifthis
is a perfect square, i.e., if the square root ofthis
is an integer. Under this definition both0
and1
are considered to be perfect squares.- Returns
true
ifthis
is a perfect square,false
otherwise.- Return type
bool
- proc bigint.probab_prime_p(reps: int): int¶
Warning
bigint.probab_prime_p is deprecated, use bigint.probablyPrime instead
- enum primality { notPrime = 0, maybePrime, isPrime }¶
An enumeration of the different possibilities of a number being prime, for use with e.g.
probablyPrime
to determine if a number is prime or not.primality.notPrime
indicates that the number is not a prime.primality.maybePrime
indicates that the number may or may not be a prime.primality.isPrime
indicates that the number is a prime.
- proc bigint.probablyPrime(reps: int): primality¶
Determine whether
this
is prime. Returns one of theprimality
constants -primality.isPrime
,primality.maybePrime
, orprimality.notPrime
.Performs some trial divisions, a Baillie-PSW probable prime test, and reps-24 Miller-Rabin probabilistic primality tests. A higher
reps
value will reduce the chances of a non-prime being identified as “probably prime”. A composite number will be identified as a prime with an asymptotic probability of less than4^(-reps)
. Reasonable values ofreps
are between 15 and 50.- Arguments
reps :
int
– number of attempts before returningprimality.maybePrime
if a definitive answer can’t be found before then.- Returns
primality.isPrime
,primality.maybePrime
orprimality.notPrime
.- Return type
- proc bigint.nextprime(const ref a: bigint)¶
- proc bigint.gcd(const ref a: bigint, const ref b: bigint)¶
- proc bigint.gcd(const ref a: bigint, b: int)
- proc bigint.gcd(const ref a: bigint, b: uint)
- proc bigint.gcd(const ref a: bigint, const ref b: bigint, ref s: bigint, ref t: bigint): void
Set
this
to the greatest common divisor ofa
andb
, and sets
andt
to coefficients such thata*s + b*t == this
.Note
The result stored in
this
is always positive, even if one or both ofa
andb
are negative (or zero if both are zero).This fulfills the same role as the GMP function
mpz_gcdext
.
- proc bigint.gcdext(ref s: bigint, ref t: bigint, const ref a: bigint, const ref b: bigint)¶
Warning
gcdext is deprecated, please use the new overload of
bigint.gcd
with s and t arguments instead
- proc bigint.lcm(const ref a: bigint, const ref b: bigint)¶
- proc bigint.lcm(const ref a: bigint, b: int)
- proc bigint.lcm(const ref a: bigint, b: uint)
- class InversionError: Error¶
An InversionError is thrown if a
bigint.invert()
is attempted with invalid arguments that result in a non-existent inverse. Specifically, if the arguments cause a divide by zero, this error notifies the caller that the internal value of thebigint
was left in an undefined state.- proc init()¶
Create an
InversionError
with the default error message: Inverse does not exist
- config param InvertReturnInt = true¶
A parameter to select between the new and deprecated overloads of
bigint.invert()
* InvertReturnInt = true causes the deprecated version ofbigint.invert()
to be called * InvertReturnInt = false causes the new version ofbigint.invert()
to be called (this version does not return a status integer)
- proc bigint.invert(const ref a: bigint, const ref b: bigint): int throws¶
Warning
The int-returning overload of bigint.invert() is deprecated - please use the non-returning version by setting InvertReturnInt to false
- proc bigint.invert(const ref a: bigint, const ref b: bigint) throws
Set the value of
this
to the inverse ofa
modulob
Note
If an inverse does not exist, an
InversionError
will be thrown, and the value ofthis
will be left undefinedThis fulfills the same role as the GMP number theoretic function
mpz_invert
.
- proc bigint.remove(const ref a: bigint, const ref f: bigint): uint¶
Warning
bigint.remove is deprecated, use bigint.removeFactor instead
- proc bigint.removeFactor(const ref x: bigint, const ref fac: bigint): uint¶
Remove all occurrences of the factor
fac
fromx
and store the result inthis
. Return the number of occurrences removed.
- proc bigint.fac(a: integral)¶
- proc bigint.bin(const ref n: bigint, k: integral)¶
- proc bigint.bin(n: uint, k: integral)
- proc bigint.fib(n: integral)¶
- proc bigint.fib2(ref fnsub1: bigint, n: integral)¶
- proc bigint.lucnum(n: integral)¶
- proc bigint.lucnum2(ref fnsub1: bigint, n: integral)¶
- proc bigint.popcount(): uint¶
- proc bigint.hamdist(const ref b: bigint): uint¶
- proc bigint.scan0(starting_bit: integral): uint¶
Warning
The ‘starting_bit’ argument is deprecated, please use ‘startBitIdx’ instead
- proc bigint.scan0(startBitIdx: integral): uint
Scan
this
, starting fromstartBitIdx
, towards more significant bits until the first0
bit is found. Return the index of the found bit.If the bit at
startBitIdx
is0
, will returnstartBitIdx
.- Arguments
startBitIdx :
integral
– the index of the first bit to start searching for a0
- Returns
the index of the first
0
bit afterstartBitIdx
, inclusive- Return type
uint
- proc bigint.scan1(starting_bit: integral): uint¶
Warning
The ‘starting_bit’ argument is deprecated, please use ‘startBitIdx’ instead
- proc bigint.scan1(startBitIdx: integral): uint
Scan
this
, starting fromstartBitIdx
, towards more significant bits until the first1
bit is found. Return the index of the found bit.If the bit at
startBitIdx
is1
, will returnstartBitIdx
.- Arguments
startBitIdx :
integral
– the index of the first bit to start searching for a1
- Returns
the index of the first
1
bit afterstartBitIdx
, inclusive- Return type
uint
- proc bigint.setbit(bit_index: integral)¶
- proc bigint.clrbit(bit_index: integral)¶
- proc bigint.combit(bit_index: integral)¶
- proc bigint.tstbit(bit_index: integral): int¶
- proc bigint.fitsInto(type t: integral): bool¶
Test whether a
bigint
will fit into one of the standard integer types- Arguments
t : integral – The Integral type to check against.
- proc bigint.fits_ulong_p(): int¶
Warning
fits_ulong_p is deprecated - please use bigint.fitsInto(c_ulong) instead
- proc bigint.fits_slong_p(): int¶
Warning
fits_slong_p is deprecated - please use bigint.fitsInto(c_long) instead
- proc bigint.fits_uint_p(): int¶
Warning
fits_uint_p is deprecated - please use bigint.fitsInto(c_uint) instead
- proc bigint.fits_sint_p(): int¶
Warning
fits_sint_p is deprecated - please use bigint.fitsInto(c_int) instead
- proc bigint.fits_ushort_p(): int¶
Warning
fits_ushort_p is deprecated - please use bigint.fitsInto(c_ushort) instead
- proc bigint.fits_sshort_p(): int¶
Warning
fits_sshort_p is deprecated - please use bigint.fitsInto(c_short) instead
- proc bigint.even_p(): int¶
Warning
bigint.even_p is deprecated, use bigint.isEven instead
- proc bigint.isEven(): bool¶
Returns
true
ifthis
is an even number,false
otherwise.
- proc bigint.odd_p(): int¶
Warning
bigint.odd_p is deprecated, use bigint.isOdd instead
- proc bigint.isOdd(): bool¶
Returns
true
ifthis
is an odd number,false
otherwise.
- proc bigint.add(const ref a: bigint, const ref b: bigint)¶
- proc bigint.add(const ref a: bigint, b: int)
- proc bigint.add(const ref a: bigint, b: uint)
- proc bigint.sub(const ref a: bigint, const ref b: bigint)¶
- proc bigint.sub(const ref a: bigint, b: int)
- proc bigint.sub(const ref a: bigint, b: uint)
- proc bigint.sub(a: int, const ref b: bigint)
- proc bigint.sub(a: uint, const ref b: bigint)
- proc bigint.mul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.mul(const ref a: bigint, b: int)
- proc bigint.mul(const ref a: bigint, b: uint)
- proc bigint.addmul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.addmul(const ref a: bigint, b: int)
- proc bigint.addmul(const ref a: bigint, b: uint)
- proc bigint.submul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.submul(const ref a: bigint, b: int)
- proc bigint.submul(const ref a: bigint, b: uint)
- proc bigint.mul_2exp(const ref a: bigint, b: integral)¶
- proc bigint.neg(const ref a: bigint)¶
- proc bigint.abs(const ref a: bigint)¶
- proc bigint.div_q(const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_q using Round is deprecated, use bigint.divQ with round instead
- proc bigint.div_q(const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_q using Round is deprecated, use bigint.divQ with round instead
- proc bigint.divQ(const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divQ(const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a quotient and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_r(const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_r using Round is deprecated, use bigint.divR with round instead
- proc bigint.div_r(const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_r using Round is deprecated, use bigint.divR with round instead
- proc bigint.divR(const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divR(const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a remainder and storing it inthis
. The absolute value of the remainder will always be less than the absolute value of the denominator (i.e.abs(this) < abs(denom)
).- Arguments
numer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_qr(ref r: bigint, const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_qr using Round is deprecated, use bigint.divQR with round instead
- proc bigint.div_qr(ref r: bigint, const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_qr using Round is deprecated, use bigint.divQR with round instead
- proc bigint.divQR(ref remain: bigint, const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divQR(ref remain: bigint, const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a quotient and storing it inthis
, and a remainder and storing it inremain
. The quotient and remainder will always satisfynumer = this*denom + remain
after the operation has finished. The absolute value of the remainder will always be less than the absolute value of the denominator (i.e.abs(this) < abs(denom)
).Warning
If
this
is also passed as theremain
argument, the program behavior is undefined.- Arguments
remain :
bigint
– Stores the remainder of the divisionnumer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_q_2exp(const ref n: bigint, b: integral, param rounding = Round.ZERO)¶
Warning
bigint.div_q_2exp using Round is deprecated, use bigint.divQ2Exp with round instead
- proc bigint.divQ2Exp(const ref numer: bigint, exp: integral, param rounding = round.zero)¶
Divide
numer
by2^exp
, forming a quotient and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performedexp :
integral
– The exponent that 2 should be raised to before being used as the denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
- proc bigint.div_r_2exp(const ref n: bigint, b: integral, param rounding = Round.ZERO)¶
Warning
bigint.div_r_2exp using Round is deprecated, use bigint.divR2Exp with round instead
- proc bigint.divR2Exp(const ref numer: bigint, exp: integral, param rounding = round.zero)¶
Divide
numer
by2^exp
, forming a remainder and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performedexp :
integral
– The exponent that 2 should be raised to before being used as the denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
- proc bigint.mod(const ref a: bigint, const ref b: bigint)¶
Computes the mod operator on the two arguments, defined as
mod(a, b) = a - b * floor(a / b)
.The result is stored in
this
.The result is always >= 0 if b > 0. It is an error if b == 0.
- proc bigint.mod(const ref a: bigint, b: integral): int
Computes the mod operator on the two arguments, defined as
mod(a, b) = a - b * floor(a / b)
.If b is of an unsigned type, then fewer conditionals will be evaluated at run time.
The result is stored in
this
and returned as anint
.The result is always >= 0 if b > 0. It is an error if b == 0.
- proc bigint.cmp(const ref b: bigint): int¶
- proc bigint.cmp(b: int): int
- proc bigint.cmp(b: uint): int
- proc bigint.cmp(b: real): int
- proc bigint.cmpabs(const ref b: bigint): int¶
- proc bigint.cmpabs(b: uint): int
- proc bigint.cmpabs(b: real): int
- proc bigint.sgn(): int¶
- proc bigint.and(const ref a: bigint, const ref b: bigint)¶
- proc bigint.ior(const ref a: bigint, const ref b: bigint)¶
- proc bigint.xor(const ref a: bigint, const ref b: bigint)¶
- proc bigint.com(const ref a: bigint)¶
- proc bigint.set(const ref a: bigint)¶
- proc bigint.set(num: int)
- proc bigint.set(num: uint)
- proc bigint.set(num: real)
- proc bigint.set(str: string, base: int = 0)
- proc bigint.swap(ref a: bigint)¶