BigInteger¶
Usage
use BigInteger;
or
import BigInteger;
The bigint
record supports arithmetic operations on arbitrary
precision integers in a manner that is broadly consistent with
the conventional operations on primitive fixed length integers.
The current implementation is based on the low-level types and
functions defined in the GMP module i.e. it is implemented using the
GNU Multiple Precision Integer Arithmetic library (GMP). More specifically
the record bigint
wraps the GMP type mpz_t
.
The primary benefits of bigint
over mpz_t
are
support for multi-locale programs
the convenience of arithmetic operator overloads
automatic memory management of GMP data structures
In addition to the expected set of operations, this record provides a number of methods that wrap GMP functions in a natural way:
use BigInteger;
var a = new bigint(234958444);
const b = new bigint("4847382292989382987395534934347");
var c = new bigint();
writeln(a * b);
c.fac(100);
writeln(c);
Casting and declarations can be used to create bigint
records as
well:
use BigInteger;
var a = 234958444: bigint;
const b = "4847382292989382987395534934347": bigint;
var c: bigint;
Warning
Creating a bigint
from an integer literal that is larger than
max(uint(64))
would cause integer overflow before the
bigint
is created, and so results in a compile-time error.
Strings should be used instead of integer literals for cases
like this:
// These would result in integer overflow and cause compile-time errors
var bad1 = 4847382292989382987395534934347: bigint;
var bad2 = new bigint(4847382292989382987395534934347);
// These give the desired result
var good1 = "4847382292989382987395534934347": bigint;
var good2 = new bigint("4847382292989382987395534934347");
Wrapping an mpz_t
in a bigint
record may introduce a
measurable overhead in some cases.
The GMP library defines a low-level API that is based on side-effecting compound operations. The documentation recommends that one prefer to reuse a small number of existing mpz_t structures rather than using many values of short duration.
Matching this style using bigint
records and the compound
assignment operators is likely to provide comparable performance to an
implementation based on mpz_t
. So, for example:
x = b
x *= c;
x += a;
is likely to achieve better performance than:
x = a + b * c;
In the fall of 2016 the Chapel compiler introduces two short lived temporaries for the intermediate results of the binary operators.
If peak performance is required, perhaps in a critical loop, then it is always possible to invoke the GMP functions directly. For example one might express:
a = a + b * c;
as:
mpz_addmul(a.mpz, b.mpz, c.mpz);
As usual the details are application specific and it is best to measure when peak performance is required.
The operators on bigint
include variations that accept Chapel
integers e.g.:
var a = new bigint("9738639463465935");
var b = 9395739153 * a;
The Chapel int(64) literal is converted to an underlying, platform-specific C integer, to invoke the underlying GMP primitive function. This example is likely to work well on popular 64-bit platforms but to fail on common 32-bit platforms. Runtime checks are used to ensure the Chapel types can safely be cast to the platform-specific types. Ths program will halt if the Chapel value cannot be represented using the GMP scalar type.
The checks are controlled by the compiler options --[no-]cast-checks
,
--fast
, etc.
Casting from bigint
to integral
and real
types is also
supported. Values that are too large for the resultant type are
truncated. GMP primitives are used to first cast to platform-specific C
types, which are then cast to Chapel types. As a result, casting to
64-bit types on 32-bit platforms may result in additional truncation.
Additionally, casting a negative bigint
to a uint
will result in
the absolute value truncated to fit within the type.:
var a = new bigint(-1);
writeln(a:uint); // prints "1"
See GMP
for more information on how to use GMP with Chapel.
- enum Round { DOWN = -1, ZERO = 0, UP = 1 }¶
Warning
The enum Round is deprecated, please use the enum round instead
- enum round { down = -1, zero = 0, up = 1 }¶
An enumeration of the different rounding strategies, for use with e.g.
divQ
to determine how to round the quotient when performing the computation.round.down
indicates that the quotient should be rounded down towards -infinity and any remainder should have the same sign as the denominator.round.zero
indicates that the quotient should be rounded towards zero and any remainder should have the same sign as the numerator.round.up
indicates that the quotient should be rounded up towards +infinity and any remainder should have the opposite sign as the denominator.
- record bigint¶
- var mpz: mpz_t¶
The underlying GMP C structure
- proc init()¶
- proc init(const ref num: bigint)
- proc init=(const ref num: bigint)¶
- proc init(num: int)
- proc init(num: uint)
- proc init=(num: integral)
- proc init(str: string, base: int = 0)
- proc init(str: string, base: int = 0, out error: syserr)
- proc size(): size_t¶
Warning
bigint.size() is deprecated
- proc sizeinbase(base: int): uint¶
Warning
bigint.sizeinbase() is deprecated, use bigint.sizeInBase() instead
- proc sizeInBase(base: int): int¶
Determine the size of
this
measured in number of digits in the givenbase
. The sign ofthis
is ignored, only the absolute value is used.- Arguments
base :
int
– The base in which to compute the number of digits used to representthis
. Can be between 2 and 62.- Returns
The size of
this
measured in number of digits in the givenbase
. Will either be exact or 1 too big. Ifbase
is a power of 2, will always be exact. Ifthis
is 0, will always return 1.- Return type
int
- proc numLimbs: uint¶
Warning
This method is deprecated, please use
GMP.chpl_gmp_mpz_nlimbs
on thempz
field instead
- proc get_limbn(n: integral): uint¶
Warning
This method is deprecated, please use
GMP.chpl_gmp_mpz_getlimbn
on thempz
field instead
- proc mpzStruct(): __mpz_struct¶
- proc get_d_2exp(): (uint(32), real)¶
- proc get_str(base: int = 10): string¶
- proc writeThis(writer) throws¶
- proc type bigint.=(ref lhs: bigint, const ref rhs: bigint)¶
- proc type bigint.=(ref lhs: bigint, rhs: int)
- proc type bigint.=(ref lhs: bigint, rhs: uint)
- proc type bigint.+(const ref a: bigint)¶
- proc type bigint.-(const ref a: bigint)¶
- proc type bigint.~(const ref a: bigint)
- proc type bigint.+(const ref a: bigint, const ref b: bigint)
- proc type bigint.+(const ref a: bigint, b: int)
- proc type bigint.+(a: int, const ref b: bigint)
- proc type bigint.+(const ref a: bigint, b: uint)
- proc type bigint.+(a: uint, const ref b: bigint)
- proc type bigint.-(const ref a: bigint, const ref b: bigint)
- proc type bigint.-(const ref a: bigint, b: int)
- proc type bigint.-(a: int, const ref b: bigint)
- proc type bigint.-(const ref a: bigint, b: uint)
- proc type bigint.-(a: uint, const ref b: bigint)
- proc type bigint.*(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.*(const ref a: bigint, b: int)
- proc type bigint.*(a: int, const ref b: bigint)
- proc type bigint.*(const ref a: bigint, b: uint)
- proc type bigint.*(a: uint, const ref b: bigint)
- proc type bigint./(const ref a: bigint, const ref b: bigint)¶
- proc type bigint./(const ref a: bigint, b: integral)
- proc type bigint.**(const ref base: bigint, const ref exp: bigint)¶
- proc type bigint.**(const ref base: bigint, exp: int)
- proc type bigint.**(const ref base: bigint, exp: uint)
- proc type bigint.%(const ref a: bigint, const ref b: bigint)
- proc type bigint.%(const ref a: bigint, b: int)
- proc type bigint.%(const ref a: bigint, b: uint)
- proc type bigint.<<(const ref a: bigint, b: int)¶
- proc type bigint.<<(const ref a: bigint, b: uint)
- proc type bigint.>>(const ref a: bigint, b: int)¶
- proc type bigint.>>(const ref a: bigint, b: uint)
- proc type bigint.&(const ref a: bigint, const ref b: bigint)
- proc type bigint.|(const ref a: bigint, const ref b: bigint)
- proc type bigint.^(const ref a: bigint, const ref b: bigint)
- proc type bigint.==(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.==(const ref a: bigint, b: int)
- proc type bigint.==(a: int, const ref b: bigint)
- proc type bigint.==(const ref a: bigint, b: uint)
- proc type bigint.==(a: uint, const ref b: bigint)
- proc type bigint.!=(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.!=(const ref a: bigint, b: int)
- proc type bigint.!=(a: int, const ref b: bigint)
- proc type bigint.!=(const ref a: bigint, b: uint)
- proc type bigint.!=(a: uint, const ref b: bigint)
- proc type bigint.>(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.>(const ref a: bigint, b: int)
- proc type bigint.>(a: int, const ref b: bigint)
- proc type bigint.>(const ref a: bigint, b: uint)
- proc type bigint.>(a: uint, const ref b: bigint)
- proc type bigint.<(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.<(const ref a: bigint, b: int)
- proc type bigint.<(a: int, const ref b: bigint)
- proc type bigint.<(const ref a: bigint, b: uint)
- proc type bigint.<(a: uint, const ref b: bigint)
- proc type bigint.>=(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.>=(const ref a: bigint, b: int)
- proc type bigint.>=(a: int, const ref b: bigint)
- proc type bigint.>=(const ref a: bigint, b: uint)
- proc type bigint.>=(a: uint, const ref b: bigint)
- proc type bigint.<=(const ref a: bigint, const ref b: bigint)¶
- proc type bigint.<=(const ref a: bigint, b: int)
- proc type bigint.<=(a: int, const ref b: bigint)
- proc type bigint.<=(const ref a: bigint, b: uint)
- proc type bigint.<=(a: uint, const ref b: bigint)
- proc type bigint.+=(ref a: bigint, const ref b: bigint)¶
- proc type bigint.+=(ref a: bigint, b: int)
- proc type bigint.+=(ref a: bigint, b: uint)
- proc type bigint.-=(ref a: bigint, const ref b: bigint)¶
- proc type bigint.-=(ref a: bigint, b: int)
- proc type bigint.-=(ref a: bigint, b: uint)
- proc type bigint.*=(ref a: bigint, const ref b: bigint)¶
- proc type bigint.*=(ref a: bigint, b: int)
- proc type bigint.*=(ref a: bigint, b: uint)
- proc type bigint./=(ref a: bigint, const ref b: bigint)¶
- proc type bigint./=(ref a: bigint, b: integral)
- proc type bigint.**=(ref base: bigint, const ref exp: bigint)¶
- proc type bigint.**=(ref base: bigint, exp: int)
- proc type bigint.**=(ref base: bigint, exp: uint)
- proc type bigint.%=(ref a: bigint, const ref b: bigint)
- proc type bigint.%=(ref a: bigint, b: int)
- proc type bigint.%=(ref a: bigint, b: uint)
- proc type bigint.&=(ref a: bigint, const ref b: bigint)
- proc type bigint.|=(ref a: bigint, const ref b: bigint)
- proc type bigint.^=(ref a: bigint, const ref b: bigint)
- proc type bigint.<<=(ref a: bigint, b: int)¶
- proc type bigint.<<=(ref a: bigint, b: uint)
- proc type bigint.>>=(ref a: bigint, b: int)¶
- proc type bigint.>>=(ref a: bigint, b: uint)
- proc type bigint.<=>(ref a: bigint, ref b: bigint)¶
- proc jacobi(const ref a: bigint, const ref b: bigint): int¶
- proc legendre(const ref a: bigint, const ref p: bigint): int¶
- proc kronecker(const ref a: bigint, const ref b: bigint): int¶
- proc kronecker(const ref a: bigint, b: int): int
- proc kronecker(a: int, const ref b: bigint): int
- proc kronecker(const ref a: bigint, b: uint): int
- proc kronecker(a: uint, const ref b: bigint): int
- proc bigint.divexact(const ref n: bigint, const ref d: bigint)¶
Computes
n/d
and stores the result inbigint
instance.divexact
is optimized to handle cases wheren/d
results in an integer. Whenn/d
does not produce an integer, this method may produce incorrect results.- Arguments
n : bigint – numerator
d : bigint – denominator
- proc bigint.divexact(const ref n: bigint, d: integral)
- proc bigint.divisible_p(const ref d: bigint): int¶
- proc bigint.divisible_p(d: int): int
- proc bigint.divisible_p(d: uint): int
- proc bigint.divisible_2exp_p(b: integral): int¶
- proc bigint.congruent_p(const ref c: bigint, const ref d: bigint): int¶
- proc bigint.congruent_p(c: integral, d: integral): int
- proc bigint.congruent_2exp_p(const ref c: bigint, b: integral): int¶
- proc bigint.powm(const ref base: bigint, const ref exp: bigint, const ref mod: bigint)¶
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powm(const ref base: bigint, exp: int, const ref mod: bigint)
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powm(const ref base: bigint, exp: uint, const ref mod: bigint)
Warning
bigint.powm is deprecated, use bigint.powMod instead
- proc bigint.powMod(const ref base: bigint, const ref exp: bigint, const ref mod: bigint)¶
- proc bigint.powMod(const ref base: bigint, exp: int, const ref mod: bigint)
- proc bigint.powMod(const ref base: bigint, exp: uint, const ref mod: bigint)
Set
this
to the result of (base
raised toexp
) modulomod
.- Arguments
base :
bigint
– The value to be raised to the power ofexp
before performing a modulo operation on.exp :
bigint
,int
, oruint
– The exponent to raisebase
to the power of prior to the modulo operation. Can be negative if the inverse (1/base
) modulomod
exists.mod :
bigint
– The divisor for the modulo operation.
Warning
The program behavior is undefined if
exp
is negative and the inverse (1/base
) modulomod
does not exist.
- proc bigint.pow(const ref base: bigint, exp: int)¶
- proc bigint.pow(const ref base: bigint, exp: uint)
- proc bigint.pow(base: int, exp: int)
- proc bigint.pow(base: uint, exp: uint)
Set
this
to the result ofbase
raised toexp
.- Arguments
base :
bigint
,int
oruint
– The value to be raised to the power ofexp
.exp :
int
oruint
– The exponent to raisebase
to the power of.
- proc bigint.root(const ref a: bigint, n: uint): int¶
- proc bigint.rootrem(ref rem: bigint, const ref u: bigint, n: uint)¶
- proc bigint.sqrt(const ref a: bigint)¶
- proc bigint.sqrtrem(ref rem: bigint, const ref a: bigint)¶
- proc bigint.perfect_power_p(): int¶
- proc bigint.perfect_square_p(): int¶
- proc bigint.probab_prime_p(reps: int): int¶
- proc bigint.nextprime(const ref a: bigint)¶
- proc bigint.gcd(const ref a: bigint, const ref b: bigint)¶
- proc bigint.gcd(const ref a: bigint, b: int)
- proc bigint.gcd(const ref a: bigint, b: uint)
- proc bigint.gcdext(ref s: bigint, ref t: bigint, const ref a: bigint, const ref b: bigint)¶
- proc bigint.lcm(const ref a: bigint, const ref b: bigint)¶
- proc bigint.lcm(const ref a: bigint, b: int)
- proc bigint.lcm(const ref a: bigint, b: uint)
- proc bigint.invert(const ref a: bigint, const ref b: bigint): int¶
- proc bigint.remove(const ref a: bigint, const ref f: bigint): uint¶
- proc bigint.fac(a: integral)¶
- proc bigint.bin(const ref n: bigint, k: integral)¶
- proc bigint.bin(n: uint, k: integral)
- proc bigint.fib(n: integral)¶
- proc bigint.fib2(ref fnsub1: bigint, n: integral)¶
- proc bigint.lucnum(n: integral)¶
- proc bigint.lucnum2(ref fnsub1: bigint, n: integral)¶
- proc bigint.popcount(): uint¶
- proc bigint.hamdist(const ref b: bigint): uint¶
- proc bigint.scan0(starting_bit: integral): uint¶
- proc bigint.scan1(starting_bit: integral): uint¶
- proc bigint.setbit(bit_index: integral)¶
- proc bigint.clrbit(bit_index: integral)¶
- proc bigint.combit(bit_index: integral)¶
- proc bigint.tstbit(bit_index: integral): int¶
- proc bigint.fits_ulong_p(): int¶
- proc bigint.fits_slong_p(): int¶
- proc bigint.fits_uint_p(): int¶
- proc bigint.fits_sint_p(): int¶
- proc bigint.fits_ushort_p(): int¶
- proc bigint.fits_sshort_p(): int¶
- proc bigint.even_p(): int¶
- proc bigint.odd_p(): int¶
- proc bigint.add(const ref a: bigint, const ref b: bigint)¶
- proc bigint.add(const ref a: bigint, b: int)
- proc bigint.add(const ref a: bigint, b: uint)
- proc bigint.sub(const ref a: bigint, const ref b: bigint)¶
- proc bigint.sub(const ref a: bigint, b: int)
- proc bigint.sub(const ref a: bigint, b: uint)
- proc bigint.sub(a: int, const ref b: bigint)
- proc bigint.sub(a: uint, const ref b: bigint)
- proc bigint.mul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.mul(const ref a: bigint, b: int)
- proc bigint.mul(const ref a: bigint, b: uint)
- proc bigint.addmul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.addmul(const ref a: bigint, b: int)
- proc bigint.addmul(const ref a: bigint, b: uint)
- proc bigint.submul(const ref a: bigint, const ref b: bigint)¶
- proc bigint.submul(const ref a: bigint, b: int)
- proc bigint.submul(const ref a: bigint, b: uint)
- proc bigint.mul_2exp(const ref a: bigint, b: integral)¶
- proc bigint.neg(const ref a: bigint)¶
- proc bigint.abs(const ref a: bigint)¶
- proc bigint.div_q(const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_q using Round is deprecated, use bigint.divQ with round instead
- proc bigint.div_q(const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_q using Round is deprecated, use bigint.divQ with round instead
- proc bigint.divQ(const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divQ(const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a quotient and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_r(const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_r using Round is deprecated, use bigint.divR with round instead
- proc bigint.div_r(const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_r using Round is deprecated, use bigint.divR with round instead
- proc bigint.divR(const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divR(const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a remainder and storing it inthis
. The absolute value of the remainder will always be less than the absolute value of the denominator (i.e.abs(this) < abs(denom)
).- Arguments
numer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_qr(ref r: bigint, const ref n: bigint, const ref d: bigint, param rounding = Round.ZERO)¶
Warning
bigint.div_qr using Round is deprecated, use bigint.divQR with round instead
- proc bigint.div_qr(ref r: bigint, const ref n: bigint, d: integral, param rounding = Round.ZERO)
Warning
bigint.div_qr using Round is deprecated, use bigint.divQR with round instead
- proc bigint.divQR(ref remain: bigint, const ref numer: bigint, const ref denom: bigint, param rounding = round.zero)¶
- proc bigint.divQR(ref remain: bigint, const ref numer: bigint, denom: integral, param rounding = round.zero)
Divide
numer
bydenom
, forming a quotient and storing it inthis
, and a remainder and storing it inremain
. The quotient and remainder will always satisfynumer = this*denom + remain
after the operation has finished. The absolute value of the remainder will always be less than the absolute value of the denominator (i.e.abs(this) < abs(denom)
).Warning
If
this
is also passed as theremain
argument, the program behavior is undefined.- Arguments
remain :
bigint
– Stores the remainder of the divisionnumer :
bigint
– The numerator of the division operation to be performeddenom :
bigint
,integral
– The denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
Warning
If the denominator is zero, the program behavior is undefined.
- proc bigint.div_q_2exp(const ref n: bigint, b: integral, param rounding = Round.ZERO)¶
Warning
bigint.div_q_2exp using Round is deprecated, use bigint.divQ2Exp with round instead
- proc bigint.divQ2Exp(const ref numer: bigint, exp: integral, param rounding = round.zero)¶
Divide
numer
by2^exp
, forming a quotient and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performedexp :
integral
– The exponent that 2 should be raised to before being used as the denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
- proc bigint.div_r_2exp(const ref n: bigint, b: integral, param rounding = Round.ZERO)¶
Warning
bigint.div_r_2exp using Round is deprecated, use bigint.divR2Exp with round instead
- proc bigint.divR2Exp(const ref numer: bigint, exp: integral, param rounding = round.zero)¶
Divide
numer
by2^exp
, forming a remainder and storing it inthis
.- Arguments
numer :
bigint
– The numerator of the division operation to be performedexp :
integral
– The exponent that 2 should be raised to before being used as the denominator of the division operation to be performedrounding :
round
– The rounding style to use, seeround
for a description of what the rounding styles entail. Defaults tozero
if unspecified
- proc bigint.mod(const ref a: bigint, const ref b: bigint)¶
- proc bigint.mod(const ref a: bigint, b: integral): uint
- proc bigint.cmp(const ref b: bigint): int¶
- proc bigint.cmp(b: int): int
- proc bigint.cmp(b: uint): int
- proc bigint.cmp(b: real): int
- proc bigint.cmpabs(const ref b: bigint): int¶
- proc bigint.cmpabs(b: uint): int
- proc bigint.cmpabs(b: real): int
- proc bigint.sgn(): int¶
- proc bigint.and(const ref a: bigint, const ref b: bigint)¶
- proc bigint.ior(const ref a: bigint, const ref b: bigint)¶
- proc bigint.xor(const ref a: bigint, const ref b: bigint)¶
- proc bigint.com(const ref a: bigint)¶
- proc bigint.set(const ref a: bigint)¶
- proc bigint.set(num: int)
- proc bigint.set(num: uint)
- proc bigint.set(num: real)
- proc bigint.set(str: string, base: int = 0)
- proc bigint.swap(ref a: bigint)¶